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Abstract— In this paper, we consider the problem of
minimum-time rendezvous of a team of Dubins vehicle at a
pre-assigned destination point starting from arbitrary initial
configurations. We impose an additional constraint that the
separation between arrival angles of successive team members
at the destination be equal. We propose a decentralized algo-
rithm that solves the problem up to a desired level of accuracy
in finite time. The communication complexity of the algorithm
is quadratic and the space complexity is constant in team size.
The proposed algorithm is proved to be correct by establishing
some important facts for the shortest path length of a Dubins
vehicle as a function of arrival angle at the destination point.

I. INTRODUCTION

In this paper, we consider the problem of minimum-time
rendezvous of a team of Dubins vehicles under geometric
constraints. A Dubins vehicle can be considered to be a
simplified model of a mobile robot or an airplane moving in 2
dimensions with a bounded curvature and constant speed [1],
[2]. The team members are required to reach a specified
location (the rendezvous point) at the same time, and do
so as quickly as possible. In addition, it is desired that the
arrival angles of team members are equally spaced at the
rendezvous point. This version of the rendezvous problem
is especially relevant for planning attack missions in hostile
environments using a team of UAVs, where maximum spread
of the vehicles in terms of arrival angles at the destination
can improve the chances of successful mission completion.
In Fig. 1, we show one such scenario, where team members
are spaced apart by π/2 radians at the rendezvous point.
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Fig. 1. Rendezvous of Dubins vehicles with maximal separation

Consensus problems have been studied by the controls
community, both in discrete-time systems framework, e.g.,
in [3]–[8], and in continuous-time systems framework, e.g.,
in [9]–[16]. Provably-correct stop-and-go policies (both syn-
chronous and asynchronous) that are local in nature and

Amit Bhatia is with the Department of Mechanical and Aerospace Engi-
neering, University of California at Los Angeles, Los Angeles, California
90095, abhatia@ucla.edu

Emilio Frazzoli is with the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139,
frazzoli@mit.edu

guarantee convergence of the agents (assumed to be point
masses) to an unspecified or a specified point have been pro-
posed in [4], [5]. In the continuous-time systems framework,
time-optimal rendezvous problem for the case of two distinct
linear time varying systems with amplitude constraints on
the input and with unspecified destination point has been
considered in [9]. Rendezvous problem for linear systems
with unspecified destination point and time has also been
examined in the framework of cone invariance problems
in [10]. For agent models with nonlinear dynamics but
no actuator constraints (e.g., unicycles), policies have been
proposed in [11]–[14].

However, the problem becomes very hard to analyze, even
for a simplified model of an airplane (e.g., a Dubins vehicle
model), where the speed is constrained to be constant, and
the curvature is bounded. To effect cooperation between a
team of UAVs, the notion of coordination functions and
variables has been recently proposed in [16]. The notion
is used for executing cooperative timing missions under the
presence of threats. To solve the optimization problem, a
point mass model is assumed for each vehicle and the space
of actions for each vehicle is discretized to a finite set. The
consensus value of the coordination variables is then used to
generate a feasible path based on actual dynamics.

In our work, we use the Dubins model for the agents,
and address the minimum-time rendez-vous problem, with-
out discretizing the set of inputs to arrive at the solution.
Moreover, we impose an additional geometric constraint in
the problem. The main contribution of this paper is a de-
centralized ε-approximate algorithm to solve the rendezvous
problem1 with accuracy ε in finite time. The communication
complexity of the algorithm is quadratic and the space com-
plexity is constant in team size. In order to prove correctness
of the proposed algorithm, we also establish the following
facts for a Dubins vehicle. First, we establish that for a given
pair of initial configuration and final position, the length of
the shortest path between the two is a continuous function of
the vehicle heading at the final position. This result helps in
proving continuity of the cost function for the team. Second,
it is established by construction that a Dubins shortest paths
between two given configurations can be extended to feasible
paths of arbitrary lengths. This ensures that the solution
satisfies feasibility condition for every vehicle.

The paper is organized as follows. In Section II, we
define the problem and the notation used in the paper. In
Section III, we discuss some important properties of the
cost functions for a single Dubins vehicle and the team.

