
 
 

 

 
Abstract— This paper examines the gain-scheduling 

problem with a particular focus on controller interpolation 
with guaranteed nonlinear stability.  For Linear Parameter 
Varying model representations, a method of interpolating 
between controllers utilizing the Youla parameterization is 
proposed. Quadratic stability despite fast scheduling is 
guaranteed by construction, while the characteristics of 
individual controllers designed a priori are recovered at the 
design points.   

I. INTRODUCTION 
    Many physical systems exhibit dynamics sufficiently 

nonlinear that a single linear controller may fail to achieve 
acceptable performance throughout the envelope of 
conditions. Gain-scheduling is one of the most popular 
approaches in industry for controlling a nonlinear system, 
often by interpolating a family of local controllers, thus 
dividing the nonlinear control design problem into several 
smaller problems where linear design tools are employed 
[1]. 

The principal challenge facing gain-scheduling research 
is guaranteeing stability of the nonlinear closed loop system.  
The simplicity in design, where linear controllers and ad hoc 
interpolation methods are used, is contrasted with 
difficulties in analysis, where guaranteeing the stability of 
the resulting nonlinear closed loop system can be extremely 
challenging. Moreover, the presence of “hidden coupling” 
terms or “scheduling dynamics” due to the interpolation 
functions [2] can create unanticipated stability problems. 
This paper proposes a method of controller blending that 
guarantees quadratic stability of the closed loop system, 
while recovering the local controller designs at specified 
operating conditions. This approach utilizes the the Youla 
Parameterization [3].  For polytopic LPV systems the 
framework for interpolation is constructed utilizing a finite 
set of Linear Matrix Inequalities (LMIs) [4]. 

The proposed method is demonstrated using the 
Quadruple Tank System [5]. Quasi-LPV models for the 
plant are presented, and a variety of local controllers are 
constructed.  Utilizing the techniques proposed in this paper, 
a gain scheduled controller is constructed that guarantees 
stable interpolation, despite local controllers that are open 
loop unstable and differ in structure.  
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The remainder of the paper is outlined as follows.  
Section 2 presents necessary background on gain scheduled 
control and the Youla parameterization. In section 3, the 
interconnection of an LPV plant model with a Local 
Controller Network is examined, and necessary conditions 
for stability are identified. Section 4 shows an alternative 
formulation is proposed wherein quadratic stability is 
guaranteed, and recovery of the local controllers at design 
points is assured.  Section 5 provides an illustrative example 
where dissimilar controllers are blended using the proposed 
framework and simulated on the quadruple tank system.  

II. BACKGROUND 
A rough categorization of gain scheduling would 

include 1) gain scheduling “the LPV way” [6] and 2) local 
controller interpolation.  The former method provides some 
guarantees of closed loop stability, albeit often with slowly 
varying scheduling parameter assumptions. However, a 
solution to the controller synthesis problem may not exist or 
be computationally feasible. The latter uses local linear 
models, either linearized first principles models or 
data-driven identified models, and local linear controllers 
constructed using any linear control design tools.  Thus the 
controllers at critical design points can be tuned to achieve 
high performance, and the gain scheduling problem is 
reduced to one of interpolation to ensure stable transitions 
between critical design points. Another advantage of this 
method is the ability to gain-schedule between controllers 
with different sizes and structures by virtue of output 
blending. 

Despite the simplicity of the design methodology, 
guaranteeing stability of the closed loop system with an 
interpolated controller can pose a challenging problem.  
Consider the following example: Let a plant and two 
stabilizing controllers be defined as in Eq. 1.  An 
interpolated controller could be defined as in Eq. 2 where 

[ ]1,0∈α .  Although both 1K  and 2K  stabilize the plant, the 
blended controller 

bK  destabilizes the plant for the majority 
of the intermediate values: [ ]1,25.0∈α .  

