
 

 

 

  

Abstract—This paper develops a systematic scheme to solve 

for the optimal controls of variable time impulsive systems. First, 

the optimality conditions for variable time impulse driven 

systems are derived using the calculus of variation. After wards, 

a neural network based adaptive critic method is proposed to 

numerically solve the two-point boundary value problems 

formulated based on the optimality conditions derived. Finally, 

two examples-one linear and one nonlinear-are presented to 

illustrate the conditions derived and to show the power of the 

neural network based adaptive critic method proposed. 

I. INTRODUCTION 

any dynamic processes are characterized by the fact  

that, at certain moments of time, they experience a 

abrupt change of states. Since the duration of change is 

negligible in comparison with the duration of the process, it is 

natural to assume that these changes are in the form of 

impulses.  

There have been applications of impulsive control in 

chaotic systems [1-3], biped walking robots [4], optimal fixed 

time fueling process [5], biological control [6], financial and 

economics control [7-8], and satellite formation control 

[9-10]. There are many other examples in practice such as 

ultra high speed optical signals over communication networks, 

collision of particles, inventory control, government 

decisions, interest changes, and stock price changes etc. 

Brogliato [11] describes modeling and dynamics of the 

impulsive actions. Several others [12-16] investigate the basic 

problems such as existence of the solutions and system 

stability. Haddad et al. [17] examine the stability of impulsive 

systems using dissipativity. Xie and Wang [18] study the 

conditions for controllability and observability of impulsive 

systems. 

There are two types of impulse driven systems [12, 16]. 

One with impulse times fixed, is called the fixed time 

impulsive system. The optimality control of this kind of 

impulsive system has been studied in the authors’ previous 

paper [19], where several theorems have been presented on 

the linear fixed-time optimal impulsive control. The other type 

is the variable time impulsive system. In this type of system, 

the instants impulse times are not fixed, but are functions of 
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the states. Impulses are will not be activated until certain 

“resetting conditions” conditions are satisfied.  

For the purpose of studying the impulsive control, in this 

paper, impulses are the only control available to the system 

and there is no continuous control. Therefore, the system here 

is addressed as impulse driven system instead of general 

impulsive system. 

Though the literature on impulsive control is quite 

extensive, still there exists a need for the development of 

systematic impulsive control design methods. This paper 

develops an optimal impulse-driven controller technique that 

satisfies those needs. Furthermore, the proposed neural 

network based technique does not require abnormal 

assumptions and is implementable.   

The rest of the paper is organized as follows. Section II 

contains the derivation of the necessary conditions for 

optimality. Section III illustrates the special neural network 

scheme based on a structure called “single network adaptive 

critic (SNAC)’’. Section IV presents two illustrative problems 

and the simulation results. The case studies consist of results 

from a linear problem and a nonlinear problem. Finally, 

section V provides the conclusions. 

II. OPTIMAL IMPULSE CONTROL 

A. Problem Formulation 

In this paper, the following variable time impulse driven 

system is considered, with the system model given by 
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where 1nx ×∈\ . ( ) 1n

cf x ×∈\  is Lipchitz continuous. 

( )dg x is continuous differentialable. δ  is a dirichlet function. 
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instants when impulses are given, satisfying the resetting 

condition  

 ( )( ) 0iG x τ − =  (2) 

iτ ’s are also referred to as impulse instants hereafter. Initial 

states 
0x  and initial time are assumed to be known. Note that 

impulse control 
iu  is the only control applied to the system 

(1) and that no continuous control is included.  

In this study, a fairly general cost function for minimization 

is considered as follows. 
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where ( )fxΦ is the constraint on the terminal states, 
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states. Note that 
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k f

tτ −

+ = , where ft  is the final time.  

B. Optimality Conditions 

Theorem 1: Given system dynamics as in (1) with known 

initial time and initial states, a resetting condition as in (2), a 

cost function as in (3), and assuming the optimal control 

exists, by introducing the Hamiltonian function [30] 
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c cH L x f xλ+�   (4) 

the necessary conditions for the optimality are presented in the 

following equations. 
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� State update equation is 
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� Resetting equation is       

        ( )( ) 0iG x τ − =  (10) 

� Control equation is 
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� Jump equation is 
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Proof: 

Using Hamiltonian function (4), the objective function (3) can 

be rewritten as 
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where 1  k ftτ −

+ = . 