1From now on, we will refer to our problem as the rendezvous problem.
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In Section IV, we present a way of extending the Dubins
path between two configurations to arbitrary lengths. A de-
centralized ε-approximate algorithm for solving the problem
approximately is presented in Section V. Simulation results
are presented in Section VI and the paper is concluded in
Section VII. Proofs of all the stated results are presented in
the Appendix.

II. PRELIMINARIES

We denote by C the configuration space for a Dubins
vehicle, where, C is the Special Euclidean group SE(2) =
R2 × S1. C = (P,ψ), P ∈ R2, ψ ∈ [0, 2π) denotes a
configuration of the vehicle. We assume that the vehicle is
moving with unit speed and has a minimum turning radius
of unity. Given the initial configuration C0 = (P0, α) and the
final configuration Cf = (Pf , β), a Dubins path is a curve
(twice differentiable almost everywhere) Γ : [0, T ] → R2,
starting at P0 with direction α and ending at Pf with
direction β and respecting the constraint that the curvature
along the path is bounded above by 1. Let |Γ| denote the
length of Dubins path Γ. For a given pair of initial and
final configuration C0, Cf , we choose the local coordinate
system (fixed at vehicle’s initial position) such that C0 =
(0, 0, α), α ∈ [0, 2π], Cf = (d, 0, β), β ∈ [0, 2π], with all the
angles being measured counter clockwise (shown in Fig. 2).

It is known that between any two configurations, the
shortest path for a Dubins vehicle belongs the the Du-
bins set D which contains six admissible paths D =
{LSL,RSR,RSL,LSR,RLR,LRL} (proved in [1]). Here L
denotes a left turn of radius 1, R denotes a right turn of radius
1 and S denotes a straight line segment. For a given vehicle,
for a fixed P0, Pf , α, we denote by LΛ(β) the length of a
path Λ ∈ D for a given arrival angle β. Using the notation
of [2], for a path Λ ∈ Dlong LΛ(β) = t(β) + p(β) + q(β),
where t(β) is the length of the first segment, p(β) is the
length of the second segment, and q(β) is the length of
the last segment of the path (shown in Fig. 2). L∗(β) =
minΛ∈D LΛ(β) denotes the length of the shortest path for
given angle β. LΛ(·) will be called as vehicle cost function
for path Λ and L∗(·) as the vehicle optimal cost function.
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Fig. 2. Example of Dubins shortest path

Let T = {Vj}Nj=1 denote the team of vehicles Vj , partic-
ipating in the rendezvous at location P̄T , where P̄ denotes
the coordinates of a point in a stationary global reference
frame. C̄0,j = (P̄0,j , ᾱj) denotes the initial configuration of
vehicle Vj in global coordinate system. γ0,j is the angular

orientation of the local coordinate frame of vehicle j in
the global reference frame (shown in Fig. 2). For a given
arrival angle β for a vehicle Vj ∈ T , ψ denote the phase
of arrival angle and is given by ψ = β + γ0,j − 2πj/N .
The phase indicates the deviation of vehicle arrival angle
from the one based on its position in the team. With slight
abuse of notation we denote by L∗j (ψ) the vehicle optimal
cost for vehicle Vj for a given phase angle ψ . The cost
function for the team is given by LT (·) = maxVj∈T L∗j (·).
The max here denotes the fact that the team cannot achieve
rendezvous if all the team members cannot arrive at same
time. The rendezvous problem can now be stated as:

Definition 1 (Rendezvous Problem ): For a given team of
Dubins vehicles T = {Vj}Nj=1 with initial configurations C̄0,j
and destination point P̄T , find the optimal phase angle ψ∗

and the cost L∗T for the team such that L∗T = LT (ψ∗) =
minψ∈[0,2π] LT (·), and plan paths Γj for each vehicle Vj ∈
T , with phase angle ψ∗ and |Γj | = L∗T .
We now introduce the notion of ε-approximate algorithms
that are guaranteed to solve the rendezvous problem in finite
time up to desired level of accuracy ε.

Definition 2 (ε-approximate algorithm): An algorithm is
ε-approximate for a given rendezvous problem if it finds
a phase angle ψε and the corresponding team cost LεT =
LT (ψε) such that LεT ≤ L∗T + ε and plans paths Γj for each
vehicle Vj ∈ T , with phase angle ψε and |Γj | = LεT , in
finite time.

