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Abstract— We address the problem of tracking a single object
in the neighborhood of several other closely spaced, similar
objects where the sensor used to do the tracking may randomly
measure the wrong object. Unlike many tracking scenarios,
there is no other environmental clutter producing additional
erroneous measurements. The objects move together, and the
sensor provides one measurement at every time step, either
due to the object of interest or due to one of the other
similar nearby objects. This situation of having a “mixed”
set of measurements of unknown origin occurs in real world
systems. While we consider the mixed-measurement problem in
an example scenario, the algorithms developed can be applied
to any number of associated systems with little alteration.

I. INTRODUCTION

Tracking a single object in an unknown environment is a
relatively well studied process. Tracking a group of objects in
formation has also been studied by many. However, tracking
a single object in a group has not.

An example problem of tracking a single object in a group
is tracking a single automobile in a convoy, the example
considered later in this paper. In the example, the cars all
move along a known road together in formation. This makes
the problem difficult because there are minimal differences
between individual trajectories over the entire sampling
period. Another aspect of the problem we will consider
that adds difficulty is how the sensor makes measurements.
The sensor only returns one measurement per time step,
and it is not known whether the measurement comes from
the particular car of interest or simply one of the other
vehicles in the convoy. As will be shown, certain data
association algorithms can be used to effectively sort out
the measurements and provide reliable tracking.

The data association algorithms presented are not only
applicable to systems with spatial distributions as considered
here, but they are also applicable to systems with temporal
distributions. An example of the latter occurs when a dis-
tributed network of Geiger counter sensors is used to track
a moving nuclear source. This situation is similar to the
convoy of cars, except that instead of a second nearby car
producing erroneous measurements, background radiation
acts to interfere with the measurements coming from the
“object of interest.”

The data association algorithms covered in this paper
are the extended Kalman filer (EKF), gating, probabilistic
data association (PDA), and a Kolmogorov-Smirnov (KS)
test. The extended Kalman filter is a standard estimation
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Fig. 1. Convoy of cars example.

algorithm for nonlinear systems. Gating is a method of
eliminating measurements that are unlikely to have originated
from the object of interest. PDA computes the probability
of each measurement originating from the object of interest.
The Kolmogorov-Smirnov test is a new method we are adapt-
ing for determining the origin of a particular measurement.

We will present a new metric to be used in a Kolmogorov-
Smirnov like test that provides better performance than the
standard KS test metric in the tracking problem of interest.

This paper is organized as follows. An overview of the
example convoy of cars problem is further developed in Sec-
tion II, and Section III discusses data association algorithms
to address the problem. The methods are applied to a convoy
of cars example in Section IV, and simulation results are
presented in Section V.

II. EXAMPLE PROBLEM OVERVIEW

Consider a convoy of cars moving along a known road.
The convoy can consist of any number of vehicles. One of
the cars is deemed to be of interest, i.e., there is a specific
car that we would like to track. This situation is illustrated
in Figure 1, where the car of interest is circled.

In this initial work, we assume that there is no maneuver-
ing as the cars move along the road. The nonlinear model
for each of the cars is

xi(k) = f [k− 1, xi(k− 1)] + vi(k− 1), i = 1, 2, ..., N (1)

where xi(k) is the state at time k. N is the number of cars
in the convoy. The additive process noise, vi(k−1), is zero-
mean and white with covariance Qi(k−1). The measurement
due to each vehicle is

zi(k) = h[k, xi(k − 1)] + wi(k − 1), i = 1, 2, ..., N

where additive noise, wi(k− 1), is also assumed to be zero-
mean and white with covariance R(k−1). It is assumed that
the process noise, measurement noise, and initial state x̂(0|0)
with the associated covariance P (0|0) are all uncorrelated.
The state x ∈ <n and the measurement z ∈ <nz , where n
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is the dimension of the state space and nz is the dimension
of the measurement space.

The cars are assumed to be constrained to stay in a line on
the road, and the individual separation between cars remains
on average constant. The road is assumed to be perfectly flat
and a model is defined for it.

The sensor is fixed to a tower with an unobstructed view of
the entire road where the vehicles are traveling and is tasked
to always be pointing in the direction of the car of interest.
The sensor only makes measurements of Cartesian position,
in a frame fixed to the base of the sensor tower. A single
measurement is taken at each time step and the origin of that
measurement is not known. For example, consider two cars
traveling in a convoy, where we are trying to track car 1.
Five measurements are taken, one of which is randomly
from car 2. One possibility for how the list of measurements
recorded by the sensor appears is

{z(k), z(k + 1), z(k + 2), z(k + 3), z(k + 4)} =
{z1(k), z1(k + 1), z1(k + 2), z2(k + 3), z1(k + 4)}.