Suppose 
iu  is the optimal control and that x  is the optimal 

state. By introducing a set of multipliers 
iγ and µ , the 

optimal cost function can then be written as 
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Now, perturb control 
iu  by letting

i i iu u nε→ + , impulsive 

instants ( )i i tτ τ εθ→ + , then the corresponding ( )x x tεη→ + . 

The cost function after perturbation is written as follows. 
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The last term on the right hand side of (15) can be rewritten 

as follows. 
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 Because the initial conditions are known, the corresponding 

variations at the initial time are zeros. Rearrange the first term 

of the last line on the right hand side of (16), 

( ) ( )( ) ( ) ( )( )
1

11
1 1

k k

c i c i c c ii i i i
i i

L L L Lεθ εθ εθ
+

− + − +

−−
= =

− = −¦ ¦  (17) 

Equation (16) becomes 
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 Once the last term on the right-hand side of (18) is 

integrated by part, equation (18) can be written as 

( )

( ) ( )( )

1 1

11

1

1

1 1 1

1 1 1

( )
i i

i i

ii

ii

k
T

i

k k k
T T

c c ii i
i i i

H x x dt

H
L L dt

x

τ εθ

τ εθ

ττ

ττ

εη λ εη

εθ λ εη ελ η

−

+
− −

−−

++
−−

++

= +

+ + +
− +

= = =

ª º+ − +¬ ¼

∂§ ·
= − + + −¨ ¸

∂© ¹

¦ ³

¦ ¦ ¦³

��

�

 (19) 

3818



 

 

 

 Since 0

0
lim

J J
J

ε
δ

ε→

−
= , the first order approximation of the 

perturbed cost Jε  can be written as 
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Considering that initial conditions are known(
0 0η = ), the 

last term on the right hand side of (20) is rewritten as 
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Substituting (21) into (20) and rearranging terms, equation 

(20) can be written as follows. 
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Since ,  ,i in θ and η  are independent, to eliminate them 

from influencing Jδ , one can choose the multiplier ( )tλ  such 

that the coefficients of ,  ,i in θ and 
iη  vanish. Consequently, 

T
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 T H

x
λ

∂
= −

∂
�  (23) 

 ( )
( )T i T

i i

i i

G x h

x x
λ µ λ

−

− +

− −

∂ ∂
= +

∂ ∂
 (24) 

with the boundary condition  
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Now, equation (22) becomes  
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For Jδ  to be zero for any arbitrary 
in  and 

iθ ,  
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Condition (28) can be rearranged and written as the jump 

condition, 

 
i iH H
+ −=  (29) 

By rearranging the conditions (23)-(29), all the conditions 

in theorem 1 are validated. Equation (29) is referred to as the 

jump equation hereafter.  

Remark 1: Assuming initial time, initial states, and initial 

costates are all given, system states and costates propagate 

using equations (6) and (7) until the resetting condition 

( )( ) 0iG x τ − =  is satisfied at time instant 
iτ . Considering the 

state update equation (8), costate update equation (9) and 

control equation (11), one can calculate variable µ  as a 

function of the states and costates before impulse using the 

jump equation (12). After µ is calculated, states and costates 

can propagate forward at the impulse instant and so on 

until ft . To help solve the two point boundary value problem, 

a neural network based numerical method is proposed in the 

next section. 

Remark 2:  The instants when impulses are applied are not 

known in the problem.  

Remark 3: Conditions (5)-(12) are valid for the finite 

horizon optimal control problems. For the infinite time 

optimization, conditions (6) to (12) are still valid. But the final 

condition (5) is no longer needed.  optimal control problem  

III.  SOLUTION TECHNIQUE: SNAC  

This section introduces the single network adaptive critic 

(SNAC) technique which is used in this paper to solve the 

optimal impulse control problems. SNAC has been used in 

solving nonlinear control problems in [19]. This paper 

extends the SNAC scheme to variable time impulse control 

problems. 

