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Abstract— Preisach-type operators model hysteresis via
weighted superposition of a large (and even infinite) number
of basic hysteretic elements (called hysterons), and they have
proven capable of capturing various complicated hysteretic
behaviors. While inverse compensation is an effective approach
to control of hysteretic systems, inversion of Preisach-type
operators is a bottleneck in demanding, high-speed applications
due to the high computational cost. In this paper a novel and
general framework is proposed for fast inversion of a wide
class of Preisach-type operators, by exploiting the massive par-
allelism offered by field-programmable gate arrays (FPGAs) to
process the inherently parallel hysteresis operators. The theory,
algorithm, and implementation of the inversion are presented.
The inversion output is computed iteratively with guaranteed
convergence (up to machine precision) provided the hysteresis
operator is piecewise monotone and Lipschitz continuous. For
an operator consisting of m hysterons, the proposed approach
shows a computational complexity of O(logm), in contrast to
O(m) for methods using general DSPs. The effectiveness of
the fast inversion approach is demonstrated by implementation
results on open-loop tracking of kHz reference signals, based
on inversion of a Krasnosel’skii-Pokrovskii operator.

I. INTRODUCTION

Hysteresis is a nonlinear, nonlocal memory effect that
can be found in diverse natural, social, and engineering
systems. For instance, hysteresis presents itself in ferromag-
netism and superconductivity [1], biology [2], economics [3],
geosciences [4], and various smart materials [5]–[9]. Mod-
eling, identification, and control of hysteresis nonlinearity
has received much attention due to its sophisticated nature
and wide implications in physical and engineering systems.
An important class of hysteresis models are Preisach-type
operators [1], [10], [11]. A Preisach-type operator is typically
of phenomenological nature, and consists of a weighted
superposition of a large (and even infinite) number of ba-
sic hysteretic elements (called hysterons). A few examples
of Preisach-type operators include the classical Preisach
operator, the Krasnosel’skii-Pokrovskii (KP) operator, the
Prandtl-Ishlinskii (PI), and the homogenized energy model
for hysteresis [9], [12] (which also carries physical inter-
pretations). Preisach-type operators have proven effective in
capturing complicated, hysteretic behaviors in a wide range
of applications [1], [4]–[6], [8], [9], [13]–[15].

Control of hysteretic systems is challenging since tradi-
tional tools for systems with smooth dynamics do not apply
directly. An effective approach to dealing with hysteresis
nonlinearity is inverse compensation [16]–[18], where an
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(approximate) inverse hysteresis operator is constructed to
cancel the hysteretic effect. Hysteresis is often coupled with
traditional linear or nonlinear dynamics. In that case, a
feedback controller can be used jointly with the inverse
hysteresis compensator to handle the remaining dynamics
of the plant [6], [16], [17], [19]. This approach is illustrated
in Fig. 1.
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Fig. 1. A generic control approach combining feedback with inverse
compensation of hysteresis (see, e.g., [16]).

The inversion problem for Preisach-type operators gener-
ally does not have analytical solutions. One exception is that
the inverse of a play-type PI operator with a finite number
of hysterons turns out to be a stop-type PI operator [18].
Another example is the pseudo-compensator concept [5],
[20], where a Preisach operator is used to approximate the
inverse of another Preisach operator (this is only exact for
very special Preisach weighting functions [1]). In most cases,
however, the inversion of a Preisach-type operator has to
be carried out iteratively [14], [21]. All inverse operations,
direct or iterative, involve evaluations of the outputs of
all hysterons at each time step. When the operator has a
large number of hysterons (a typical case in practice), the
computational cost becomes prohibitive for general-purpose
digital signal processors (DSPs), where the contributions of
individual hysterons are evaluated sequentially. This presents
a critical hurdle to the adoption of Preisach-type operators for
hysteresis modeling and compensation in demanding, high-
speed applications, e.g., ultrafast nanopositioning for data
storage and for atomic force microscopy (AFM) imaging.

In this paper a unified approach to fast inversion of a broad
class of Preisach-type operators is presented by exploiting
the massive parallelism offered by field-programmable gate
arrays (FPGAs). An FPGA is used as an embedded com-
pensator to cancel (approximately) the hysteresis, and its
parallel nature makes it particularly suitable for processing
the inherently parallel Preisach-type operators. We discuss
the theory, algorithm, and implementation of the embedded
inversion approach. The inversion output is computed using a
fixed-point iteration algorithm, with guaranteed convergence
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(up to machine precision) provided the hysteresis operator is
piecewise monotone and Lipschitz continuous. For a given
tolerance, the algorithm completes in a finite number of iter-
ations. For an operator consisting of m hysterons, we show
that the proposed approach requires only a computational
complexity of O(logm), in contrast to O(m) for methods
using general DSPs. The effectiveness of the fast inversion
approach is demonstrated by implementation results on open-
loop tracking of kHz reference signals, based on inversion
of a Krasnosel’skii-Pokrovskii operator.

It should be noted that there has been some past work
on embedded hysteresis inversion. Davino and coworkers
[22], [23] developed an efficient inversion algorithm for the
classical Preisach operator by storing the samples of Everett
function in a lookup table and then using interpolations, and
they demonstrated the implementation in a microcontroller.
Janocha et al. implemented the inversion of a PI operator in
FPGA [24]. Comparing to these past studies, our approach
has two salient features: 1) it is applicable to a general
class of Preisach-type operators and not restricted to just
one specific operator, and 2) it is amenable to incorporation
of embedded adaptation, which is particularly important for
smart material-actuated systems since the hysteretic behav-
iors are often sensitive to environmental conditions.

The remainder of the paper is organized as follows. In
Section II Preisach-type operators are reviewed, and their
properties relevant to the inversion algorithm are studied.
The inversion framework is described in Section III. Imple-
mentation of the embedded FPGA compensator is presented
in Section IV. Finally, concluding remarks are provided in
Section V.

II. PREISACH-TYPE OPERATORS

A. Definition of Preisach-Type Operators

A Preisach-type operator models hysteresis through
weighted superposition of possibly a continuum of basic hys-
teretic elements, called hysterons. One example of Preisach-
type operators is the Krasnosel’skii-Pokrovskii (KP) operator,
which is illustrated in Fig. 2. We will describe KP operators
and their relevant properties first, and then have a brief
discussion on other Preisach-type operators. Consider a KP
hysteron depicted in Fig. 2(a), which is characterized by a
pair of thresholds (β ,α). Define a ridge function δ : R

+ →
[−1,1]:

δ (x) =

⎧⎨
⎩

−1 if x < 0
−1+ 2x

a if 0 ≤ x ≤ a
1 if x > a

, (1)

where a is the distance shown in Fig. 2(a). