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Abstract— The focus of the paper is on the computation of
optimal feedback stabilizing control for discrete time control
system. We use Lyapunov measure, dual to the Lyapunov
function, for the design of optimal stabilizing feedback con-
troller. The linear Perron-Frobenius operator is used to pose
the optimal stabilization problem as an infinite dimensional
linear program. Finite dimensional approximation of the linear
program is obtained using set oriented numerical methods.
Simulation results for the optimal stabilization of periodic orbit
in one dimensional logistic map are presented.

I. INTRODUCTION

Stability analysis and stabilization of nonlinear systems are

two of the most important and extensively studied problems

in control theory. Lyapunov function and Lyapuov function

based methods have played an important role in providing

solutions to these problems. In particular, the Lyapunov

function is used for stability analysis and the control Lya-

punov function (CLF) is used for the design of stabilizing

feedback controllers. Another problem which is extensively

studied in controls literature is the optimal control prob-

lem (OCP). Optimal control for the OCP can be obtained

from the solution of the Hamilton Jacobi Bellman (HJB)

equation. Under the additional assumption of detectability

and stabilizability of nonlinear system, the optimal cost

function if positive can also be used as control Lyapunov

function. This establishes the connection between stability

(Lyapunov function) and optimality (HJB equation). The

HJB equation is a nonlinear partial different equation and

hence, difficult to solve analytically and one has to resort to

approximate numerical schemes for its solution. We review

some of the literature particularly relevant to this paper on

the approximation of HJB equation and OCP.

In [1], an adaptive space discretization scheme is used to

obtain the solution of deterministic and stochastic discrete

time HJB (dynamic programming) equation. Optimal cost

function is obtained as a fixed point solution of a linear

dynamic programming operator. In [2], [3], cell mapping ap-

proach is used to construct approximate numerical solutions

for deterministic and stochastic optimal control problems.

In [4], [5], set oriented numerical methods are used to un-

derestimate the optimal one-step cost for transition between

different state-space discretizations in the context of optimal

control and optimal stabilization. This allows to represent the

minimal cost control problem as one of finding the minimum

cost path to reach the invariant set on a graph with edge costs
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derived from the under-estimation procedure. Djikstra’s algo-

rithm is used to construct an approximate solution to the HJB

equation. In [6], [7], [8] solutions to deterministic optimal

control problems are proposed by casting them as infinite

dimensional linear programs. Approximate solution to the

infinite dimensional linear program is then obtained using

finite dimensional approximation of the linear programming

problems or using sequence of LMI relaxation.

In this paper we propose the use of Lyapunov measure for

the optimal stabilization of nonlinear systems. Lyapunov

measure is introduced in [9], to study weaker set wise

notion of almost everywhere stability and is shown to

be dual to the Lyapunov function. Existence of Lyapunov

measure guarantees stability from almost every with respect

to Lebesgue measure initial conditions in the phase space.

Control Lyapunov measure is introduced in [10] to provide

Lyapunov measure based framework for the stabilization

of nonlinear systems. In [10], problem of stabilization is

posed as a co-design problem of jointly obtaining the control

Lyapunov measure and the controller. The co-design problem

is formulated as an infinite dimensional linear program using

suitable change of coordinates. Computational method based

on set oriented numerical approach and mixed integer linear

program is proposed for the finite dimensional approxima-

tion and to obtain deterministic control respectively. Since

the approach depends on discretizing the state and control

spaces, solving an integer program of those dimensions is

clearly computationally prohibitive. The goal of this paper

is to extend the Lyapunov measure based framework for the

optimal stabilization of an attractor set. One of the main

differences between the results in [10] and this paper is

that the finite deterministic optimal control is obtained as

a solution of finite linear program as opposed to a mixed

integer linear program in [10]. We must emphasize that our

approach alo relies on discretization of the state and control

spaces but hope that the linear program complexity allows

better handling of the computational aspects.