A. Adaptive Critic Overview  

The concept of adaptive critic is derived from the modeling 

of the brain as a supervisor and an action structure [19] where 

the supervisor criticizes the action (controller) of the system to 

achieve a better overall goal. The novelty of this paper lies in 

using neural network structures, SNAC, to solve optimal 

variable time impulse control problems. Note that one can 

handle both the finite time and the infinite time horizon 
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problems using this structure. Only the case of the infinite time 

horizon is presented in this paper. 

B. Infinite Time Adaptive Critic Neural Network Scheme  

The idea of the SNAC technique is to use the state and the 

costate propagation equations, the state and costate update 

equations, the jump equation, and the control expression in (5)

-(12) to train a single neural network to capture the optimal 

relation between costates and states. In this paper, the neural 

network is trained to approximate the function ( )ixλ + −  with 

ix
−  as inputs and 

iλ + as outputs.  After that, the costates can be 

used to calculate optimal control. 

 

Figure 1 gives the flowchart of the optimal impulsive 

control synthesis using “SNAC”. The neural network used is 

called NN in the picture. 
ix−  is a set of states chosen so that its 

range approximately spans the domain of interest. The NN is 

initialized based on an initial stabilizing control design, as a 

function of 
ix− . “i” is used here to index the impulses. In 

Fig.1, the resetting condition ( ) 0iG x− = is necessary to 

decide when an impulse should happen.  

 

NN

iλ +

i
x−

iu

ix
+

integrate
forward

1ix
−

+

NN

1 1i iH H
− +

+ +=

1i
λ +

+

1i
λ −

+

integrate
back

( )
*

i
λ + µ

Update Update

1ix
+

+

( )1 0
i

G x−
+ =

( ) 0
i

G x− =

 

Fig. 1 SNAC Architecture of Infinite Time Horizon Problems 

Steps used in the neural network training are: 

 

1) Input 
ix−  to the NN to obtain 

iλ +  as the output.  With 
iλ +   

and 
ix
− , use (11) to calculate 

iu .  

2) Use the calculated 
iu  and 

ix−  in the impulse state update 

equation (8) to get
ix+ .  

3) Propagate the state 
ix+  using equation (6) until the resetting 

condition (10) is satisfied. Then 1ix−
+  is calculated at 1iτ + .  

4) Input 
1ix

−

+  to the NN to get
1iλ +

+  and calculate 
1iu + ,  then 

calculate 
1ix−

+  using the state update equation (8) to get 
1ix+

+ . 

5) Calculate µ  through the jump equation (12) by 

substituting
1ix−

+ , 
1ix+

+ , 
1iλ −

+ , and 
1iλ +

+ .  

6) Calculate *

1iλ −

+  through the state update equation (8), 

costate update equation (9), and solved µ .  

7) Use equations (6) and (7) to back propagate the states 
1ix

−

+  

and costates *

1iλ −

+  and get the target *

iλ + .  

8) Train SNAC with 
ix−  as the input and *

iλ + as the target 

output. 

9) Stop training when the error between *

iλ +  and 
iλ +  is small 

enough (within an error bound set by the control designer). 

IV. SIMULATION RESULTS 

For concept illustration, a linear vector system is 

considered first, followed by a nonlinear vector example with 

some similarity to the linear one.   

A. Linear Vector Problem 

The linear vector problem is an oscillator problem with the 

following dynamics. 
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where 2 60ω =  and  the impulse is activated when the 

following resetting condition (31) is satisfied. 