III. COST FUNCTIONS

In this section we first discuss properties of L∗(·) and
then those of LT (·). We will show that the function L∗(·) is
continuous and moreover its derivative does not change sign
more than 16 times. An arrival angle where the derivative of
L∗(·) changes its sign will be denoted by βcrit and the set
of all such arrival angels will be denoted by {β}crit. Note
that at such arrival angles the left and the right derivatives of
L∗(·) will not be equal. To compute this set, we will discuss
some of the important properties of the vehicle cost curves
that will make the computations easier. We then discuss the
properties of cost function LT (·) for the team T and then
discuss the computation of the optimal phase angle ψ∗ and
the team cost L∗T for the rendezvous problem.

A. Properties of vehicle cost functions

We first begin by stating a lemma that narrows down the
candidate Dubins paths for the shortest path between two
configurations when d ≥ 4. The configurations where d ≥ 4
are known as the long path configurations.

Lemma 1: For d ≥ 4, the shortest path belongs to the set
Dlong = {LSL,RSR,RSL,LSR}.
In Fig. 3, we have shown the cost curves for the long path
cases as a function of arrival angle β for a fixed initial
configuration and final position. The figure at the left shows
the monotonic nature of LΛ(·) for the paths Λ ∈ Dlong and
the figure at the right shows the continuity property of L∗(·)
together with critical arrival angles. Lemma 2 characterizes
the points of discontinuity in LΛ(·) for Λ ∈ Dlong, and
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Fig. 3. Vehicle cost curves for the long path case

Lemma 3 talks about the increasing or decreasing nature of
LΛ(·) for each path Λ ∈ Dlong.

Lemma 2: For d ≥ 4, and for a given admissible path
Λ ∈ Dlong, if LΛ(β) is discontinuous at β, then this implies
that either t(β) = 0 (or 2π) or q(β) = 0 (or 2π).

Lemma 3: LLSL(·),LRSL(·) are monotonically increasing
and LRSR(·),LLSR(·) are monotonically decreasing func-
tions with slope bounded in magnitude between 0 and 2
(modulo discontinuities).

In the lemmas below, βΛ(t, p, q) denotes the arrival angle
for path Λ for which LΛ(β) = t(β) + p(β) + q(β).
Lemma 4, 5 show how the vehicle cost curves switch when
there is discontinuity in q(·), t(·) respectively (called as q, t-
discontinuities respectively). In Fig. 3 at the left, we show
an example of such discontinuties.

Lemma 4: For d ≥ 4, βLSL(t, p, 0) = βLSR(t, p, 0) and
βRSL(t, p, 0) = βRSR(t, p, 0).

Lemma 5: For d ≥ 4, βLSL(0, p, q) = βRSL(0, p, q) and
βRSR(0, p, q) = βLSR(0, p, q).
We now characterize the critical arrival angles βcrit, where
the derivative of L∗(·) changes its sign.

Proposition 1: The q-discontinuities for Λ = LSL,RSR
are respectively the same as those for Λ = LSR,RSL and
the t-discontinuities for Λ = LSL,RSR are respectively the
same as those for Λ = RSL,LSR. Moreover, L∗(·) remains
differentiable at t-discontinuities.

The next theorem proves the continuity property of the
vehicle optimal cost curve L∗(·).

Theorem 1: Given an initial configuration and a final
location for a Dubins vehicle , the optimal cost function L∗(·)
is a continuous function of the arrival angle β if d ≥ 4.

B. Computation of critical arrival angles

In this section, we first state two lemmas that will help us
in computing the (q, t)-discontinuities.

Lemma 6: For a given Dubins admissible path Λ ∈ Dlong

and d ≥ 5, qΛ(·) is a monotonically increasing function for
Λ ∈ {LSL,RSL}, and and monotonically decreasing for Λ ∈
{RSR,LSR}, modulo q-discontinuities. Moreover, |q′Λ| ≤ 2
(where defined), for Λ ∈ Dlong.
The above lemma will be used to compute q-discontinuities
in LΛ(·) for Λ ∈ Dlong, in Section III-B.

Lemma 7: For a given Dubins admissible path Λ ∈
{LSL,RSL} and d ≥ 2(1 +

√
3), t′′Λ(β) = 0 iff q(β) ∈

{π/2, 3π/2}.
The above Lemma will be used to compute t-discontinuities
in LΛ(·) for Λ ∈ Dlong, in Section III-B.