Only the set of measurements (with unknown origin) is pro-
vided. The actual identity of individual measurements on the
right hand side is not known. The data association algorithm
must sort out which measurement in the set originated from
the car of interest.

III. ALGORITHMS

A. The Extended Kalman Filter

The EKF is a well known data association method for
filtering nonlinear systems [2]. The EKF is an estimation
algorithm that maps the current estimate of the state, x̂(k −
1|k − 1), forward one time step. The current estimate is
conditioned on the current state given the current measure-
ment [2], i.e., x̂(k − 1|k − 1) , E[x(k − 1)|Zk−1] where
Zk−1 , {z(j), j = 1, . . . , k − 1} is the cumulative set of
measurements up to time k − 1. The associated state error
covariance matrix is P (k− 1|k− 1) , E{[x(k− 1)− x̂(k−
1|k − 1)][x(k − 1)− x̂(k − 1|k − 1)]′|Zk−1}.

The prediction x̂(k|k − 1) is computed by expanding the
nonlinear function (1). The expansion is accomplished by
evaluating the Taylor series of (1) about the current estimate
x̂(k − 1|k − 1),

x(k) = f [k − 1, x̂(k − 1|k − 1)]
+ fx(k − 1)[x(k − 1)− x̂(k − 1|k − 1)]

+ 1/2
nx∑
i=1

ei[x(k − 1)− x̂(k − 1|k − 1)]′

· f ixx(k − 1)[x(k − 1)− x̂(k − 1|k − 1)]
+ higher−order terms+v(k − 1) (2)

where ei is the ith Cartesian basis vector and fx(k−1) is the
Jacobian of the vector f evaluated at time k, and f ixx(k−1)
is the Hessian of the ith component of f .

The prediction of the state at time k is then obtained by
taking the expectation of the Taylor series expansion (2)

conditioned on Zk−1 and neglecting higher-order terms:

x̂(k|k − 1) = f [k − 1, x̂(k − 1|k − 1)]

+ 1/2
nx∑
i=1

eitr[f i
xx(k− 1)P(k− 1|k− 1)].

The state prediction error is

x̃(k|k − 1) = fx(k − 1)x̃(k − 1|k − 1)

+ 1/2
nx∑
i=1

ei[x̃′(k − 1|k − 1)f ixx(k − 1)x̃(k − 1|k − 1)

− tr[f i
xx(k− 1)P(k− 1|k− 1)]] + v(k− 1)

and its covariance is

P (k|k − 1) , E[x̃(k|k − 1)x̃′(k|k − 1)|Zk−1]
= fx(k − 1)P (k − 1|k − 1)f ′x

+ 1/2
nx∑
i=1

nx∑
j=1

eie
′
jtr[f

i
xx(k − 1)

· P (k − 1|k − 1)f jxx(k − 1)P (k − 1|k − 1)]
+Q(k − 1).

The measurement prediction is

ẑ(k|k − 1) = h[k, x̂(k|k − 1)]

+ 1/2
nz∑
i=1

eitr[hi
xx(k)P(k|k− 1)].

where hixx(k) is the Hessian of the ith component of h. The
innovation is

ν(k) = z(k)− ẑ(k|k − 1), (3)

and the innovation’s covariance is

S(k) , hx(k)P (k|k − 1)h′x(k)

+ 1/2
nz∑
i=1

nz∑
j=1

eie
′
j [h

i
xx(k)P (k|k − 1)

· hjxx(k)P (k|k − 1)] +R(k)

where hx(k) is the Jacobian of h evaluated at time k. The
EKF gain is W (k) , P (k|k − 1)h′x(k)S−1(k). The filtered
estimate is then x̂(k|k) = x̂(k|k − 1) + W (k)ν(k) and
the filtered estimate error covariance is P (k|k) = [I −
W (k)hx(k)]P (k|k − 1).