This paper is organized as follows. In section II, we provide

a brief overview of some of the key results from [9],[11],[10]

for stability analysis and stabilization of nonlinear systems

using Lyapunov measure. The framework for optimal sta-

bilization using Lyapunov measure and transfer operators

is posed as an infinite dimensional linear program in sec-

tion III. A computational approach based on set oriented

numerical methods in proposed for the finite dimensional

approximation of the linear program in section IV. Simulation

results for optimal stabilization of periodic orbit in one

dimensional logistic map are presented in section V, followed

by conclusion and discussion in section VI.
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II. LYAPUNOV MEASURE, STABILITY AND STABILIZATION

In [9], [11], [10], Lyapunov measure is introduced for sta-

bility verification and for stabilizing controller design of an

invariant set in nonlinear dynamical systems. Stability and

stabilization problems of an attractor set A for a nonlinear

system T : X → X , where X ⊂ R
nx is compact, were studied

using a weaker notion of almost everywhere stability.

Definition 1 (Attractor set): A closed set A is said to be T

invariant if T (A) = A. A closed T invariant set A is called

an attractor set if there exists a local neighborhood V of A

such that T (V ) ⊂V .

We use following definition of almost everywhere (a.e.)

stability with geometric decay of the attractor set in this

paper.

Definition 2: An attractor set A is said to be a.e. stable with

geometric decay with respect to measure m if given δ > 0,

there exists K(δ ) < ∞ and β < 1 such that

m{x ∈ Ac : T n(x) ∈ B} < K(δ )β n

for all set B ⊂ X \Uδ , where Uδ is the δ neighborhood of

an attractor set A and Ac := X \A is the complement of the

invariant set.

Remark 3: In the subsequent section we use the notation

m for the Lebesgue measure, mS for the Lebesgue measure

supported on set S and Uδ for the δ neighborhood of the

attractor set A for a given δ > 0.

This weaker notion of a.e. stability is studied using a Linear

transfer operator called as Perron-Frobenius (P-F) operator.

P-F operator is used to study the propagation of sets or the

measure supported on the sets. For any given continuous

mapping T : X → X , linear Perron-Frobenius (P-F) operator,

denoted by PT : M (X) → M (X) is given by

PT [µ](B) =
∫

X
χB(T (x))dµ(x) (1)

where M (X) is the vector space of all measures supported

on X , χB(x) is the indicator function supported on the set

B ⊂ B(X), the Borel sigma-algebra of X . For more details

on the P-F operator refer to [12]. Since the stability property

of an attractor set in definition (2) is stated in terms of the

transient behavior of the system on the complement of the

attractor set Ac, we define sub-stochastic Markov operator as

a restriction of the P-F operator on Ac as follows:

P
1
T [µ](B) :=

∫

Ac
χB(T (x))dµ(x) (2)

for any set B ∈ B(Ac) and µ ∈ M (Ac). Necessary and

sufficient condition for almost everywhere uniform stability

of an invariant set A with respect to any finite measure m

were obtained in the form of existence of the positive solu-

tion, Lyapunov measure, to the following Lyapunov measure

equation:

P
1
T µ̄(B)− µ̄(B) = −m(B) (3)

The precise theorem for stability as proved in [11] is:

Theorem 4: The attractor set A for the dynamical system

T : X → X is a.e. stable with geometric decay with respect to

measure m if and only if there exists a non-negative measure

µ̄ which is finite on B(X \Uδ ) and satisfies

γP
1
T µ̄(B)− µ̄(B) = −m(B)

for every set B ⊂ X \Uδ and for some γ > 1. Measure m is

absolutely continuous with respect to Lyapunov measure µ̄ .

Stability of the attractor set with respect to Lebesgue

almost every initial condition starting from a given set S

can be studied by taking m = mS in the Lyapunov measure

equation. In [13], set oriented numerical approach is used

for the finite dimensional approximation of the Lyapunov

measure µ̄ . This finite dimensional approximation leads to

further weaker notion of stability, which is referred to as

coarse stability. Unlike almost everywhere stability, coarse

stability of an invariant set allows for the existence of stable

dynamics in the complement of an invariant set however the

domain of attraction of the stable dynamics is strictly smaller

than the size of the partition used in the finite dimensional

approximation.

