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Abstract— This work develops a robust fault detection and
isolation (FDI) and fault-tolerant control (FTC) structure for
distributed processes modeled by nonlinear parabolic PDEs
with control constraints, time-varying uncertain variables and
a finite number of output measurements with limited accuracy.
To facilitate the controller synthesis and fault diagnosis tasks,
a finite-dimensional system that approximates the dominant
dynamic modes of the PDE is initially derived and transformed
to a form where each dominant mode is excited directly
by only one actuator. A robustly stabilizing bounded output
feedback controller is then designed for each dominant mode.
The controller synthesis procedure facilitates the derivation
of (1) an explicit characterization of the fault-free behavior
of each mode in terms of a time-varying bound on the
dissipation rate of the corresponding Lyapunov function which
accounts for the uncertainty and measurement errors, and
(2) an explicit characterization of the robust stability region
where constraint satisfaction and robustness with respect to
uncertainty and measurement errors are guaranteed. Using
the fault-free Lyapunov dissipation bounds as thresholds for
FDI, the detection and isolation of faults in a given actuator
is accomplished by monitoring the evolution of the dominant
modes within the corresponding stability region and declaring
a fault when the threshold is exceeded. Robustness of the FDI
scheme to measurement errors is ensured by confining the
FDI region to an appropriate subset of the stability region,
and enlarging the FDI thresholds appropriately. It is shown
that these safeguards can be tuned by appropriate selection
of the sensor configuration. Finally, the implementation of
the FTC architecture on the infinite-dimensional system is
discussed and the proposed methodology is demonstrated using
a diffusion-reaction process example.

I. INTRODUCTION

The problems of fault detection and isolation (FDI) and

fault-tolerant control (FTC) of dynamic systems have been

the focus of considerable research interest over the past few

decades in both the academic and industrial circles (e.g., see

[1], [2], [3], [4], [5], [6], [7], [8] and the references therein).

Despite the extensive literature on these topics, most of the

available results have been developed for spatially homoge-

neous processes modeled by systems of ordinary differential

equations. Many important engineering systems, however,

such as transport-reaction processes and fluid flows, are

characterized by spatial variations and are modeled by

Partial Differential Equations (PDEs). While the study of

these systems has been an area of significant and growing

interest within process control research over the past decade
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(e.g., see [9], [10], [11] and the references therein), the

development of systematic methods for the diagnosis and

handling of faults in distributed control systems has received

limited attention. Examples of earlier works in this direction

include the development of fault detection schemes using

approximate linear models (e.g., [12], [13]) and the use of

hybrid system formulations to develop stability-based and

performance-based controller reconfiguration strategies to

compensate for faults (e.g., [14]). More recently, we devel-

oped in [15], [16] a unified framework for the integration

of model-based FDI and control system reconfiguration for

distributed processes modeled by nonlinear parabolic PDEs

with control constraints and actuator faults. A key idea

in these works is to tie the design of the FDI filters and

the actuator reconfiguration logic via singular perturbations

to the two time-scale separation between the slow and

fast eigenvalues of the differential operator of the infinite-

dimensional system, which leads naturally to the derivation

of explicit FDI thresholds and actuator reconfiguration rules

that minimize false and missed alarms due to approxima-

tion errors when the low-order model-based architecture is

implemented on the distributed parameter system. These

results were subsequently extended in [17], [18] to address

the problem of model uncertainty. The central idea was

to shape the fault-free closed-loop behavior, via robust

bounded state feedback control, in a specific way that

facilitates the derivation of FDI rules that are less sensitive

to the uncertainty.

The implementation of the schemes mentioned above

requires the availability of accurate measurements of the

state variables at all points in the spatial domain. In prac-

tice, however, measurements of the state variables in a

spatially-distributed system are typically available only at

a finite number of spatial locations. Furthermore, accurate

measurements are often unavailable due to the presence

of measurement noise, the occurrence of sensor malfunc-

tions, or the inherent limitations on the capabilities of the

sensing device as in discrete sensors that provide only

a limited (i.e., qualitative) information about the state of

the system. These practical limitations can seriously erode

the diagnostic and fault-tolerance capabilities of the fault-

tolerant control architecture, if not explicitly accounted

for in its design. Within the feedback control layer, for

example, measurement errors can degrade the stability

and performance properties of the nominal controllers and

may render the closed-loop system unstable unless the
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controller is designed with a sufficient robustness margin.

At the fault diagnosis level, the presence of measurement

errors limits our ability to accurately monitor the actual

evolution of the process to determine if and when a fault

can be declared. Unless the FDI rules are re-designed

to discriminate between those errors and faults, the FDI

scheme may lead to false alarms that trigger unnecessary

control system reconfiguration. The lack of full or accurate

state measurements also limits the size of the stability

regions as well as the supervisor’s knowledge of where the

system trajectory is relative to those regions. This in turn

complicates the actuator reconfiguration task.

Motivated by these considerations, we develop in this

work a robust fault diagnosis and fault-tolerant control

structure for distributed processes modeled by nonlinear

parabolic PDEs with control constraints, time-varying un-

certain variables and a finite number of output measure-

ments with limited accuracy. The structure consists of a

family of robust output feedback controllers with well-

characterized stability and robustness properties, a set of

performance-based FDI rules that are less sensitive to the

uncertainty and measurement errors, and a set of robust

switching laws that orchestrate stabilizing transitions from

the faulty actuators to the healthy fall-backs following FDI.

The various components are designed on the basis of an

approximate, finite-dimensional system that captures the

PDE’s dominant dynamic modes. The rest of the paper is or-

ganized as follows. Following some preliminaries in Section

II, the approximate, finite-dimensional system is obtained

in Section III and used in Section IV to construct the FDI-

FTC structure and analyze its robustness to measurement

errors. The implementation of the proposed architecture on

the infinite-dimensional system is also discussed. Finally,

the results are applied in Section V to achieve fault-tolerant

stabilization of an unstable steady-state of a representative

diffusion-reaction process. Due to space limitations, the

proofs for the main results are omitted here and can be

found in the full version of this work [19].

II. PRELIMINARIES

We consider spatially distributed processes modeled by

nonlinear parabolic PDEs of the form:

∂x̄

∂t
= α

∂2x̄

∂z2
+ f(x̄) + ω

m∑

i=1

b
k(t)
i (z)[u

k(t)
i + fk(t)

ai
]

+

q∑

j=1

wj(x̄)dj(z)θj(t), k(t) ∈ I := {1, 2, · · · , N}

(1)

|uk
i (t)| ≤ uk

i,max, i = 1, · · · ,m, |θ(t)| ≤ θb (2)

yj(t) =

∫ π

0

qj(z)x̄(z, t)dz + sj(t), j = 1, · · · , n, |s(t)| ≤ µ

(3)
subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, i = 1, 2; x̄(z, 0) = x̄0(z) (4)

where x̄(z, t) ∈ IR denotes the state variable, z ∈ [0, π] ⊂
IR is the spatial coordinate, t ∈ [0,∞) is the time, f(·)
and wj(·) are smooth nonlinear functions, θj(t) ∈ IR
denotes an uncertain variable, which may include uncertain

process parameters or exogenous disturbances, dj(·) is a

known function that specifies the positions of action of the

uncertain variable, uk
i denotes the i-th manipulated input

(control actuator) associated with the k-th control config-

uration, bki (·) is a function that describes how the control

action is distributed in [0, π], fk
ai

∈ IR denotes a fault in

the i-th actuator of the k-th control configuration, k(t) is

a discrete variable that takes values in a finite set I and

denotes which control configuration is active at any given

time, N is the number of control configurations available,

where each configuration has a distinct spatial placement

of actuators (only one configuration is active at any given

time), |·| is the standard Euclidean norm, uk
i,max is a positive

real number that captures the size of actuator constraints, θb

is a known bound on the size of the uncertainty, yj(t) ∈ IR
is a measured output, qj(·) is a function that describes how

the measurement output is distributed in [0, π], sj(t) is an

error in the j-th measurement reflecting the limited accuracy

of the j-th sensor, s = [s1 s2 · · · sn]′, µ is a known bound

on the size of the measurement error, the parameter α > 0 is

a constant, and x̄0(z) is a smooth function of z. Throughout

the paper, the notations ‖ · ‖ and ‖ · ‖2 will be used to

denote the L2 norms associated with a finite-dimensional

and infinite-dimensional Hilbert spaces, respectively, with

inner product 〈ω1, ω2〉 =
∫ π

0 ω1(z)ω2(z)dz.

The PDE of Eqs.1-4 can be formulated as an infinite-

dimensional system of the form:

ẋ = Ax+ Bk(uk + fk
a ) + f(x) + W(x)θ, x(0) = x0

y = Qx+ s
(5)

where x(t) = x̄(z, t), t > 0, 0 < z < π, is the

state function defined on an appropriate Hilbert space

H = L2(0, π), A is the differential operator, Bk and Q
are the input and output operators defined, respectively,

as Bk(uk + fk
a ) = ω

∑m
i=1b

k(t)
i (z)[u

k(t)
i + f

k(t)
ai

] and

Qx(t) = [〈q1, x(t)〉 〈q2, x(t)〉 · · · 〈qn, x(t)〉]
′, where

uk = [uk
1 uk

2 · · · uk
m]′ and fk

a = [fk
a,1 fk

a,2 · · · fk
a,m]′,

f(x(t)) = f(x̄(z, t)), W is the uncertainty operator, θ =
[θ1 · · · θq]

′, and x0 = x̄0(z). We assume that f(·) is locally

Lipschitz and satisfies f(0) = 0. For A, the eigenvalue

problem is defined as: Aψj = λjψj , j = 1, . . . ,∞, where

λj denotes an eigenvalue and ψj denotes an eigenfunction.

By solving this eigenvalue problem, it can be shown that all

the eigenvalues of A are real and ordered. Also, only a finite

number of unstable eigenvalues exists, and the distance

between two consecutive eigenvalues (i.e., λj and λj+1)

increases as j increases. Furthermore, the spectrum of A can

be partitioned as σ(A) = σ1(A)
⋃
σ2(A), where σ1(A) =

{λ1, · · · , λm} contains the first m (with m finite) “slow”

eigenvalues and σ2(A) = {λm+1, λm+2, · · ·} contains the

remaining “fast” stable eigenvalues where |λm|/|λm+1| =
O(ǫ) and ǫ < 1 is a small positive number characteristic of

the large separation between the slow and fast eigenvalues

of A. This implies that the dominant dynamics of the

PDE can be described by a finite-dimensional system, and

motivates the use of modal decomposition in the next
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section to derive such a system.

III. MODAL DECOMPOSITION

Let Hs, Hf be modal subspaces of A, defined as Hs =
span{ψ1, . . . , ψm} and Hf = span{ψm+1, ψm+2, . . .}.

Defining the orthogonal projection operators, Ps and Pf ,

such that xs = Psx, xf = Pfx, the state of the system

of Eq.5 can be decomposed as x = xs

⊕
xf . Applying Ps

and Pf to the system of Eq.5 and using the decomposition

of x, the system of Eq.5 can be decomposed as:

ẋs = Fs(xs, xf ) + Bk
s (uk + fk

a ) + Ws(xs, xf )θ (6)

ẋf = Ff (xs, xf ) + Bk
f (uk + fk

a ) + Wf (xs, xf )θ (7)

y = Qxs + Qxf + s (8)

where xs(0) = Psx0, xf (0) = Pfx0, Fs(xs, xf ) = Asxs+
fs(xs, xf ), As = PsA is an m×m diagonal matrix of the

form As = diag{λj}, Bs = PsB, fs = Psf , Ws = PsW ,

Ff (xs, xf ) = Afxf + ff (xs, xf ), Af = PfA is an un-

bounded differential operator which is exponentially stable,

Bf = PfB, ff = Pff and Wf = PfW . We will refer to

the xs- and xf -subsystems as the slow and fast subsystems,

respectively. Neglecting the fast and stable xf -subsystem

of Eq.7, the following approximate, m-dimensional slow

system is obtained:

˙̄xs = Fs(x̄s, 0) + Bk
s (uk + fk

a ) + Ws(x̄s, 0)θ
ȳ = Qx̄s + s

(9)

where the bar symbols denote that these variables are

associated with a finite-dimensional system. To facilitate the

controller synthesis and simplify closed-loop analysis, we

will consider in the remainder of the paper that the inverse

(or pseudo-inverse in the case of a non-square system)

of the operator Q exists. This requirement, which can be

met by appropriate choice of the locations of the sensors,

allows obtaining estimates of the state of the system of

Eq.9 from the measurements, x̃s = Q−1ȳ. Beyond making

the robustness analysis more transparent, the choice to use

static output feedback also allows practically preserving

the stability region of any stabilizing bounded controller

(designed based on the approximate system of Eq.9) when

implemented on the infinite-dimensional system (see [14]

for further discussion on this issue). It should be noted

though that dynamic output feedback can also be used

provided that a suitable observer can be found (e.g., [20]).

IV. FDI AND FTC UNDER UNCERTAINTY,

CONSTRAINTS AND MEASUREMENT ERRORS

This section presents the design methodology for the

robust output feedback FDI-FTC structure on the basis of

the system of Eq.9 and analyzes its robustness properties

when implemented in the presence of measurement errors.

A. Bounded robust feedback control

In this section, we will first design the controllers assum-

ing the availability of accurate output measurements and

then analyze the effects of measurement errors to derive

conditions for closed-loop stability.

1) Controller synthesis: To synthesize the controllers

and facilitate FDI at the same time (see Section IV-B), the

approximate system of Eq.9 is first transformed into the

following form where the evolution of each dominant mode

is directly influenced by only one actuator:

˙̄vsi
= f̄si

(v̄s)+Dk
si

[uk
i +fk

ai
]+W̄si

(v̄s)θ, i = 1, · · · ,m (10)

where v̄si
(t) := Psi

v̄s(t) ∈ Hsi
= span{ψi}, is the state

of a one-dimensional system describing the evolution of the

i-th slow mode in the transformed coordinates, Psi
is the

orthogonal projection operator that projects v̄s(t) ∈ Hs onto

v̄si
∈ Hsi

, v̄s = T k
s (ξk

a )x̄s, where T k
s = Bk−1

s is the inverse

(or pseudo-inverse in the case of a non-square system) of

the input operator whose existence can be guaranteed by

proper spatial placement of the control actuators, ξk
a is the

vector of actuator locations in the k-th control configuration,

Dk
si

= Psi
T k

s Bk
s , f̄si

= Psi
f̄s, f̄s(v̄s) = T k

s Fs(T
k−1

s v̄s, 0),

and W̄s(v̄s) = T k
s Ws(T

k−1

s v̄s, 0). In the remainder of

the section, we shall deal exclusively with the transformed

system of Eq.10 with the understanding that the results also

hold for the original system of Eq.9 due to the invertibility

and boundedness of the transformation operator. We now

proceed to design, for each dominant mode, a bounded

robustly stabilizing controller on the basis of Eq.10. While

several designs can be used to meet the desired control

objectives, the following bounded robust control law (first

introduced in [21] and inspired by the results in [22]) will

be used as an example to illustrate the main ideas:

uk
i = pi(v̄s, u

k
imax

, θb, ξ
k
ai
, ̺i)

= −ψk
i (v̄s, u

k
imax

, θb, ξ
k
ai
, ̺i)LDk

si

V̄i, k ∈ I
(11)

where

ψk
i =

αi(v̄s) +

√
α2

i (v̄s) +
(
uk

imax
βk

i (v̄si
, ξk

ai
)
)4

(βk
i (v̄si

, ξk
ai

))2
[
1 +

√
1 + (uk

imax
βk

i (v̄si
, ξk

ai
))2

](12)

αi(·) = Lf̄si

V̄i+
(
ρi‖v̄si

‖ + χiθb|LW̄si

V̄i|
)

(‖v̄si
‖/(‖v̄si

‖+

φ̄k
i )), βk

i (·) = |LDk
si

V̄i|, and V̄i : Hsi
→ IR≥0 is a robust

control Lyapunov function [23] for the system of

Eq.10 which, for simplicity, we take to be of the form

V̄i = ‖v̄si
‖2. The terms Lf̄si

V̄i, LDk
si

V̄i and LW̄si

V̄i are

Lie derivatives of V̄i, and ̺i = [ρi χi φ̄i]
′ is a vector of

adjustable parameters with ρi > 0, χi > 1, φ̄i > 0. Let Π̄k
i

be the set defined by:

Π̄k
i := {v̄s ∈ Hs : αk

i (v̄s, ̺i, θb) ≤ uk
imax

βk
i (v̄si

, ξk
ai

)}(13)

and let Π̄k :=
⋂

i∈I Π̄k
i be the intersection of all Π̄k

i , then

it can be shown, using a standard Lyapunov argument, that

if v̄s(t) ∈ Π̄k
i , for some t ≥ 0, there exists positive real

numbers, γi, φ̃i, and a class K function σi(·)
1 such that if

φi := φ̄i(χi − 1)−1 ≤ φ̃i, the time-derivative of V̄i along

the trajectories of the closed-loop system of Eqs.10-12, with

fk
ai

≡ 0 for a given i and s ≡ 0, satisfies:

˙̄V i(t) ≤ −γiV̄i(t) + σi(φi) (14)

1A continuous real-valued function is said to be of class K if it is
monotonically non-decreasing and is zero at zero.
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Furthermore, if fk
ai

≡ 0 for all i and v̄s(0) ∈
Ω̄k

s(θb, u
k
max, ξ

k), where:

Ω̄k
s(θb, u

k
max, ξ

k
ai

) := {v̄s ∈ Π̄k : V̄ (v̄s) ≤ δ̄s} (15)

for some δ̄s > 0, where V̄ =
∑m

i=1V̄i is a composite

Lyapunov function for the entire system, then for every real

number δ̄di
> 0, there exists φ∗i such that if φi ∈ (0, φ∗i ],

lim sup
t→∞

V̄i(v̄si
(t)) ≤ δ̄di

, for i = 1, · · · ,m, and the origin

of the closed-loop system is practically stable.

2) Robustness to measurement errors: Referring to the

systems of Eqs.9-10 with s 6= 0, let ṽs = T k
s (ξk

a)x̃s =
T k

s (ξk
a)Q−1(ξs)ȳ be the estimate used to implement the

controllers of Eqs.11-12. From the bound on the measure-

ment error given in Eq.3, |s(t)| ≤ µ, and the fact that

ṽs = v̄s + T k
s (ξk

a)Q−1(ξs)s, the following bound on the

estimation error can be obtained:

‖ṽs − v̄s‖ ≤ E(ξk
a , ξs)µ := µ∗(ξk

a , ξs, µ) (16)

where E(ξk
a , ξs) = ‖T k

s (ξk
a)‖‖Q−1(ξs)‖. Furthermore,

from the continuity of the control law, pi(·), it follows that

given any positive real number µ∗ there exists a class K
function Mi(·) such that if ‖ṽs − v̄s‖ ≤ µ∗, |pi(ṽs) −
pi(v̄s)| ≤ Mi(µ

∗). Now, consider the subset defined by

Π̃k
i := {v̄s ∈ Π̄k

i : |pk
i (v̄s)| ≤ uk

i,max − Mi(µ
∗)} and

let Π̃k :=
⋂

i=1,···,m Π̃k
i . Also, let Ω̃k

s(θb, u
k
max, ξ

k
a , µ

∗) :=

{v̄s ∈ Π̃k : V̄ (v̄s) ≤ δ̃s}, for some δ̃s > 0. The

following proposition characterizes the stability properties

of the closed-loop system under bounded measurement

errors and in the absence of faults.

Proposition 1: Consider the closed-loop system of Eqs.10-

12, for a fixed k ∈ I, with fk
ai

≡ 0 for a given i. Then, if

v̄s(t) ∈ Π̃k
i , there exist positive real numbers, γi, φ̃i, and

class K functions, σi(·) and Ξi(·), such that if φi ≤ φ̃i,

the time-derivative of V̄i along the trajectories of Eq.10

satisfies: ˙̄V i(t) ≤ −γiV̄i(t) + σi(φi) + Ξi(µ
∗) (17)

and |pi(ṽs(t))| ≤ uk
i,max. Furthermore, if fk

ai
≡ 0 for all i,

then for every pair of positive real numbers {δ̄di
, a} such

that a ∈ (0, 1) and δ̃di
:= a−1γ−1

i (δ̄di
+ Ξi(µ

∗)) < δ̃si
,

where
∑m

i=1 δ̃si
= δ̃s, there exists φ∗i such that if φi ∈

(0, φ∗i ] and v̄s(0) ∈ Ω̃k
s , lim sup

t→∞

V̄i(t) ≤ δ̃di
< δ̃si

, for

i = 1, · · · ,m, and the origin of the closed-loop system is

practically stable.