 ( )
1

1
+

=
s

sP , ( )
5.0

1
1 +

−
=

s
sK , ( )

5.0
1

2 −
−

=
s

sK  (1) 

 ( ) ( ) 21 1 KKsKb αα −+=  (2) 

Interpolation methods that guarantee stability for any 
fixed value of the scheduling parameter, known as frozen 
parameter stability, have been termed “stability-preserving” 
interpolation methods [7], [8]. Recent research has focused 
on guaranteeing this level of stability by design [9],[10].  
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However, in this analysis, no scheduling dynamics are 
considered and global stability can only be inferred by 
assuming slowly varying scheduling variables. 

The interpolation method used in the previous example, 
has been termed a Local Controller Network (LCN) [11] 
[12]. Under the LCN framework (Figure 1), the nonlinear 
controller is formed by the weighted sum of the outputs of 
individual linear controllers. These weighting or blending 
functions are a function of a scheduling variable ρ , as 

( )ρα h= .  While selection of the scheduling variables is 
based on a physical understanding of which variables most 
accurately capture the system nonlinearities, and is thus 
situation dependent, selection of the weighting functions is 
by design. In general the weighting functions are designed 
such that [ ]1,0∈iα  and 1=∑ iα , with the magnitude based 

on the relative distance to the respective design point in the 
scheduling space. We will denote the LCN as 

( ) ( )∑= sKsK iiαα
. 

However, as demonstrated by the previous example, 
this method may fail for simple cases. A generalization of 
this approach involves is based on the dual Youla 
parameterization [13], [14] and is formed as follows.  First, 
each local controller Ki and each local plant Pi may be 
decomposed into coprime factors ( ) iiiii UVVUsK ~~ 11 −− ==  and 

( ) iiiii NMMNsP ~~ 11 −− == , such that  
∞∈ RHVVUU iiii

~,,~,  and 

∞∈ RHMMNN iiii
~,,~, . Then selecting a nominal plant model 

)( 1
000
−= MNP and controller )( 1

000
−= VUK  such that K0  

stabilizes P0, the set of all controllers that stabilize P0 can be 
parameterized in terms of a Youla parameter Q as 
( ) ( )( ) 1

0000
−++= QNVQMUQK , where ∞∈RHQ .  Thus if 

P0 is stabilized by each local controller Ki, then there exist 
Youla parameters given by Qi  such that ( )ii QKK = .  These 
Youla parameters are given as 00

~~ UVVUQ iii −=  where the 
coprime factors are selected such that they satisfy the Bezout 
identity (Eq. 3).  The blending of local controllers is then 
replaced by the blending of Youla parameters Qi (Fig. 1) and 
can be represented as the lower fractional transformation 
(LFT) of fixed dynamic system JK (Eq. 4) and Local 
Q-Network (LQN).   
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Variations of this approach have been termed J-Q 
interpolation [9], or blending of the Youla parameters [15]. 
By virtue of the Youla parameterization, this framework 
permits the scheduling of unstable controllers [16]. 
Moreover, this framework has the intuitive appeal of 

isolating common controller elements in the function JK 
and blending only the differences between the individual 
controllers. Note that at 1=iα  the original local controller 
Ki is recovered.  Moreover, because K(Q) stabilizes P0 for 
any ∞∈RHQ , then ( )αQK  also stabilizes P0 for every 
frozen value of α , since each 

∞∈RHQi  and thus 

∞∈∑ RHQiiα , something not necessarily guaranteed with 

the LCN framework.  As needed, the nonlinear plant can be 
similarly characterized by a network of dual Youla 
parameters, Si  [17].  

 
 

Figure 1: Output Blending of Local Controller Network (LCN) and 
Local Q-Network (LQN) 

Gain scheduling using a Youla parameter based 
framework offers greater stability than the typical LCN 
approach. In LQN framework, a local controller can be 
recovered by LFT ( ) iiKl KQJF =, , and a simple quadratic 
Lyapunov function can be found to guarantee arbitrarily fast 
transitions between the two Youla parameters. Thus while a 
simple blending of controllers would not stabilize the plant 
at fixed intermediate points, the blending of equivalent 
Youla parameters guarantees frozen parameter stability by 
construction, and stability under fast transitions can be 
verified with a common Lyapunov function, while previous 
works employ the rate limits of scheduling parameters [9]. 