In [10], Lyapunov measure is used for the design of stabi-

lizing feedback controller. For the stabilization problem we

consider the control dynamical system of the form

xn+1 = T (xn,un)

where xn ∈ X and un ∈U is the state space and control space

respectively. The objective is to design feedback controller

un = K(xn) to stabilize the invariant set A, which is assumed

to be locally stable and hence forms an attractor set. The

stabilization problem is solved using Lyapunov measure

by extending the P-F operator formalism to the control

dynamical system as follows. We define the feedback control

mapping C : X →Y := X ×U as C(x) = (x,K(x)). Using the

definition of feedback mapping C, we write the feedback

control system as

xn+1 = T (xn,K(xn)) = T ◦C(xn)

With the system mapping T : Y →X and the control mapping

C : X →Y , we can associate Perron-Frobenius operators PT :

M (Y ) → M (X) and PC : M (X) → M (Y ) respectively, and

are defined as follows:

PT [θ ](B) =
∫

Y
χB(T (y))dθ(y)

PC[µ](D) =
∫

D
f (a|x)dm(a)dµ(x)

where θ ∈ M (Y ),µ ∈ M (X) and B ⊂ X ,D ⊂ Y . f (a|x) is

the conditional probability density function and is introduced

to incorporate the particular form of feedback controller

mapping C(x) = (x,K(x)). The advantage of writing the

feedback control dynamical system as the composition of

two maps T : Y → X and C : X → Y is that the P-F operator

for the composition T ◦C : X →X can be written as a product

of PT and PC as follows (refer to [10]):

PT◦C = PT ·PC : M (X) → M (X).

In [10], control Lyapunov measure is introduced for the sta-

bilization of nonlinear systems. Control Lyapunov measure

1747



is defined as any non-negative measure µ̄ ∈ M (Ac), which

is finite on B(X \Uδ ) and satisfies

P
1
T ·P1

C µ̄(B) < β µ̄(B) (4)

for every set B ⊂ X \Uδ and β < 1. Operators P
1
T and

P
1
C are the restrictions of the P-F operator PT and PC to

the complement of the invariant set Ac respectively and are

defined similar to the restriction of the P-F operator in the

autonomous case in equation (2).

III. OPTIMAL STABILIZATION

The objective is to stabilize the invariant set A using feedback

control input u = K(x), while minimizing a relevant cost

function. We assume that the invariant set is locally stabilized

and hence forms an attractor set. In the context of the

controlled system, the invariant set A satisfies T (A,K(A)) =
A. Let, G : Y →R

+ be a continuous non-negative real valued

function such that G(A,0) = 0. The cost of stabilization of

the invariant set A with respect to initial conditions starting

from the set B ⊂ X1 := X \Uδ is denoted by C (B) and is

given by the following formula

C (B) =
∫

B

∞

∑
n=0

γnG(xn,un)dm(x) (5)

where x0 = x, xn+1 = T (xn,un) for n ≥ 0. For a given

stabilizing feedback controller mapping C(x) = (x,K(x)), the

cost of stabilization CC(B) is given by

CC(B) =
∫

B

∞

∑
n=0

γnG◦C(xn)dm(x) (6)

Note that the cost of global stabilization of the invariant set

A is the special case of B = X1. For (6) to be finite, when γ >
1, we require that the controller C(x) is not just stabilizing

but stabilizing the invariant set A with geometric decay rate

β < 1
γ . In the following theorem we show that the cost of

stabilization of the invariant set A can be expressed using the

control Lyapunov measure. We first introduce the Koopman

operator which is to be used in the proof.

Definition 5 (Koopman operator): For a continuous map-

ping F : X1 → X2, Koopman operator UF : C 0(X2)→C 0(X1)
is given by

(UF f )(x) = f (F(x))

where f ∈ C 0(X2) and C 0(Xi) is the space of all continuous

functions on compact spaces Xi for i = 1,2.

The P-F and Koopman operator are dual to each other and

the duality is expressed using the following inner product

〈UF f ,µ1〉X1
=

∫

X1
f (F(x1))dµ1(x1)

=
∫

X2
f (x2)d[PF µ1](x2) = 〈 f ,PF µ1〉X2

(7)

The result on the cost of stabilization follows.

Theorem 6: Let γ > 1 in the cost function and the controller

mapping C(x) is designed such that the invariant set A is

a.e. stable with geometric decay rate β < 1
γ . The cost of

stabilization of an invariant set A w.r.t. Lebesgue measure

initial conditions starting from set B is given by

CC(B) =
∫

B

∞

∑
n=0

γnG(xn,un)dm(x)

=
∫

Ac×U
G(y)d[P1

C µ̄B](y) =
〈

G,P1
C µ̄B

〉

Ac×U
(8)

where µ̄B is the solution of the following control Lyapunov

measure equation

γP
1
T ·P1

C µ̄B(D)− µ̄B(D) = −mB(D) (9)

for every set D ⊂ X1.