In the next proposition we upper bound the number of
times the derivative of L∗(·) can change its sign. We once
again remark that the left and the right derivative may not
be equal where the sign changes.

Proposition 2: The derivative of the function L∗(·) can
change its sign no more than 16 times.

We now discuss how to use Lemma 6, 7 to compute the
set {βcrit}. For the remainder of this section, assume that
d ≥ 2(1 +

√
(6)) so that we can use Lemmas 6 and 7 and

Proposition 2. Proposition 1 and Theorem 1 imply that every
βcrit will be either a q-discontinuity or a point of intersection
between curves whose derivatives are of opposite signs. Let
q̂Λ(·) denote the variant of qΛ(·) without the mod function,
and similarly t̂Λ(·) denote the variant of tΛ(·) without the
mod function. For the exact expressions, we refer the reader
to [2]. βΛ1,Λ2 denotes the point of intersection between
LΛ1(·) and LΛ2(·) for Λ1,Λ2 ∈ Dlong. We refer the reader
to Fig 3 at the left for one such example.
βΛ(t, p, 0) can be found using Lemma 6 and finding the

2kπ crossings of q̂Λ(·), k ∈ N.
To find βΛ(0, p, q), we first find βΛ(t, p, q ∈

{π/2, 3π/2}). From Lemma 7 we know that between
two such β, the function remains convex or concave. Hence
in any such interval there can be at most two such crossings
where t = 0 or 2π. We can find the 2kπ crossings of t̂Λ(·),
k ∈ N now using some kind of minimization routine on the
bounded interval.

Let {βdisct} = {β : q̂Λ(β) = 2kπ} ∪ {β :
t̂Λ(β) = 2lπ} ∪ {0, 2π}, k, l ∈ N,Λ ∈ Dlong. As-
sume that {βdisct} is a strictly increasing sequence.
Now {βcrit} ⊆ {βdisct} ∪ {βinter}, where {βinter} =
{βLSL,RSR, βLSL,LSR, βRSR,RSL, βLSR,RSL}. An exhaustive
search of the intersection points can be done between every
two successive β1, β2 ∈ {βdisct} since each of the LΛ is
guaranteed to be smooth in any such interval for Λ ∈ Dlong.
This can be done for example by doing minimization of
|LΛ1(·)− LΛ2(·)| on the interval [β1, β2].

Finally, the set {βcrit} can be formed using {βdisct} and
{βinter} by examining the derivative of L∗(·) around each
β ∈ {βdisct} ∪ {βinter}.

C. Properties of the team cost function

Let {ψcrit,j} denote the set of phases of critical arrival
angles for vehicle Vj and ψi,j denote the phase (possibly
more than one) at which L∗i (·),L∗j (·) intersect. In Fig. 4,
we show one instance of the cost curves for each vehicle
along with that for the team along with few important phase
angles. The figure at the right indicates that the team cost
curve LT (·) is continuous which holds true under some
assumptions. We state this in the next theorem.

Theorem 2: Given a team of Dubins vehicles T =
{Vj}Nj=1 with fixed initial configurations and a final location,
the team cost function LT (·) is a continuous function of the
phase if d ≥ 4 for each vehicle.

The next theorem characterizes the optimal phase angle
ψ∗ for the rendezvous problem.
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Theorem 3: The solution ψ∗ to the rendezvous problem
either belongs to the set {ψcrit,j} for some Vj ∈ T or is
a point of intersection between two vehicle optimal cost
functions L∗j ,L∗i if d ≥ 4 for each vehicle.

D. Computation of optimal phase angle and team cost

We now discuss how the results of Sections III-C can
be used for solving the rendezvous problem approximately.
From Theorem 2, we already know the function LT (·) is
continuous. We also know from Theorem 3, that ψ∗ is an end
point, or a point where the derivative of LT (·) changes its
sign. Note that we do not have any smoothness properties for
LT (·) beyond continuity. In Section V, a decentralized ε ap-
proximate algorithm that is based on golden section search is
proposed that computes an approximation LεT to the optimal
cost L∗T , up to the desired level of accuracy ε . The golden
section search method is an iterative optimization scheme
that is guaranteed to find the optimal for a continuous and
unimodal function in a bounded interval up to a desired level
of accuracy [17]. The scheme can compute an approximation
to the optimum based on just the function evaluations without
using any derivative information.