B. Gating

Gating determines whether it is likely that a particular
measurement came from the object being tracked. Assuming
the measurement at each time step is normally distributed
around the expected measurement, it is possible to define
a region in the measurement space where there is a high
probability of finding the measurement [2]

Ṽk(γ) , {z : ν′(k)S−1(k)ν(k) ≤ γ}, (4)
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where ν is the innovation as in (3). The probability of gating
the true measurement is

PG =
∫ γ

0

γnz/2−1 exp{−γ/2}
2nz/2Γ(nz/2)

dγ, γ ≥ 0

where Γ(·) is the gamma function and nz is the dimension
of the measurement space. Assuming the measurement error
is Gaussian, this norm is chi-square distributed. If the mea-
surement error is not Gaussian, such as when accounting for
the underlying system geometry in the measurement, gating
can still be carried out with some modification [10].

As defined in Sections I and II, at each time step there is
exactly one measurement of unknown origin received. If the
measurement falls within the gate, it is used in a filtering
algorithm. If the measurement falls outside the gate, the
filtering algorithm uses the system model alone to predict
forward one time step.

C. Probabilistic Data Association (PDA)

PDA has been used when multiple measurements are
received at each time step in tracking an object in a region
with uniformly distributed clutter [2]. The probability βi
of each measurement zi being the true measurement from
the object of interest is computed. The PDA is used in
conjunction with a filtering algorithm, such as the EKF,
where updated estimates x̂i(k|k) due to each measurement
zi are computed and the overall updated state estimate is

x̂(k|k) =
mk∑
i=0

x̂i(k|k)βi(k), (5)

where mk is the number of measurements at time k, and∑mk

i=0 βi(k) = 1, i.e., the probabilities are mutually exclusive
as well as exhaustive. When tracking in cluttered environ-
ments where multiple measurements are received at each
time step, gating is often used to limit the computational
complexity. When gating is used, mk in (5) is the number
of gated measurements.

When tracking with some types of sensors (e.g., radar or
sonar), the probability PD of detecting the object of interest
is often less than 1. The i = 0 case in (5) represents the
hypothesis that no true measurement from the object of
interest is received at time k. This implies that for the type
of sensor described in Section II, if the one measurement per
time step is determined to not be from the object of interest,
the update (5) will be entirely based on the i = 0 case.

The error covariance associated with (5) is

P (k|k) = β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) + P̃ (k)

where P (k|k − 1) is the same as is in the EKF,
P̃ (k) = W (k)[

∑mk

i=1 βi(k)νi(k)ν′i(k) − ν(k)ν′(k)]W ′(k)
where νi(k) = zi(k)− ẑ(k|k−1), ν(k) =

∑mk

i=1 βi(k)νi(k),
and P c(k|k) = [I −W (k)hx(k − 1)]P (k|k − 1).

Clutter measurements are assumed to be uniformly dis-
tributed with density λ = mk

Vk
, where Vk is the volume of

the validation region. Vk = cnz
γnz/2|S(k)|1/2, and cnz

is the
volume of the nz-dimensional unit hypersphere. The βi(k)

probabilities are computed as [2] βi(k) = εi
b+

Pmk
j=1 εj

and

β0(k) = b
b+

Pmk
j=1 εj

, where εi , exp[−ν
′
i(k)S−1(k)νi(k)

2 ] and

b , (2π/γ)nz/2λVkcnz
(1− PDPG)/PD. For our scenarios,

where there is exactly one measurement at each time step,
mk = 1, and the PDA tries to determine whether the
measurement is from the target of interest or not.

D. Kolmogorov-Smirnov Tests

Kolmogorov-Smirnov (KS) tests provide another approach
for determining the probability of whether a measurement in
a set originated from the object of interest [7], [8]. Consider
independent observations x̄1, x̄2, ..., x̄n of a random variable
with unknown cumulative distribution function (CDF) F (x̄).
If the null hypothesis is H0 : F (x̄) = F0(x̄), then any
test of this hypothesis is a goodness-of-fit test [1]. The KS
tests and many simple variants are goodness of fit tests.
Empirical CDFs are formed for a “window” of n samples and
some metric is then applied to measure the distance between
theoretical and empirical CDFs.

For n samples ordered such that x̄(1) ≤ x̄(2) ≤ · · · ≤ x̄(n),
the empirical cumulative distribution function is [1]

Sn(x̄) =


0, x̄ < x̄(1)

r/n, x̄(r) ≤ x̄ < x̄(r+1)

1, x̄(n) ≤ x̄
. (6)

If F0(x̄) is the true, fully specified theoretical CDF from
which the samples are drawn, then from the strong law of
large numbers limn→∞{Sn(x̄) = F0(x̄)} = 1.