III. CLASSICAL CONTROLLER INTERPOLATION FOR LPV 
SYSTEMS 

When nonlinear system models are constructed using 
first principles, the state variables generally remain tied to 
system physics. This naturally leads to Linear Parameter 
Varying (LPV) models where linear models at different 
operating points “share” the same state variables, and the 
state space system matrices are parameterized in terms of the 
scheduling variable, θ: 
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This is in contrast with a set of controllers, defined a priori, 
where there is no physical relationship between state 
variables.  In this case, the Local Control Network (LCN) 
representation is more appropriate.  Assuming individual 
controllers are represented in state space form as: 
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The full LCN can be constructed as: 
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Assuming a polytopic representation of the LPV plant and 
blending functions designed such that when θ=θi: 
 ijji ≠∀==      0   and    1 αα , (9) 

a sufficient condition for stability of the closed loop system 
is the existence of a common quadratic Lyapunov function.  
This can be checked using the finite set of Linear Matrix 
Inequalities (LMIs): 
 ( ) ( ) 0,, <+ PAPA T

iLPVCLiLPVCL θθ  where (10) 
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When this polytopic system is evaluated at its vertices, 
the state matrix in Eq. 11 assumes an upper block triangular 
structure.  By inspection, we may conclude that a necessary 
precondition for stability is that each controller must be open 
loop stable. Moreover, we note that the existence of a 
common Lyapunov function may be computationally 
elusive, particularly for a large set of controllers. However, 
using the Youla parameterization as an alternate framework 
for controller interpolation is possible with less restrictive 
conditions and with guaranteed stability. 

IV. PROPOSED CONTROLLER INTERPOLATION FOR LPV 
SYSTEMS USING THE YOULA PARAMETERIZATION 

To guarantee stable interpolation between controllers 
we adopt a similar approach presented in [18] that employs 
the LPV controller interpolation by optimizing Q-parameter 
in −2L gain performance. However, instead of focusing on 
LPV controller synthesis, we will exploit particular 
properties to guarantee stable controller interpolation under 
LQN framework.  First, an LPV observer-based controller, 
K0(θ),  for the LPV plant is constructed as: 
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where the feedback and observer gains are calculated as 

 ( ) ( ) ( ) ( )θθθθ WPHPXF hpfp
11       and      −− == , (13) 

such that the following Linear Matrix Inequalities (LMIs) 
are satisfied: 

 ( ) ( ) ( ) ( ) ( ) ( ) 0<+++ TTT
PffP BXXBAPPA θθθθθθ , (14) 
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For polytopic LPV systems, these conditions can be written 
as a finite set of LMIs. 

A doubly coprime factorization satisfying the Bezout 
identities for the LPV plant and nominal LPV controller, 
K0(θ), can be constructed as: 
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The resulting closed loop LPV system is guaranteed to 
be quadratically stable by construction, but to recover the 
local controller behavior at each operating condition, we 
create a Local Q-Network (LQN) formed by Youla 
parameters, constructed as follows. Dropping the notation 
AP(θi) for the more compact AP,i, the coprime factorization 
for the LPV plant at the “ith” operating condition and the a 
priori controller, Ki, is: 
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We define the individual Youla parameters as: 
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      The Local Q-Network is defined similar to Eq. 8, and is 
implemented as illustrated in Fig. 2, with the system JK(θ) 
constructed from the coprime factors of the LPV plant and 
nominal LPV controller (Eq. 21). Quadratic stability of the 
closed loop system can be established without any 
restrictions on the rate of change in the scheduling variable. 
We observe that quadratic stability of each Youla parameter 
as given in Eq. 20 is guaranteed by construction.    
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Figure 2: Output Blending of Local Q-Network (LQN) 