The set Ω̃k
s(uk

max, θb, ξ
k
a , ξs) represents an estimate of

the robust stability region for the k-th fault-free actuator

configuration, starting from where each output feedback

controller (implemented with measurement errors) satisfies

the constraints and drives the trajectory of its corresponding

mode in finite-time into a small neighborhood of the origin

(residual set) where it remains confined for all future times.

The size of each residual set, δ̃di
, is determined by (1)

the desired degree of uncertainty attenuation (which can

be made arbitrarily small provided the controller is tuned

properly) and (2) the size of the estimation error which is

fixed in part by the measurement errors. For the problem to

be well-posed, the errors in the measurements should not be

larger than the measurements themselves. This is captured

by the requirement that δ̃di
:= a−1γ−1

i (δ̄di
+ Ξi(µ

∗)) <

δ̃si
which ensures that the union of all residual sets is

contained within the stability region and that the closed-

loop trajectories remain bounded for all times.

Remark 1: In addition to its dependence on the size of the

constraints, the size of uncertainty and the locations of the

control actuators, the set Ω̃k
s is also parameterized by the

locations of the measurement sensors. Confining the states

within this set ensures that estimation errors do not cause

the output feedback controllers to compute control actions

that violate the specified constraints. Similarly, the size of

each residual set is also a function of the sensor locations.

Therefore, while the presence of measurement errors leads

to shrinkage in the stability region and enlargement of the

residual sets (relative to the case of error-free measure-

ments), it is possible to get a handle on the extent of these

changes by proper selection of the sensor configuration.

B. Rules for robust actuator fault detection and isolation

The fact that the bound of Eq.17 is valid for a given

mode regardless of the fault or health status of the actuators

associated with the other modes (as long as v̄s is within

Ω̃k
s ) implies that it can be used as a threshold for FDI.

This threshold, however, cannot be used directly to derive

the FDI rules since it requires monitoring the state which

is known with only limited accuracy due to the presence

of measurement errors. The following proposition describes

how to obtain the needed threshold in terms of the estimate

ṽs instead, and how to use it for FDI.

Proposition 2: Consider the closed-loop system of Eqs.10-

12, for a fixed k ∈ I, with fk
ai

≡ 0 and φi ∈ (0, φ∗i ] for

a given i. Let Ω̃k
c := {ṽs ∈ Π̃k : Ṽ (ṽs) ≤ δ̃c}, where√

δ̃c + µ∗(ξs, ξa, µ) <

√
δ̃s. Then, if ṽs(t) ∈ Ω̃k

c , for some

t ≥ 0, there exists a class K function ∆i(µ
∗) > Ξi(µ

∗) such

that, for some a ∈ (0, 1), the time-derivative of Ṽi := ‖ṽsi
‖2

satisfies: (a)
˙̃
V i(t) ≤ −(1− a)γiṼi(t) if Ṽi(t

−) ≥ δ̃pi
, and

(b) Ṽi(t) ≤ δ̃pi
if Ṽi(t

−) ≤ δ̃pi
, where δ̃pi

:= a−1γ−1
i (δ̄di

+
∆i(µ

∗)) and δ̄di
is defined in Proposition 1.

The expected fault-free evolution of the state estimates

characterized in Proposition 2 can be used to derive rules

for actuator FDI under uncertainty and measurement errors.

Two cases can be distinguished here. The first is when ṽsi

lies outside its residual set, i.e., δ̃pi
< Ṽi(t

−) ≤ δ̃si
for

some a ∈ (0, 1). In this case, faults in the i-th actuator

that cause an increase in Ṽi (destabilizing faults) and faults

that slow down the decay rate of Ṽi beyond the minimum

rate prescribed by the healthy robust controller,
˙̃
V i(t) >

−(1 − a)γiṼi(t), (performance-degrading faults) will be

detected and isolated. The second case is when, immediately

prior to the fault, ṽsi
lies within its residual set. In this

case, a fault in the i-th actuator that causes ṽsi
to begin to

escape the residual set gets detected. In both cases, all the

estimates have to be monitored to check if ṽs(t) is within

Ω̃k
c (which guarantees the validity of the fault-free bounds
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in Proposition 2). In this sense, Ω̃k
c can be interpreted as a

region where robust FDI is feasible under constraints.