Define the following metric for measuring the separation
between theoretical and empirical CDFs:

An =
∣∣∣∣∫ ∞

0

(F0(x̄)− Sn(x̄))dx̄
∣∣∣∣ . (7)

This is different from the usual measure of deviation

Dn = sup
x̄
|Sn(x̄)− F0(x̄)| (8)

and its variants that are well developed for the KS test. The
measure of deviation (8) proved to not be sensitive enough
for the data association problem considered here. The metric
(7) is more sensitive to incorrect measurements. Equation (7)
largely takes advantage of how a single incorrect measure-
ment affects the shape of the empirical CDF.

There has been a large body of theory developed using
Dn in (8), demonstrating many properties, such as the
distribution of Dn is independent of the distribution F0(x̄)
for continuous CDFs [3]. Critical values or thresholds dn(α)
have also been established [1], [5], [6] such that P{Dn <
dn(α)} = 1− α, where 1− α is the confidence level. That
is, if Dn < dn(α), then with probability 1−α, the empirical
CDF Sn(x̄) is formed from n samples drawn from F0(x̄).
There is currently no theoretical basis for specifying critical
values for An in (7), and this is an area of future work.

In this test, a CDF is formed using a “window” of n
samples, x̄i, x̄i+1, ..., x̄i+n−1. This CDF is compared to an
empirically formed “theoretical” CDF. The value of An is
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computed from this comparison. If the value of An is above
a preset threshold, it is assumed that the current window
of n samples most likely contains at least one due to an
incorrect measurement. This process is then repeated for
the next window of n samples, i.e., x̄i+1, x̄i+2, ..., x̄i+n. If
the value of An is above the threshold for n consecutive
shifts of the window of samples, the location of an incorrect
measurement is uniquely determined (assuming a uniform
distribution of incorrect measurements where each window
contains a single incorrect measurement). After determining
the location of incorrect measurements, these measurements
are removed from the list of measurements and the remaining
measurements are used in the filtering algorithm, taking into
account the time signatures associated with each measure-
ment. Section V will show the performance of using (7) on
the example discussed next.

IV. EXAMPLE

Consider two cars traveling in a small convoy. We use only
two cars in this example for simplicity and to more clearly
illustrate the performance differences of the different algo-
rithms. Extension to more vehicles is easily accomplished
because we are assuming that the sensor is attempting to
follow the car of interest as best it can. This implies that the
percentage of incorrect measurements made should only be
a function of the average separation distance between the car
of interest and those nearby and not of the total number of
cars in the convoy. The effect of separation distance between
the two vehicles will be explored. Note that the measurement
noise in the system is a characteristic of the sensor and is
thus independent of the number of cars in the convoy.

The dynamics of this system are modeled using con-
strained Euler-Lagrange equations [9]. To obtain the Euler-
Lagrange equations, start by defining the Lagrangian for the
generalized state q, defined as the kinetic energy T minus
the potential energy V : L(q, q̇) = T (q, q̇)− V (q).

The Euler-Lagrange equations in vector form are

d

dt

∂L

∂q̇
− ∂L

∂q
= ρωT (q) (9)

where ρ is the Lagrange multiplier and ω(q)
is the constraint matrix. We make use of the
Lagrange-d’Alembert formulation, i.e. the forces of
constraint do no virtual work, to write down the
Pfaffian constraint [9] equation ω(q)q̇ = 0.

Since we assume the cars to be fixed to a flat road, thus
the only terms in the Lagrangian are those associated with
the kinetic energy. This means that the cars do not have any
Z (vertical) component to their motion, i.e., q = (X,Y ).
Thus, L(X,Y, Ẋ, Ẏ ) = M(Ẋ2 + Ẏ 2)/2, where M is the
mass of the car and X and Y are the Cartesian coordinates.

The model g(x) of the road is assumed, yielding the
constraint equation y(x) = g(x). We obtain ω(q) by dif-
ferentiating the constraint equation with respect to time
and writing the result in the Pfaffian constraint form. The
Lagrange multiplier is found by simultaneously solving (9)
along with d2

dt2 (y(x(t)) = g(x(t))).