Proof: From the assumption of a.e. geometric stability

of the controller mapping C : X →Y , we have by Theorem 4

that there exists non-negative measure µ̄ which is finite on

B(X1) and satisfies

γ[P1
T ·P1

C µ̄](D)− µ̄(D) = −m(D).

For the cost of stabilization of a set B, we have

CC(B) =
∫

B

∞

∑
n=0

γnG◦C(xn)dm(x) =
∫

B
lim

N→∞
fN(x)dm(x)

where fN(x) = ∑
N
n=0 γnG◦C(xn) and x0 = x. Using monotone

convergence theorem and G ≥ 0, fN(x) ≤ fN+1(x), we have

∫

B
lim

N→∞
fN(x)dm(x) = lim

N→∞

N

∑
n=0

〈γnG◦C(xn),mB〉Ac

lim
N→∞

N

∑
n=0

〈γnG◦C(xn),mB〉Ac=lim
N→∞

〈

U
1
CG,

N

∑
n=0

γn[P1
T◦C]nmB

〉

Ac

where we have used the fact that xn = (T ◦C)n(x) and the

duality between the operators U
1
T◦C and P

1
T◦C. Let µ̄N

B =

∑
N
n=0 γn[P1

T◦C]nmB. The measure µ̄N
B is absolutely continuous

with respect to Lebesgue measure m for all N since for

any set D ⊂ X1 if m(D) = 0 then ([P1
T◦C]nmB)(D) = m((T ◦

C)−n(D)∩B) = 0 for all n and every set B ⊂ X1. The latter is

true because of the non-singularity assumption of the closed

loop map T ◦C. Moreover µ̄N
B (D) ≤ µ̄N+1

B (D) for every set

D,B ⊂ X1. Hence there exists an integrable function gN(x)≥
0 such that gN(x) ≤ gN+1(x) and dµ̄N

B (x) = gN(x)dm(x).
Hence we have

lim
N→∞

〈

U
1
CG,

N

∑
n=0

γn[P1
T◦C]nmB

〉

Ac

= lim
N→∞

∫

Ac
(U1

CG)(x)gN(x)dm

=
∫

Ac
(U1

CG)(x) lim
N→∞

gN(x)dm(x) =
〈

U
1
CG, µ̄B

〉

Ac

where µ̄B := ∑
∞
n=0 γn[P1

T◦C]nmB = ∑
∞
n=0 γn[PT ·P1

C]nmB] and

µ̄B is known to finite on any set D ⊂ X1 because of a.e.

stability property of the invariant set A with geometric

decay rate β < 1
γ . Furthermore µ̄B satisfies following control

Lyapunov measure equation (3). Finally using the duality

between U
1
C and P

1
C, we get

〈

U
1
CG, µ̄B

〉

Ac =
〈

G, P̄1
C µ̄B

〉

Au
c

which proves the claim.
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The minimum cost of stabilization is defined as the minimum

over all a.e. stabilizing controller mapping C as follows:

C
∗(B) = min

C
CC(B) (10)

Defining θ(O) := [P1
Cµ](O) for any set O ⊂ X1 ×U , θ ∈

M (Ac × U), µ ∈ M (Ac), the inner product 〈 f ,µ〉X :=
∫

X f dµ(x), and a projection map P1 : Ac×U → Ac, P1(x,u) =
x, P−1

1 (x) = (x,U) along with its corresponding P-F operator

[P1
P1

θ ](D) =
∫

Ac×U
χD(P1(y))dθ(y) =

∫

D×U
dθ(y) = µ(D)

Using these definition, we can pose the infinite dimensional

optimal linear program for stabilization as follows

min
θ≥0

〈G,θ〉Ac×U (11a)

s.t. γ[P1
T θ ](D)− [P1

P1
θ ](D) = −mB(D) ∀D ⊂ X1 (11b)

In the next section, we propose a computational framework

based on the set oriented numerical methods for the finite

dimensional approximation of the optimal stabilization prob-

lem. Optimal control for stabilization is obtained using the

finite dimensional approximation of the linear program (11).