To actually achieve rendezvous, a Dubins vehicle should
be able to plan a Dubins path of given length L = LT (ψ∗) ≥
L∗j (ψ∗). In the next section we propose a scheme of ex-
tending Dubins shortest path between two configurations to
arbitrary lengths.

IV. EXTENSION OF DUBINS SHORTEST PATH

In this section we show how for any given pairs of
configuration, the Dubins shortest path can be extended to
arbitrary lengths.

Theorem 4: For a given initial configuration Ci =
(0, 0, α), and a final configuration Cf = (d, 0, β), it is
possible to construct a Dubins path of length L(β) > L∗(β)
if d ≥ d∗ = 2(1 +

√
6).

Proof: For d ≥ d∗, pΛ ≥ 4. Now let δL =
mod (L(β) − L(β)∗, 2π). Extending the path length by
2πm,m ∈ N, is trivial (e.g. make m loops around a point on
the original path). So let us assume that δL < 2π. Now first
consider the case when 0 < δL ≤ 2π − 4. For this case the
suggested path modification is shown in Fig. 5 at the left.
We modify the linear portion of the original path (segment
p). To extend the path length, we can make a left turn of
length v followed by a right turn of length 2v and finally a
left turn of length v. Let the distance between the centers of
the circles C1, C2 be d12. Then the length of curved portion

is 4v, with v = arcsin(d12/4). Hence the increase in path
length is given by f(d12) = 4 arcsin(d12/4) − d12. f(·)
achieves its maximum value fmax = 2π−4 at d12 = 4 and is
monotonically increasing in the interval d12 ∈ [0, 4). Hence
for δL ≤ fmax this maneuver suffices. For the case when
δL ∈ (fmax, 2π), the maneuver shown in Fig. 5 at the right
can be used to achieve the required path length. It consists
of a left turn of length π/2, followed by a straight line of
length d14, followed by a right turn of length π followed by
a straight line of length d24 = d14 followed by a left turn of
length π/2. Hence to achieve the required increase in path
length δL, d14 = d24 = (δL − (2π − 4))/2.

t p
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2v
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C2
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Pi Pf

δL

d
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t
p

q

βα
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d

d
12 = 4

C3

C4

d14

d24

Fig. 5. Extension of Dubins shortest path

Remark 1: Note that d∗ is not the tightest possible lower
bound but one where extending the original path is fairly
straightforward.

V. ALGORITHM

We now propose a decentralized algorithm (shown in
Fig. 6, 8) which is an ε-approximate algorithm for the
optimal rendezvous problem. We will call this algorithm
as the Optimal Rendezvous algorithm. We first state the
assumptions that are necessary for the algorithm to work
correctly, then describe the algorithm in detail, followed by
discussion of correctness and computational complexity of
the algorithm.

A. Assumptions

Assumption 1: The communication between the agents is
instantaneous, and the computation is fast so that the agents
can be assumed to be at their initial position when the team
arrives at the solution for the rendezvous problem.
The assumption guarantees that the solution computed by the
algorithm is feasible for each vehicle Vj ∈ T .

Assumption 2: The distance d between initial and final
position for every vehicle satisfies the constraint d ≥ 7.
This guarantees that the Dubins shortest paths can be ex-
tended to arbitrary lengths and that the results of Section III
hold true.

B. Description

The algorithm uses a communication topology, in which
each vehicle Vj receives the coordination variables from the
vehicle Vj−1, makes changes to the variables (in function
Compute) and then passes them along to Vj+1 ( in function
Com). This is shown in Fig. 7 at the left for the case of 3
vehicles.

STATE,N, opt, limits, curr cons, last 3 cons, ε are the
coordination variables of the algorithm which may be
modified by each of the vehicles and then passed along
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Optimal Rendezvous(T ,N, ε)
i← 1
STATE← Start
(STATE, opt, limits, curr cons, last 3 cons)← Vi.Init(STATE)
while () do
Vi.Compute(STATE,N, opt, limits, curr cons, last 3 cons, ε)
Vi.Com(Vi+1,STATE,N, opt, limits, curr cons, last 3 cons, ε)
i← i+ 1
if (i > N) then
i← 1

return

Fig. 6. Decentralized algorithm for rendezvous problem

to the next vehicle. We denote the set of coordination
variables by W . STATE stores the global state of the
algorithm. N is the number of vehicles in the team T . Each
of the variables opt, curr cons, last 3 cons stores the cost
LT (ψ) (denoted by field val) at a given offset angle ψ
(denoted by field pt). opt is the currently known global
optimal. curr cons is the current variable on which the
agents are trying to reach consensus. last 3 cons stores
the last 3 consensus offset angles (last 3 cons.pts) and the
corresponding values (last 3 cons.vals). The algorithm uses