For our example, the state x(t) = [X(t), Y (t)] and
g(x) = sin(X). There is no physical significance to this
choice of constraint; any analytical function of the configu-
ration variables could be used in place of sin(X). Choosing
g(x) = sin(X), ω and ρ are ω(x(t)) = {− cos(X(t)), 1}
and ρ = −M sin(X(t))X′(t)2

1+cos(X(t) . The resulting dynamic equa-

tions are Ẍ(t) = cos(X(t)) sin(X(t))X′(t)2

1+cos(X(t))2 and Ÿ (t) =

− sin(X(t))X′(t)2

1+cos(X(t))2 . Thus the complete continuous-time equa-
tions of motion for the system are defined. The truth trajec-
tories are obtained by integrating these continuous equations
(with noise). In practice it is assumed that we do not
know the true position values, but in simulation, we use
these values for creating “measurements” and for analysis.
The discrete model (1) is obtained by taking the discrete
approximation of the continuous dynamics using the time
step T = 0.0001s.

For this example, the process noises are drawn from the
normal distributions N [0 m/s, 0.1 m/s] and N [0 m, 0.1
m]. Measurements of X and Y are generated assuming the
measurement error is normally distributed N [0 m, 0.5 m].
A single set of measurements is then created by randomly
inserting with probability PD at each time step the measure-
ment due to the car of interest and inserting with probability
1 − PD the measurement from the “other” car. PD = 0.9
for the results shown in Section V. Once the mixed list of
measurements is obtained, gating and the PDA are relatively
straightforward processes. The actual implementation for our
specific case will be further addressed in the next section.

For the KS test, the distribution of the magnitude of the
innovations is used. A theoretical CDF is determined by
generating a large number (n = 20, 000) of true measure-
ments as explained above, then computing the magnitude
of the innovations and from this generating the theoretical
CDF. In practice, “theoretical” CDFs can also be generated
“empirically” in a similar manner when the object of interest
is known not to be near any other objects. In this way, the KS
test does not depend on knowledge of the error distributions.

V. RESULTS

All measurements for the two-car system are Cartesian X
and Y measurements, as stated in the problem definition. All
the results in this section will be stated in a “radial” format,
where each distance presented is actually a Euclidean norm.
All RMS errors represent estimation errors.

A. Gating

The γ parameter in (4) sets the gate size. Our goal is to
exclude the false measurements while keeping as many of the
true measurements as possible. We set γ = 9 thus allowing
about 98.9% of the true measurements into the gate [2].
While the value of γ has been chosen heuristically, optimum
methods for calculating this threshold do exist [4].

Figure 2 shows gating performance as a function of the
separation distance between the two vehicles, for the given
gate size. The performance is measured by the percentage of
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Fig. 2. Percent of incorrect measurements correctly gated out. The points
are data points obtained by varying the separation distance between the two
cars; the solid line is a curve fit to the data.

the incorrect measurements that are correctly gated out. For
example, looking at Figure 2, under about 0.5 m of separation
between vehicles, none of the incorrect measurements are
gated out; all 10% of the incorrect measurements will be left
in the measurement list. In the same way, above about 3.5 m,
all of the incorrect measurements are gated out. Thus, with
a standard deviation for the measurements of σ = 0.5 m, at
around seven σ’s separation (3.5 m), gating works perfectly.

B. Kolmogorov-Smirnov tests

The objective of the variation of the Kolmogorov-Smirnov
test described in Section III is to isolate measurements not
coming from the car of interest. As described, this is accom-
plished by calculating the integral of the difference between
theoretical and empirical CDFs as in (7), and comparing this
value against a threshold.

Limited knowledge of the sensor characteristics is as-
sumed. We have 20,000 samples taken from the car we of
interest during a period when it is known that no other cars
are on the road. This stream of measurements is used to form
the theoretical CDF.

The window size for the two-car example is set to ten,
i.e., n = 10. Thus, an empirical CDF function is formed
according to (6) for the first ten measurements from the sen-
sor. This function is used to obtain a value of An according
to (7). This value is then compared against a threshold, set
by inspection. Results from this process iterated over the
first 210 measurements are shown in Figure 3. The incorrect
measurements are at positions 28, 59, 89, 117, 146, and
178. In Figure 3 we can see “humps” in the values of
An centered around these positions. This happens because
there are actually 10 windows that will span the incorrect
measurement. When the cars are far from each other, at 7 m
apart, these humps are very pronounced and are well above
the threshold. When the cars are closer together, at 2 m, the
incorrect measurements do not produce values of An that
clearly exceed the threshold.