IV. COMPUTATIONAL APPROACH

For the purposes of computations, the infinite-dimensional

problem is replaced by its finite-dimensional approximations

as in [10]. We assume that the controls belong to finite set

u ∈ UM where UM = {u1, . . . ,ua, . . . ,uM}. This set may be

taken after quantization of the control input space. We also

assume a finite partition of X , and denote it by XN :=
{D1, ...,Di, ...,DN}, together with the associated measure

space R
N . We assume without loss of generality that DN = A.

The partition for the joint space Y , denoted by YN×M = XN ×
UM has cardinality M ·N and is identified with an associated

vector space R
NM . We use the notation PT : R

NM → R
N to

denote the discrete counterpart of PT . Since T : Y → X , so

PT is a Markov matrix. Further, PT a : R
N → R

N denotes the

Markov matrix that is obtained by fixing the control input

to ua for all D ⊂XN . Additionally, PT a : R
N−1 → R

N−1 will

denote the sub-stochastic transition matrix where the control

input is fixed to ua. It is easily seen that PT a consists of the

first (N −1) rows and columuns of PT a .

With the above quantization of the control space and partition

of the state space, the determination of the control u(x) ∈U

(or equivalently K(x)) for all x ∈ Ac has now been cast as

a problem of choosing u(Di) ∈ UM for all sets Di ⊂ XN .

The finite dimensional approximation of the minimum cost

of stabilization (11) is equivalent to solving the following

finite-dimensional linear program:

min
θ a,µ≥0

M

∑
a=1

(Ga)′θ a (12a)

s.t. γ
M

∑
a=1

(P
a
T )′θ a −

M

∑
a=1

θ a = −m (12b)

where m ∈R
N−1, m j ≥ 0 denotes the discrete counterpart of

the Lebesgue measure m(B) and (·)′ denotes the transpose

operation; Ga ∈ R
N−1 and Ga

j is the cost associated with

using control action ua on set D j; θ a ∈ R
N−1 is the discrete

counter-part of infinte-dimensonal measure quantity in (11).

The linear program (12) does not enforce the constraint

θ a
j > 0 for exactly one a ∈ {1, ...,M} (13)

for each j = 1, ...,(N−1). The above constraint ensures that

the control obtained is deterministic. We prove in the fol-

lowing that a deterministic controller can always be obtained

provided the linear program (12) has a solution. To this end,

we introduce the dual linear program [14] associated with

the linear program in (12). The dual to (12) is,

max
V

m′V

s.t. V ≤ γPT aV +Ga ∀a = 1, ...,M.
(14)

In the above linear program (14), V are the dual variables to

the equality contraints (12a).

A. Existence of stabilizing controls for a partition

We now make following assumption on the existence of

stable fine- partition using finite set of controls (UM).

Assumption 7 (Existence of a stable fine-partition):

There exists a partition of the state-space XN′ :=
{E1, . . . ,Ei, . . . ,EN′} with N′ sufficiently large and associated

controls u(Ei) ∈ UM such that the system is coarse stable.

Remark 8: Although, we do not have a proof, intuition

suggests that assumption (7) is likely to hold true and is

necessary for the existence of the finite dimensional con-

troller. The assumption can be interpreted as a requirement

of stabilizability using finite controls (UM) of the original

infinite dimensional system.

We now introduce the concept of a sub-partition which will

be used in the main result on existence of stabilizing control.

Definition 9 (Sub-partition): A partition X
N
′ :=

{E1, ..,EN
′} of the state-space is said to be a sub-partition

of XN , if N
′
> N, DN = E

N
′ , and for each Ei there exists a

unique j ∈ {1, ...,N} such that Ei ∩D j 6= /0 and Ei ∩Dk = /0

for all k 6= j.

We now state the main result on the existence of stabilizing

controls for any partition.

Theorem 10: Suppose Assumption 7 holds. Then, there ex-

ists stabilizing controls for any partition XN := {D1, . . . ,DN}
of the state-space such that XN′ is a sub-partition of XN .