Note that the Youla parameter’s state matrix is upper 
block-triangular (Eq. 20) and state matrix of the resulting 
closed loop system is also upper block-triangular (Eq. 23). 
The upper left portion of the state matrix is the closed loop 
dynamics between the plant model at the ith condition and 
the ith controller, guaranteed quadratically stable by 
construction.  The lower portion consists of the dynamics of 
the ith plant under state feedback control, and is also 
guaranteed stable by construction via Eq. 14.   Thus we 
conclude that for each Youla parameter Qi, there must exist a 
positive definite PQi such that: 
 0<+ T

QiQiQiQi APPA  (22) 

where AQi is defined consistent with Eq. 20. 
The state matrix of the resulting closed loop system is 

given by: 
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It can be shown [18] that there exists constants λf and λh  such 
that the matrix: 
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is a quadratically stabilizing common Lyapunov function for 
the closed loop system defined by Eq. 23. 

 To show that we do in fact recover the controller Ki at 
the ith operating condition, we explore the lower fractional 
transformation of JK(θ) and Qi, while once again dropping 
the notation U0(θi) for the simpler U0,i: 
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An equivalent expression is given by: 
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Substituting the definition of the Youla parameters Qi and 
simplifying yields: 

 

( )( ) ( )
( ) 1

,0,0,0,0,0

,0,0,0,0,0

~~

~~,
−

−+

⋅−+=

iKiiiKiii

iKiiiKiiiiiKLFT

UVNVUNV

UVMVUMUQJF θ

 (27) 
Using the Bezout identities to replace selected sections 
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and collecting terms and simplifying, results in recovery of 
the a priori designed controller. 
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V. GAIN-SCHEDULED CONTROL OF A QUADRUPLE TANK 
SYSTEM 

To demonstrate efficacy of the gain-scheduling 
framework, a simulated quadruple tank system is selected. 
This system is a well known multivariable controls example 
and has been discussed in detail in [5].  A schematic diagram 
of the system is shown in Fig. 3. The two inputs to the 
system are the input voltages to pumps 1 and 2, and two 
outputs of interest are the fluid levels in tanks 1 and 2.  Two 
valves divide the flow from each of the pumps to the upper 
and lower tanks. The upper tanks (tanks 3 and 4) drain into 
the lower tanks (tanks 1 and 2) which drain into a reservoir. 
The cross flow from pump 1 to tank 4 and from pump 2 to 
tank 3 creates interesting dynamic phenomena. 

h1

h2

h4

h3

v2v1

3

21

4

h1

h2

h4

h3

v2v1

3

21

4

 
Figure 3: Diagram of a Quadruple Tank System 

This system can be modeled using mass balances and 
Bernoulli’s law.  The resulting nonlinear model is given in 
Eq. 30 where A  is the tank cross-sectional area, a  is the 
orifice cross-sectional area, h  is the fluid level, u  is the 
pump input with a scalar gain uk . The valve parameters 

[ ]1,0∈γ  determine the flow to each tank.  The selected 
outputs are the fluid levels of tanks 1 and 2 and are measured 
with a scalar gain yk . The linearized version of this model is 
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determined by Jacobian linearization given in [5]. This 
system was chosen for several notable reasons.    
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First, this is a well known multivariable controls 
example with a validated modeling approach available in the 
literature.  Second, the poles of the system depend strongly 
on the nominal fluid height in the tanks; thus as the fluid 
heights, the system dynamics change significantly. Third, 
the system has a multivariable zero that can be arbitrarily 
placed in the right or left half plane.   

A slight variation of the parameter values published in 
[5] is used for the simulations presented here.  The values of 
tank and orifice areas, and input/output scaling depends on 
the units used are given in Table 1. The gravity is given as 
9.81 [m/s2], and the steady state values at the chosen 
operating conditions are given in Table 2.  