V1

V2

V3

P̄T

V2.Com(V3,W)

V 2.Compute(W)

limits.l

last 3 cons.pts(1)
last 3 cons.pts(2)

last 3 cons.pts(3)

limits.r

curr cons

LT

Fig. 7. Example of algorithm execution with 3 vehicles

golden section search [17] to compute approximations to
local optimal iteratively in a given interval and traverses the
interval [0, 2π] in a piece-wise fashion. One such iteration
is shown in Fig. 7 at the right. In any given iteration of
the algorithm, all the vehicles except for a decision maker
can only update the curr cons.cost based on the currently
proposed phase angle curr cons.pt. Each vehicle Vj has
two copies of coordination variables: one that it sent to
vehicle Vj+1 last time it communicated with it and a current
copy that it just received from vehicle Vj−1. The bottleneck
function BNeck() is a boolean function that tells a vehicle
Vj if it is currently the bottleneck (and hence the decision
maker) or not by comparing the 2 copies of the coordination
variables available to the vehicle Vj . We denote by Vb
the current bottleneck vehicle below. We now describe the
function Compute for each vehicle in detail.
Query Step: For a given left limit (limits.l), Vb sets
the STATE = Query and begins the polling process to
decide the right hand limit. The function Crit Pt(limits)
updates the right hand limit to the smallest critical phase
angle ψcrit (if there exists one), st, ψcrit ∈ {ψcrit,j}, and,
limits.l < ψcrit ≤ limits.r.
Initialization Step: After the querying phase, Vb initializes
the golden section search by setting the last 3 cons.pts as
limits.l, (γ∗ − 1)limits.l + (2− γ∗)limits.r, limits.r (where
γ∗ = (1 +

√
5)/2 is the golden ratio) and polling for team

Compute(STATE,N, opt, limits, curr cons, last 3 cons, ε)
1 if (BNeck() ∧STATE = Query) then
2 (curr cons, last 3 cons)← Init(curr cons, last 3 cons)
3 STATE← Update State()
4 else if (STATE = Query) then
5 limits.r← Crit Pt(limits.l)
6 else if (BNeck() ∧STATE = Init) then
7 (curr cons, last 3 cons)← Init(curr cons, last 3 cons)
8 STATE← Update State()
9 else if (BNeck() ∧¬ Term(last 3 cons.pts, ε)) then

10 last 3 cons← Update Bracket(last 3 cons, curr cons)
11 curr cons.pt← Probe Pt(last 3 cons.pts)
12 else if (BNeck() ∧Term(last 3 cons.pts, ε)) then
13 opt←Update Opt(curr cons)
14 limits← Update Lims(limits)
15 STATE← Update State()
16 else if (STATE = Optimal) then
17 Plan Path(opt)
18 if (BNeck()) then
19 break
20 else
21 curr cons.val← max(Cost(curr cons.pt), curr cons.val)
22 return

Fig. 8. Compute function for each vehicle

cost LT at these 3 points. Finally the vehicle proposes a
new probe point before changing the STATE to Negotiate.
Search Step: After initialization and polling for LT at
the probe point curr cons.pt, Vb updates the brackets in
Update Bracket(curr cons, last 3 cons). After this Vb
proposes a new phase angle curr cons.pt within the current
bracketing interval last 3 cons in Probe Pt(last 3 cons)
using the golden ratio γ∗.
Update Step: At every search step Vb checks
if the termination criteria is met in the function
Term(last 3 cons.pts, ε). The termination criteria is
based on the size of the bracketing interval and is given
by last 3 cons.pts(3)− last 3 cons.pts(1) < ε/2. If the
termination criteria is satisfied, Vb updates the global
optimal opt in Update Opt(curr cons). The limits
are updated in Update Lims(limits) according to the
rule limits.l← limits.r, limits.r ← 2π. Finally based on
the updated limits, Vb updates the STATE to Query or
Optimal in Update State().
Path-Planning Step: Once the global optimal opt is found,
every vehicle plans a path of length LεT = opt.val with the
phase of arrival angle ψε = opt.pt and follows the path. Vb
breaks from the infinite loop to stop any more inter vehicle
communications.