For the proof of this theorem refer to [15]. The critical

piece in the proof is the requirement that X
N
′ be a sub-

partition of XN . Using this we established [15] that existence

of stabilizing controls for a sub-partition X
N
′ using finite

set of controls (UM) always allows to choose controls on

the coarse partition XN so that stability continues to be

preserved. Observe that the sub-partition assumption will be

satisfied if the system is for example, everywhere stabilizable

using controls in (UM).

B. Deterministic control solution to the finite linear program

In this section, we show the existence of optimal determin-

istic control solutions to the finite linear program (12). The

results presented here can easily be extended to the case
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where m ≥ 0,m 6= 0. We will first derive conditions under

which the linear program (12) is feasible.

Lemma 11: Suppose that Assumption (7) holds and m > 0.

Then, for any partition XN there exists γ > 1 such that for

all γ ∈ [1,γ) there exists a feasible solution to (12).

Refer to [15] for the proof.

In the following we will derive conditions under which a

solution to linear program (12) exists and then, show that

condition for deterministic control (13) can be satisfied under

the assumption of feasibility of linear program (12). The

main result is stated in Theorem 14.

Lemma 12: Suppose the Assumption 7 holds and m >
0,G(·, ·) ≥ 0 on the complement of the invariant set. Then

for all γ ∈ [1,γ), there exists an optimal solution θ to linear

program (12) and an optimal solution V to the dual linear

program (14) with equal objective values.

Refer to [15] for the proof.

The next result shows that linear program (12) always admits

a determinstic control action as an optimal solution. In the

following, we will assume that the cost is positive on the

complement of the invariant set G(·, ·) > 0. This assumption

is crucial in order to obtain deterministic controls.

Lemma 13: Suppose Assumption 7 holds and m > 0,

G(·, ·) > 0 on the complement of the invariant set. Let θ
solve (12) and V solve (14) for some γ ∈ [1,γ). Then the

following hold at the solution:

1) For each j = 1, ...,(N − 1) there exists at least one a j ∈
1, ...,M such that Vj = γ(PT

a j V ) j + G
a j

j and θ
a j

j > 0 where

G
a j

j := G(D j,u
a j)

2) There exists a θ̃ that solves (12) and is such that for each

j = 1, ...,(N−1), there is exactly one a j ∈ 1, ...,M such that

θ̃
a j

j > 0 and θ̃ a′
j = 0 for a′ 6= a j.

Proof: From the assumptions, we have that Lemma 12

holds. Hence, there exists (V,θ) that satisfy the first-order

optimality conditions [14],

M

∑
a=1

θ a − γ
M

∑
a=1

(PT a)′θ a = m

V ≤ γPT aV +Ga ⊥ θ a ≥ 0 ∀a = 1, ...,M.
(15)

We will prove each of the claims in order.

1) Suppose, there exists j ∈ 1, ...,(N − 1) such that θ a
j = 0

for all a = 1, ...,M. Substituting in the optimality conditions

(15) one obtains γ
M

∑
a=1

((PT a)′θ a) j =−m j which cannot hold

since, PT a has non-negative entries, γ > 0 and θ a ≥ 0.

Hence, there exists at least one a j such that θ
a j

j > 0. The

complementarity condition in (15) then requires that Vj =
γ(PT

a j V ) j +G
a j

j . This proves the first claim.

2) Denote a( j) = min{a|θ a
j > 0} for each j = 1, ...,(N −1).

The existence of a( j) for each j follows from statement 1.

Define PT u ∈ R
(N−1)×(N−1) and Gu ∈ R

N−1 as follows:

(PT u) ji := (P
T a( j)) ji ; Gu

j := G
a( j)
j (16)

for all j = 1, ...,(N −1). From the definition of PT u and Gu

and complementarity condition in (15) it is easily seen that

V satisfies,

V = γPT uV +Gu = lim
n→∞

((γPT u)nV +
n

∑
k=0

(γPT u)kGu). (17)

Since V is bounded and Gu > 0 it follows that ρ(PT u) < 1/γ .