Table 1: Tank and Orifice Areas [m2] / Input/Output Scaling 

A1 2.8E-03 a1 7.1E-06 
ku 

V 3.33E-06 
A2 3.2E-03 a2 5.7E-06 m3/s 1.0 
A3 2.8E-03 a3 7.1E-06 

ky 
m 1.0 

A4 3.2E-03 a4 5.7E-06 Pa 9.81E+03 

Table 2: Chosen Operating Condition (minimum phase, 
nonminimum phase) 

h1
0 (0.12, 0.12) [m] u1

0 (2.44, 3.80) [V] 
h2

0 (0.12, 0.12) [m] u2
0 (3.80, 2.44) [V] 

h3
0 (0.081, 0.037) [m] 1γ  (0.7, 0.4) [-] 

h4
0 (0.052, 0.014) [m] 2γ  (0.6, 0.3) [-] 

 
The valve parameters 

1γ and 
2γ  determine the flow 

ratio of lower to upper tank.  Low values of γ  signify a 
significant amount of cross-flow, thus resulting in 
nonminimum phase behavior. In this case a multivariable 
right half plane zero will be present when 121 <+ γγ , as 
depicted in Fig. 4. For this example 

1γ and 
2γ are selected 

as the scheduling variables. External changes to these 
variables will change the underlying system dynamics, as 
well as a disturbance to the closed loop system attempting to 
regulate the fluid height of the lower tanks. Two operating 
points in a quasi-LPV model [18] are selected: one is in the 
minimum phase region and the other in the nonminimum 
phase region (Fig. 4). As advocated in [5], a decoupled PID 
controller is designed for the minimum phase condition.  A 
steady state decoupling matrix )0()( 1−= GsW  is used, and PID 
controllers are designed (Eq. 31-32).  

For the nonminimum phase operating point, [5] 
suggests the use of an H∞ controller.  Using standard design 
and model reduction procedures, a 4th order H∞ controller is 

designed (Eq. 33). Both controllers perform adequately 
around their respective design points, and are easily able to 
track reference changes in the desired fluid height (Fig. 5).   

 
Figure 4:  Controller design points in minimum and non-minimum 
phase region due to gamma values  

Although the second closed loop system displays significant 
undershoot, this is to be expected given the strong 
nonminimum phase nature of the plant. 
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These controllers, however, are not effective at 
controlling the system at off-design conditions, and in fact 
are destabilizing.  The closed loop system poles for the four 
possible combinations of plant/controller are given below. 

Table 3: Closed Loop System Poles 

PID controller with minimum phase plant: 
-0.06,-0.03±0.04j, -0.02±0.01j, -0.03 
PID controller with nonminimum phase plant: 
-0.03±0.01j, -0.02, +0.05, +0.01±0.02j  
H∞ controller with nonminimum phase plant: 
-0.10, -0.03±0.07j, -0.02±0.02j, -0.008, -0.02±0.004j  
H∞ controller with minimum phase plant: 
-0.008, -0.05, -0.11±0.33j, -0.015±0.003j, +0.05, +0.024  
 
A principal advantage to the LQN framework for controller 
interpolation is to interpolate controllers of different size and 
structure, or open loop unstable. A nominal LPV 
observer-based controller is designed for the system (Eq. 
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12-15), and Q parameters are calculated such that the 
original PID and H∞ controller are recovered near the design 
point, blended by exponential weighting function.  

 
Figure 5:  Step response of PID controller at minimum phase 
design point 

The resulting controller is effective at regulating the 
fluid heights in spite of rapidly changing values of 

1γ and 

2γ  (Fig. 6), which both induce disturbances on the system 
and change the underlying system dynamics from minimum 
phase to nonminimum phase.  As the scheduling variables 
change, the exponential weighting factors (Fig. 7) allow 
smooth transitioning between the two Q functions. The 
control input voltages remain within reasonable bounds 
(Fig. 8), and fluid heights in the two lower tanks are 
effectively regulated (Fig. 9). 
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Figure 6:  Scheduling parameters 
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Figure 7: Variation of weighting factors for LQN  
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Figure 8:  Control input voltages to pump 1 and 2 
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Figure 9: Fluid heights in lower tanks for gain scheduled controller 
(disturbance rejection due to changes in 

1γ /
2γ ) 
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