C. Correctness and Complexity

We first state an important result regarding the correctness
of the algorithm for the rendezvous problem.

Theorem 5: The Optimal Rendezvous algorithm is an ε-
approximate algorithm for the rendezvous problem.

We now discuss the time and space complexity of the
algorithm (depending on approximation ε) for the single
vehicle case, and then consider the multi vehicle case.

Lemma 8: The Optimal Rendezvous algorithm has
O(log (1/ε)) time complexity in ε when N = 1.

Next, we consider the communication complexity of the
algorithm for multi-vehicle case when there is additional
cost involved because of inter-vehicle communications and
decentralized nature of the algorithm.
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Theorem 6: The Optimal Rendezvous algorithm has com-
munication complexity O(N2) in N and O(log (1/ε)) in ε.

Theorem 7: The Optimal Rendezvous algorithm has O(1)
space complexity.

VI. SIMULATIONS

In this section we present some simulation results for
rendezvous problem, using our algorithm. We consider
an example with 5 Dubins vehicles. The initial config-
uration of vehicles is: C̄0,1 = ((3, 3), π/3), C̄0,2 =
((3, 6), π/2), C̄0,3 = ((3, 14), 5π/4), C̄0,4 = ((27, 6), 2π/3),
C̄0,5 = ((27, 14), π/9). The target point is P̄T = (20, 10).
Fig. 9 shows the cost curves for each vehicle Lj(·), j ∈
{1, 2, 3, 4, 5} and the team cost curve LT (·). Using the
algorithm described in Section V with ε = 0.0001, the
approximations to optimal phase and the optimal cost for the
team are found to be ψε = 3.7008 radians, LεT = 19.1840.
Fig. 10 shows the Dubins paths planned by each vehicle to
achieve rendezvous at P̄T . Since vehicles V4, V5 were much
closer to P̄T , they loop around their initial position to achieve
the required path length LεT .

L∗ LT

ψε

Lε

T

Fig. 9. Vehicle and team cost curves for the 5-vehicle example

VII. CONCLUSIONS

In this paper, we have considered the problem of ren-
dezvous of a team of Dubins vehicles at a given destination
point in minimum possible time, with the constraint that
the arrival angles of successive team members are equally
spaced at the destination. We have proposed a decentralized
algorithm that solves the problem approximately in finite
time up to desired level of accuracy. The proposed algorithm
has quadratic communication complexity and constant space
complexity in the size of the team. The correctness of the
algorithm has been proved by establishing some facts for
a single Dubins vehicle. Efforts are currently underway to
examine the performance of the algorithm for rendezvous of

P̄T

V1

V2

V3

V4

V5

P̄T

V1

V2

V3

V4

V5

Fig. 10. Dubins paths for rendezvous of 5 vehicles at P̄T

a team of air vehicles under the presence of wind distur-
bances. We are also investigating possible modifications to
the algorithm to make it robust with respect to the initial
configuration of the vehicles.
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APPENDIX

A. Proof of Lemma 1, 2, 4, 5 (Sketch)

The lemmas follow from the expressions for path lengths
derived in [2].

B. Proof of Lemma 3

Using expressions for path lengths from [2], L′LSL = (1−
cos(q)), L′RSR = −(1 − cos(q)), L′LSR = −(1 − cos(q))
and L′RSL = (1−cos(q)) (modulo discontinuities). This also
shows that the slope is bounded between -2 and 2 (modulo
discontinuities).

C. Proof of Proposition 1

The proof follows from Lemmas 3, 4, 5.

D. Proof of Theorem 1

We know from Lemma 3 that each of the LΛ(·) is
monotonic and continuous function (modulo discontinuities
due to modulus function). Lemmas 2, 4, 5 imply that the
points of discontinuity will result only in change of the
optimal path Λ∗ but L∗(β) will still remain continuous
at such points. Moreover, intersection of any two curves
LΛ1 ,LΛ2 , Λ1,Λ2 ∈ Dlong will only affect the derivative but
will not affect continuity of L∗(·).