Remark 2: When comparing the above FDI rules with the

ones obtained in the absence of measurement errors (i.e.,

with µ = 0), we observe that Proposition 2 prescribes two

modifications to safeguard against possible false alarms due

to measurement errors. These include (1) limiting the FDI

region to an appropriate subset of the stability region, Ω̃k
c ,

and (2) enlarging the time-varying bounds on the dissipation

of the Lyapunov functions beyond what is obtained in the

error-free case. Given that v̄s is known only with limited

accuracy, the first modification is needed to provide a

mechanism for inferring the location v̄s by monitoring ṽs.

Notice that ṽs(t) ∈ Ω̃k
c =⇒ v̄s(t) ∈ Ω̄k

s which is important

to ensure the validity of the FDI rules (Eq.17). The second

safeguard amounts to increasing the FDI alarm threshold

(i.e., the size of the residual set) for each mode by a certain

amount to ensure that any potential discrepancy between

the actual and expected behavior is more than what can be

accounted for by estimation errors, and thus is due solely

to faults in a given actuator. Again, for the problem to be

well-posed, the new (larger) residual sets must be contained

within the FDI region, i.e., δ̃pi
< δ̃ci

which imposes a limit

on the size of the tolerable measurement errors. Finally, the

dependence of δ̃c and δ̃pi
on the sensor locations offers a

degree of freedom that can be used to limit the extent of the

necessary modifications in the FDI and residual regions.
C. Robust stability-based actuator reconfiguration

Following FDI, the supervisor needs to determine which

backup configuration to activate to maintain closed-loop

stability. To this end, consider the system of Eq.10 where (1)

for each control configuration a family of robust controllers

have been designed and the corresponding monitoring re-

gions have been characterized, and (2) given the bound on

measurement errors, the achievable level of ultimate bound-

edness, δ̃d, has been determined. The following theorem

describes the integration of FDI and actuator reconfiguration

to ensure fault-tolerance in the closed-loop system.

Theorem 1: Consider the closed-loop system of Eqs.10-12

with k(0) = j ∈ I, v̄s(0) ∈ Ω̃j
s. Let Td := min{t : f j

ai
(t) 6=

0}, for some i, then the switching rule:

k(t)=

{
j, 0 ≤ t < Td

ν 6= j, t ≥ Td, ṽs(Td) ∈ Ω̃ν
c , ξ

ν
ar

= ξj
ar
, r 6= i

}
(18)

practically stabilizes the origin of the closed-loop system

and lim sup
t→∞

V̄i(v̄si
(t)) ≤ δ̄d, for all i = 1, · · · ,m.

The switching law of Eq.18 ensures that: (1) the fall-back

actuator configuration activated following FDI guarantees

robust closed-loop stability and the desired level of ultimate

boundedness (this follows from the requirement ṽs(Td) ∈
Ω̃ν

c which guarantees v̄s(Td) ∈ Ω̃ν
s ), and (2) only the faulty

actuators of the operating configuration are switched out

while the healthy ones are kept active.

Remark 3: It can be shown that the above FDI-FTC

architecture continues to ensure stability and retain the fault-

tolerance capabilities when implemented on the infinite

dimensional system, provided that the separation between

the slow and fast eigenvalues of the differential operator is

sufficiently large and the FDI rules are slightly modified.

Specifically, the closeness of solutions between the approx-

imate and infinite-dimensional systems can be exploited to

show that Eq.14 continues to hold up to an arbitrarily small

offset provided that ǫ (which is inversely proportional to

the separation between the slow and fast eigenvalues) is

small enough. This leads to modified FDI thresholds that

are O(ǫ) close to the bounds obtained for the approximate

system, and ensure robustness against approximation errors.

This argument can be justified using singular perturbation

techniques (see [19] for the mathematical details).