Applying the standard KS test metric (8) for this example
does not isolate single measurements. This can be seen
in Figure 4, where there is no clear difference between a
window that contains an incorrect measurement and one that
does not, i.e., there are no “humps.” Thus, setting a clear
threshold is not possible.

An

Window #

Fig. 3. Integral difference (An) between empirical and theoretical CDF’s
as a function of window number. The horizontal axis is the window number,
where 1 corresponds to the window covering measurements 1 through 10,
2 corresponds to measurements 2 through 11, and so on. The vertical axis
is the value of An for that window. The solid line is the threshold. The
dashed line represents when the two cars are 7 m apart. The dotted line
represents the situation when the two cars are 2 m apart. The solid dots
represent the positions of incorrect measurements.

Dn

Window #

Fig. 4. Maximum difference (Dn) between empirical and theoretical CDF’s
as a function of window number. The solid line is the maximum difference
between theoretical and empirical CDFs over a window of 10 measurements.
The solid dots represent the positions of incorrect measurements.

Future work for this test includes applying more advanced
filtering techniques such that the “humps” in the variant of
the KS test are more pronounced at lower separation dis-
tances. The threshold could then be lowered without affecting
the truth data and better performance can be achieved.

C. PDA

PDA results are presented using PDA alone, with the KS
test variant, and with gating. As mentioned previously, the
PDA for each case will need to be initialized in the same
way as the EKF. PD and PG need to be set for the PDA.
As before, PD = 0.90. For the case of PDA alone or PDA
used with the KS variant, PG = 1. When there is gating,
PG = 0.989 (because γ = 9 in the gating, see [2]).

When the cars are far apart, the PDA will have lower RMS
error when used in conjunction with gating or the KS test
as opposed to using PDA alone. In Figure 5, after settling
PDA with the KS test has lower RMS error than PDA with
gating. This occurs because at a distance of 10 m, the KS

0.00 0.02 0.04 0.06 0.08
tim e,s0.12

0.13

0.14

0.15

0.16

0.17

0.18

RM S error,m

PDA w/ KS
PDA w/ G ating

PDA alone

Fig. 5. RMS errors for PDA with the KS test, PDA with gating, and PDA
alone when two cars are moving 10m apart.
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Fig. 6. RMS errors for PDA with the KS test, PDA with gating, and PDA
alone when two cars are moving 2m apart.

test removes all of the incorrect measurements while leaving
the remaining true measurements unaffected. Gating will also
remove all of the incorrect measurements at this distance, but
will remove a percentage of the remaining true measurements
(the percentage is a function of the gate size, which for this
case is 1.1%).

Results for a separation distance of 2 m are shown in
Figure 6. The RMS errors of the PDA alone, PDA with
the KS test, and PDA with gating are much closer. This
can be explained by looking back at Figures 2 and 3. At
2 m of separation between vehicles, gating will not “gate
out” all of the incorrect measurements. In fact, for this
separation distance, about 20% of the incorrect samples will
still be left in the list of measurements, which will cause
the RMS error to be higher than in cases where 100%
of the incorrect measurements are correctly identified. At
2 m of separation between vehicles, the KS test variant
has difficulty in differentiating between correct and incorrect
measurements, i.e., it is difficult to set a reliable threshold.
This difficulty leads to a number of correct measurements
being falsely identified as incorrect, leading to higher RMS
error after filtering. In terms of RMS error after settling,
PDA with gating does marginally better than PDA with the
KS test due to a higher percentage of true measurements
being present in the former.

VI. CONCLUSIONS & FUTURE WORK

We have shown that the data association ideas of gating,
the probabilistic data association filter, and a Kolmogorov-
Smirnov type test provide an effective manner in which to
deal with the problem of ambiguous measurements. It has
been shown that in the situation of mixed measurements,
these methods can be applied to provide noticeably improved
tracking over the information provided by the measurements
alone.

The effectiveness of these data association methods ap-
plied to this problem suggest several avenues of future work.
The first being to formally address the problem from a
more geometrical interpretation. Although we have been
considering a nonlinear system, we have been assuming
that the various noise distributions vary nicely along the
trajectories. In the two car example, it was assumed that
the road was <2, not taking into account the underlying
manifold structure where the cars are constrained to the road.
In the future, we would like to show that improved tracking

performance is possible when the distributions are dealt with
in a more geometrically correct way.
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