 ( )1 0ix τ =  (31) 

Without control, system open loop response is depicted in 

Fig. 2.  
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Fig.2 System response without impulsive control 

 

Using the optimality conditions and considering the 

Hamiltonian function ( ) ( )2 2 2

1 1 2 2 1 2 2 1

1

2
H q x q x x xλ λ ω= + + + − , 

the states and costates propagation equations between 
iτ +  and 

1iτ −
+  are listed as follows. 
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 The state and costate update equations at  ,i it τ τ− +ª º∈ ¬ ¼  

where impulses are applied are as follows. 
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 Substitute the other optimality conditions in (34) into the 

last jump equation 
i iH H
+ −= . The parameter µ  can be 

expressed as a function of λ−  and x− , which is  
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 Therefore, if substituting µ expression (35) back into (34), 

the relation between states/costates after impulse and before 

impulse are known. This relation is used in step 6 during the 

training process. 

Two 1-3-3-1 multilayer perceptron neural networks are 

used to approximate ( )1 2xλ + −  and ( )2 2xλ + − , respectively. The 

two neural networks are pre-trained as 
1 20.5xλ + −=  and 

2 20.5xλ + −= . Also, 
1 1q = , 

2 1q = , and 1r =  are chosen. 
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Fig. 3 Convergence of the neural network output 

 

Figure 3 shows the training process of the SNAC scheme. 

For a set of different points of 
2x
− , the outputs start from the 

line with the star marks and converge upon the line with 

hexagrams. 

To observe the converging process more clearly, since a 

linear relation between the costate and state exists, assume 

1 1 2k xλ + −=  and 
2 2 2k xλ + −= . Figure 4 gives a better view of the 

training process. From the plot at the top of Fig. 4, the value of 

the cost function J decreases to a constant along the training 

process. From the two plots at the bottom of Fig. 4, it is easy to 

see that 
1k  and 

2k  converge after about 7 iterations to the 

constants -0.255 and 0.362, respectively.  Figure 5 is the 

system response with the optimal control calculated using 

SNAC neural networks. The initial states are chosen as 

0 [0,  3]T
x = . 
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Fig. 4 Convergence of the training process and the change in the 

objective function 

 

The system is asymptotically stable with the designed 

optimal control from the plot. 
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Fig. 5 System response with the optimal impulse control 

 

B. Nonlinear vector example 

Consider the following system dynamics 

 ( )1 2

2

2 1

sin( ) 0

1
i i

x x a x
u t

x x
δ τ

ω

+ª º ª º ª º
= + −« » « » « »− ¬ ¼¬ ¼ ¬ ¼

�

�
 (36) 

where 3a =  and 2 60ω = . 

Take the same cost function (32) used in the previous 

example. The resetting condition is also chosen as ( )1 0ix τ = . 

This example is similar to the previous example except that 

there are nonlinearities in the system dynamics. Figure 6 

shows the system open loop response.  

Two 1-6-6-1 multilayer perceptron neural networks are 

used to approximate the relations ( )1 2xλ + −  and ( )2 2xλ + −  

respectively. The two neural network are also pre-trained 

using 
1 20.5xλ + −=  and 

2 20.5xλ + −= . Figure 7 shows the trained 

neural network output 
iλ +  and the target output ( )

*

iλ +  needed 

in the SNAC training scheme. 
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Fig. 6 Openloop system response 
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Fig. 7 outputs of the neural network and the target outputs  

( iλ +  and ( )
*

iλ +  ) 

In this figure, the trained output (current) 
iλ +  is very close 

to the target output (target) ( )
*

iλ + . 
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Fig. 8 System response with the controls calculated through trained 

neural networks. 

Figure 8 depicts system closed loop response using the 

controls calculated from the trained neural networks. The 

states are decreasing to zeros and are asymptotically stable in 

the picture. 

Remark 4: In this paper, to concentrate on the studies of 

impulsive control, no continuous control is considered. But 

the whole scheme presented here, including the condition 

derivation and the numerical SNAC, can be easily extend to 

the variable time impulsive control with continuous control. 

V. CONCLUSION 

In this paper, the necessary conditions are derived for 

optimal control of the variable time impulse driven systems. A 

single neural network adaptive critic (SNAC) method is 

developed to numerically solve the linear/nonlinear optimal 

impulsive control problems. The simulation results of a linear 

impulse problem and a nonlinear problem show the 

effectiveness of the SNAC scheme. A systematic scheme of 

the optimal control of impulse driven systems is developed.  
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