V. APPLICATION TO A DIFFUSION-REACTION PROCESS

Consider a diffusion-reaction process modeled by the

following parabolic PDE:

∂x̄

∂t
=

∂2x̄

∂z2
+ (βT + θ1(t))

[
e−γ/(1+x̄) − e−γ

]
− βU x̄

+ βU

∑3
i=1bi(z)[ui(t) + fai

(t)] + βUd(z)θ2(t)

subject to x̄(0, t) = x̄(π, t) = 0, where x̄ denotes the

dimensionless temperature, βT = 50.0, βU = 2.0, γ = 2.0
are dimensionless process parameters, θ1(t) = 0.1βT sin(t)
is a time-varying parametric uncertainty in the heat of

reaction, and θ2(t) = 0.01 sin(t) is a time-varying point-

disturbance at zd = 0.125π. It was verified that the

operating steady-state x̄(z, t) = 0 (with ui = 0, θ1 = θ2 =
0) is unstable (the linearization around the zero solution

has three positive eigenvalues). The control objective is to

stabilize the temperature profile at this unstable, spatially

uniform steady-state by manipulating the temperature of

the cooling medium, ui, under actuator constraints, faults,

model uncertainty and inaccurate sensor measurements. To

this end, three primary point control actuators, (ξA =
π/2, uA

max = 3.0), (ξB = π/3, uB
max = 2.0) and (ξC =

π/6, uC
max = 2.0), and five point measurement sensors

with limited accuracy (ξs1
= 0.1π, s1 = y1(1 − e−0.1t)),

(ξs2
= 0.3π, s2 = 0.8y2(1 − e−0.1t)), (ξs3

= 0.4π, s3 =
0.4y3), (ξs4

= 0.6π, s4 = 0.5y3), (ξs5
= 0.8π, s5 =

0.3y5), are assumed to be available. Three backup actuators,

(ξD = 3π/4, uD
max = 4.0), (ξE = 2π/5, uE

max = 4.0),
(ξF = 2π/3, uF

max = 3.0), are also available for use in the

event of faults in the primary configuration (A,B,C).
The first three (unstable) eigenvalues are considered

dominant and Galerkins method is applied to derive a third-

order ODE system describing the approximate evolution of

the amplitudes of the first three eigenmodes. This system

is subsequently transformed into the form of Eq.10 and

used for the synthesis of the output feedback controllers

and the FDI rules which are implemented on a 30-th order

Galerkin discretization of the PDE. The synthesis details

are omitted due to space limitations. Fig.1 shows that, when

implemented using actuator configuration (A,B,C) for all

times with no failures, the controllers robustly stabilize

the closed-loop system near the desired steady-state and

suppress the effects of uncertainty and measurement errors.
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Fig. 1. Closed-loop state and manipulated input profiles with no faults.
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Fig. 2. Evolution of the closed-loop state (a), the estimates of the dominant
modes’ amplitudes (b)-(d), and manipulated input profiles (e)-(f) under
consecutive failures and switching from C to D and A to E.

To demonstrate how the integrated FDI-FTC scheme

works, we initialize the closed-loop system using configu-

ration (A,B,C) which successfully drives all the dominant

modes (and their estimates) into their prescribed residual

sets very quickly (see Figs.2(a)-2(d)). Failure is then intro-

duced into actuator C at t = 1.0. As shown in Fig.2(d),

this failure is detected and isolated by the supervisor at

T1 = 1.065 since it causes only v̂3 (dedicated to actuator C)

to escape its terminal set (|v̂3(T1)| > 0.0025) at a time when

the other estimates remain within their respective terminal

sets, which is consistent with the fact that actuators A and B
are healthy. Following FDI, the supervisor activates actuator

D (see dashed line in Fig.2(f)) based on the switching logic

of Eq.18 to preserve closed-loop stability. At t = 2.0,

a failure in actuator A is introduced (see solid line in

Fig.2(e)). This failure is detected and isolated when v̂1
(dedicated to actuator A) begins to leave its terminal set

at T2 = 2.06 (Fig.2(b)), while v̂1 and v̂3 remain within

their respective terminal sets. Following FDI, the supervisor

activates actuator E (see dashed line in Fig.2(e)) in place

of A which ensures closed-loop stability.
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