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Abstract— Stiction in control loops lead to oscillations

and loss of productivity. Timely detection of stiction in

control valves can be used in scheduling valve main-

tenance and deployment of compensation techniques

to reduce their impact. Several approaches have been

proposed for detection of stiction. Data-based approaches

use unique shapes of the PV and OP data to identify

stiction. Approaches based on nonlinearity detection have

also been used to identify stiction. Yet another approach

uses a Hammerstein model structure identification for

detecting stiction. Most of these approaches are restricted

to linear processes. In this paper, possible approaches

to detect stiction in nonlinear process control loops are

discussed.

I. INTRODUCTION

Interpretation of measured process signals is an im-

portant task in performance monitoring and assessment.

Traditional methods used for performance assessment

in control loops include: inspection of hardware, log-

ging of the percentage of time control loops are in

AUTO mode, and the calculation of the mean and

standard deviation of the controlled process variables.

A spate of surveys on the performance of control

loops [1], [2], [3], [4] indicate that a majority of

control loops in processing industries perform poorly.

Performance demographics of 26,000 PID controllers

collected across a wide variety of processing industries

in a two year time span indicate that the performance

of 16% of the loops can be classified as excellent,

16% as acceptable, 22% as fair, 10% as poor, and the

remaining 36% are in open loop [4]. This has to be seen

coupled with the fact that PID is the dominant control

algorithm in the industry accounting for 97% of the

regulatory loops [5]. Further, MPC control algorithms

manipulate the set point of lower level PID loops.

Hence, poor performances of PID control loops pose

a significant problem with huge financial implications.

This has led to increasing interest in automated Con-

troller Performance Assessment (CPA) tools in recent
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years. Deterioration of control performance may have

several reasons such as badly tuned controllers, oscillat-

ing load disturbance, or nonlinearity in control valves.

20% to 30% of all control loops oscillate due to valve

problems caused by static friction or hysteresis [1],

[6] resulting in performance deterioration. It was found

that over 80% of all valves adjusted by Entech Control

Engineering failed dynamic performance standards [3]

due to stiction, backlash or oversized design. The task

of detecting stiction or other nonlinearities in valves

from routine operating data is a challenging task and

is an important component in a CPA suite. It has been

estimated that detection and diagnosis of control loop

degradation could reduce energy cost of the overall

process industry by 1% which could amount to as much

as $ 300 million per year [4].

II. PROBLEM DEFINITION

Figure 1 depicts a process control loop with stiction

in the control valve. The stiction precedes the valve dy-

namics and the process transfer function also includes

the valve dynamics. The fundamental problem that is

being solved is one of identifying the root cause of

oscillation as being due to either stiction or external

oscillations. In this work, the focus is on a model-based

solution approach to this problem. There are solutions

for stiction detection based on the analysis of the

input-output data. [7], [8] proposed a shape analysis

of data for stiction identification. [9] proposed the

calculation of higher order statistics for identification

of nonlinearities, which could also be due to stiction.

Previous attempts at quantifying stiction were mostly

based on measures developed from the data character-

istics. [8] quantified the stiction as a percentage of

the span of the OP data, whereas [10] introduced a

quantity called apparent stiction. The maximum width

of an ellipse fitted in the pv-op plot measured in the

direction of op is defined as the apparent stiction.

[11] proposed a model-based approach and solved this

problem for a linear process. Their approach is based

on the identification of a Hammerstein model of the

system comprising of the sticky valve and the pro-

cess (see Figure 1(b)). The identification of the linear
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Fig. 1. (a) Regular process control loop, (b) Process control loop
in presence of stiction

dynamics is decoupled from the nonlinear element.

The decoupling between the nonlinear and the linear

component is achieved by an iterative procedure. The

solution proposed in [11] is shown in Figure 2. A

similar approach but with a two parameter model to

quantify stiction is discussed in [12]. Another work

using a Hammerstein ID approach with a two parameter

model can be found in [13].

The control loop that is being addressed is shown in

Figure 3. Based on the figure,

y = yp + yd

y = N(u)+ yd

y = N(V (v))+ yd (1)

where y is the pv, which is assumed to be comprised of

a process component yp and a disturbance component

yd , which are additive. N is the process transfer function

and u is the valve output, which might not be measured.

The valve output u is a function (V ) of the op (v)

dictated by the stiction phenomenon. In this paper, the

identification and isolation of stiction from external

disturbances for the system given in equation 1 is

addressed.

x(t) = {
x(t −1) i f |u(t)− x(t −1)| ≤ d,

u(t) otherwise
(2)

III. SOLUTION STRATEGY

Stiction is assumed to be absent when a zero value

(within a threshold) is identified for the stiction pa-

rameter d, shown in equation 2. A non-zero value

denotes the presence of stiction. The estimation of the

Fig. 2. Solution technique proposed by [11]

Fig. 3. Nonlinear control loop with stiction

stiction value is achieved by decoupling the stiction

parameter estimation from the estimation of the process

dynamics. This is achieved by assuming a value for

d in an outer loop and identifying the best fit model

for the remaining dynamics. From Figure 3, since

the controller parameters θc are known, v (op) can

be calculated from y. Based on the assumed stiction

value d, u can then be calculated from equation 2.