Define θ̃ for j = 1, ...,(N −1) as follows,

θ̃ a
j = 0 a 6= a( j) ; θ̃

a( j)
j =

(

(IN−1 − γ(PT u)
′
)−1m

)

j
. (18)

The above is well-defined since we have already shown that

ρ(PT u) < 1/γ . From the construction of θ̃ , we have that

for each j there exists only one a j, namely a( j), for which

θ̃
a( j)
j > 0. It remains to show that θ̃ solves (12). For this

observe that,

M

∑
a=1

(Ga)
′
θ̃ a =

N−1

∑
j=1

G
a( j)
j θ̃

a( j)
j = (Gu)

′
(IN−1 − γ(PT u)

′
)−1m

= ((IN−1 − γPT u)−1Gu)
′
m = V

′
m

The primal and dual objectives are equal with above defi-

nition of θ̃ and hence, θ̃ solves (12). The claim is proved.

Lemma 13 shows that if there exists a solution to linear

program (12) then, the there exists a deterministic controller

for the same. The following theorem states the main result.

Theorem 14: Given the system T : XN ×UM → XN and

m > 0, G(·, ·) > 0 on the complement of the invariant set.

If Assumption 7 holds, then the following statements hold

for all γ ∈ [1,γ):
1) there exists a θ which is a solution to (12) and a V which

is a solution to (14)

2) the optimal control for each set j = 1, ...,(N−1) is given

by,

u(D j) = ua( j) where a( j) := min{a|θ a
j > 0}

3) µ is the closed-loop Lyapunov measure satisfying

γ(PT u)
′
µ −µ = −m where (PT u) ji = (P

T a( j)) ji. (19)

For proof refer to [15].

V. EXAMPLE

We present the simulation result for optimal stabilization of

period two orbit in quadratic Logistic map. The controlled

Logistic map is described by the following equation.

xn+1 = axn(1− xn)+un (20)

where xn ∈ [0,1] is the state, un is the control and the

parameter a = 4. Figure (1a) shows the invariant measure for

the uncontrolled Logistic map for the parameter value a = 4.

Invariant measure gives us the steady state distribution of the

points in the phase space. Invariant measure shows chaotic

behavior with no stable periodic orbit of any period. Our

goal is to stabilize a period two orbit. For Logistic map one

can derive an analytical expression for the period-2 orbit in

terms of the parameter a. The period-2 orbit points are given

by the expression

x01 =
a+1−

√
a2 −2a−3

2a
, x02 =

a+1+
√

a2 −2a−3

2a

1750



Hence for the parameter value a = 4 we get x01 = 0.3455 and

x02 = 0.9045 as the unstable period-2 orbit. Figure (1) shows

the simulation result for the stabilization of periodic two orbit

for the Logistic map. The stabilization objective is achieved

while minimizing the control input i.e., the cost function G =
x2 +u2. For the finite dimension approximation we divide the

interval [0,1] into 300 equal length intervals. Similarly the

control values ranges from −0.05 to 0.05 in the steps of 0.01.

Figure (1b) shows the plot of closed loop invariant measure.

Figure (1c) shows the plot of control Lyapunov measure.

Figure (1d) shows the control values used for stabilization.

From this plot we see control is used only at discrete set of

points thus exploiting the natural dynamics of the system.

The presence of eigenvalues at 1 and −1 for the closed loop

system in figure (1e) implies the existence of stable period

two orbit.

(a) (b)

(c) (d)

(e)

Fig. 1. (a) Open loop invariant measure (b) Closed- loop Invariant measure
(c) log(Lyapunov measure) (d) Control values (e) Eigenvalues plot for closed
loop system

VI. CONCLUSIONS

The problem of optimal stabilization for discrete time

nonlinear system is solved using linear transfer operator

and Lyapunov measure based framework. Duality between

Perron-Frobenius and Koopman operators is used to pose

the primal and dual optimal stabilization problem as a infinite

dimensional linear program. Computational framework based

on set oriented numerical methods is used for the finite

dimensional approximation of the optimal stabilization prob-

lem. This finite dimensional approximation of the optimal

stabilization problem lead to solving finite number of linear

inequalities. The highlight of the solution approach for

the finite dimensional linear program is that the controller

obtained is deterministic although the approximation of the

linear transfer operators is stochastic. Simulation results for

the optimal stabilization of period two orbit is presented.

One of the main botlenecks in the approach is that the size

of the linear program scales as a function of the state-space

discretization. Clearly, this becomes a huge problem for

higher dimensional systems. The solution of higher dimen-

sional systems will require development of algorithms that

exploit the structure of the problem. These and other ideas

on computational complexity management will be addressed

in a subsequent paper.
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