E. Proof of Lemma 6

Using expressions for path lengths from [2], q′LSL = 1 +
sin(q)/p, q′RSR = −(1+sin(q)/p), q′LSR = −(1+sin(q)/p)
and q′RSL = 1+sin(q)/p, modulo q-discontinuities. Also for
d ≥ 5 and for Λ ∈ Dlong, p ≥ 1.

F. Proof of Lemma 7

Using expressions for path lengths from [2] for Λ ∈
{LSL,RSR}, t′′Λ = − cos(q)(p + 2 sin(q))/p2 (modulo t-
discontinuities). For d ≥ 2(1 +

√
3), t′′ = 0 ⇒ q ∈

{π/2, 3π/2}.

G. Proof of Proposition 2

The derivative of L∗(·) changes its sign at an arrival angle
β, if β is a q-discontinuity or vehicle cost curves of opposite
monotonicity (e.g LLSL(·), LRSR(·) ) intersect at β. The
number of q-discontinuities for a given path Λ ∈ Dlong

at which LΛ(·) is bounded by 2 (using Lemma 6 and
the fact that β ∈ [0, 2π]). This together with Lemma 4
implies that there can be no more than 4 q-discontinuities
in L∗(·). As a result of the q-discontiuities, functions of
opposite monotonicity can intersect more than once but still
no more than 4 times. The points of t-discontinuities do not
affect the answer since we are looking for sign change in
derivative. There can be 4 such pairs of functions of opposite
monotonicity. Hence, the derivative of L∗(·) can change its
sign no more than 16 times.

H. Proof of Theorem 2

The proof follows from the definition of LT (·) and the fact
that the vehicle optimal cost function L∗j (·) is continuous for
each vehicle Vj ∈ T for d ≥ 4.

I. Proof of Theorem 3

The proof follows from the fact that a continuous function
has its global extremal at a point where the derivative of the
function changes its sign or an end point.

J. Proof of Theorem 5

Consider the Compute function. Let the current in-
terval for golden section search be last 3 cons.pts(1),
last 3 cons.pts(3). The local optimal search terminates
when last 3 cons.pts(3)− last 3 cons.pts(1) < ε/2. We
also know from Lemma 3 that the slope is bounded between -
2 and 2. Hence the global optimal computed by the algorithm
LεT = opt.val satisfies the equation LεT − L∗T ≤ ε.

K. Proof of Lemma 8

For the case N = 1, there is no inter-vehicle com-
munication involved in the Optimal Rendezvous algo-
rithm and the vehicle remains the bottleneck at all times.
For a given interval limits, and tolerance ε, the golden
section search will terminate when last 3 cons.pts(3) −
last 3 cons.pts(1) < ε/2. After m iterations of the golden
section search, last 3 cons.pts(3) − last 3 cons.pts(1) =
(γ∗ − 1)m(limits.r − limits.l). Hence, the number of
iterations required for the given tolerance will be
m = log (ε/(2(limits.r− limits.l)))/ log (γ∗ − 1). Also
note that limits.r − limits.l ≤ 2π. Hence, m ≤
log (ε/(4π))/ log (γ∗ − 1).

We also know that the number of critical phase angles can-
not be more than 16 (since number of critical arrival angles
is bounded by 16, using Theorem 2). Hence in the worst case
the number of iterations taken by Optimal Rendezvous algo-
rithm to terminate will be (16+1) log (ε/(4π))/ log (γ∗ − 1).

L. Proof of Theorem 6

For the multi-vehicle case (N > 1), the algorithm first
polls the team members for deciding the interval (limits) to
search for local optimal. The left end of the interval limits.l
is always decided a priori without polling. The right end
is guaranteed to be found in at most 2N iterations of the
algorithm. The bracketing interval (and corresponding costs)
of golden section search last 3 cons will be updated in at
most every 2N iterations. The number of intervals where
local optimal of LT (·) is searched, can be no more than
17N . Hence, in the worst case, the number of messages
communicated within the team to compute the required
approximation LεT = opt.val (to the global optimal L∗T )
is given by m = 17N(2N+2N log (ε/(4π))/ log (γ∗ − 1)).

M. Proof of Theorem 7

The information communicated between successive team
members Vj , Vj+1 ∈ T is the set of coordination variables
W = {STATE,N, opt, limits, curr cons, last 3 cons, ε}.
This is the only information that each vehicle needs to
store about the team T . For every vehicle Vj ∈ T , the
space requirements for storing a local copy of these variables
remain constant and independent of the team size.
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