For the case where the process model is known, a

moving average (MA) model for the disturbance is

built. A best fit model based on an AIC criterion is

identified. This process is repeated for all the d values
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and the best fit based on a Total Squared Error (TSE) is

identified as the solution. Based on the best fit model,

a determination about either the presence or absence of

stiction is made.

IV. CASE STUDY

A nonlinear polymerization reactor process from

[14] is used as a case study. In this case study, a

polymerization reaction takes place in a jacketed CSTR

where the controlled variable is the number-average

molecular weight and the manipulated variable is the

volumetric flowrate of the initiator. The process is

described by a second-order Volterra model in the

frequency domain as given below

P1 = cT
1 (sI −A11)

−1b1

P2 = cT [(s1 + s2)I −A]−1N(s1 −A)−1b (3)

Details on the matrices c,A,N,b can be found in [14].

A. Data used in testing of the proposed approach

The aim of the case study is to demonstrate the ef-

fectiveness of the proposed approach in three different

scenarios for stiction detection. These are:

(i) Oscillations due to external disturbance with no

stiction present

(ii) Oscillations induced due to stiction alone

(iii) Oscillations due to both stiction and an external

oscillating disturbance

To test the proposed approach, three datasets were

generated by using equation 3 as the nonlinear process

in Figure 3. A PI controller with Tc = 1.5873, Ti =
4.759 was used. Data were simulated for scenario

(i) using an external sine oscillation disturbance of

amplitude 0.1 at a frequency of 0.05Hz as yd . For

scenario (ii), a stiction value of d = 0.14 was used.

For scenario (iii), both the sine oscillation of scenario

(i) and a stiction value of d = 0.15 were used. The data

that are generated are shown in Figure 4.

B. Discussion on the previous approaches for use with

the dataset

Just from observing the OP and PV data from Figure

4, it is obvious that the clear qualitative patterns that

result in the case of linear processes are not preserved

in the nonlinear case. This might lead to difficulties in

identifying stiction in this case using qualitative pattern

matching approaches such as the one proposed in [7].

The model-based approach proposed by [11] is also not

likely to work for this case. The data shown in Figure
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Fig. 4. Data for (a) No stiction (b) Stiction alone (c) Stiction and
external oscillation
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Fig. 5. Result for the approach of [11]

4(a) for the no stiction case is tested using the approach

suggested in [11] (approach shown in Figure 2). The

resulting d vs TSE plot is shown in Figure 5. The

observation of multiple minima for the d identification

problem from the work of [11] is reinforced in Figure

5. However, as expected, the value of d is incorrectly

identified. In other words, stiction is detected where it

is not present.

V. RESULTS

The dataset (Figure 4(a)), where the approach of [11]

failed and the two other datasets (Figures 4(b) and

4(c)) are used to test the performance of the proposed

approach. The results are shown in Figures 6-8. From

Figure 6, it is clear that the scenario is correctly

diagnosed as being a no stiction case. The minimum

TSE is achieved at d = 0. It can be seen from Figure

3382



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stiction (d value)

T
S

E

Fig. 6. Result for the no stiction case (known model)

7, the case of stiction is also correctly identified with

an accurate estimation of the stiction level. The third

scenario is a challenging case where both stiction and

an external oscillating disturbance are present, with

the process being nonlinear. The result for this case

is shown in Figure 8. In this case, not only is stiction

detected but the magnitude of stiction is also accurately

estimated (0.15 estimated as 0.14).

Figure 9 shows the final estimation of the disturbance

in the inner loop. Figure 9(a) is the estimate for scenario

(i). It can be clearly seen that an oscillatory disturbance

is estimated. This further confirms the diagnosis of

external disturbance as the root cause when placed

in conjunction with a d = 0 estimate. Figure 9(b)

shows the estimate for scenario (ii), which clearly

shows no oscillation. This corroborates the fact that

the oscillation is due to stiction (a non-zero d was also

estimated for this case). Figure 9(c) shows oscillations,

which indicates the presence of both stiction and an

external oscillating disturbance. From these results it

can be clearly seen that the proposed approach works

well in the known model case in detecting and isolating

the root cause of oscillation in SISO loops.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of detection of stiction

and isolation of stiction from external oscillations in

nonlinear process control loops was addressed. While

there are several approaches that have been discussed

for the linear case, almost no work exists in the case

of nonlinear process control loops. A solution approach

for the known model case was proposed. A solution

to the unknown model case can be developed using

the same framework; however, this will be a more
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Fig. 7. Result for the stiction case (known model)
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Fig. 8. Result for the case of both stiction and an external
oscillating disturbance (known model)
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Fig. 9. Estimation of the disturbance for the three datasets
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challenging problem. The unknown model scenario

can be elegantly solved in the linear case because

of the separation in achievable accuracy through the

linear and nonlinear components of the model; this

principle fails to be of use in the nonlinear process

case. Some perturbation signal might be necessary for

model discrimination.

The results presented in this paper used a simple

one parameter model for both generating the simulation

data and also in the detection approach. The effective-

ness of the proposed approach needs to be first verified

with data generated from a mechanistic first principles

model for stiction. Further, the proposed approach

should be tested with industrial data. In future, the

efficacy of the proposed approach for the known model

case needs to be further validated with other examples,

different types of disturbances and different stiction

models.
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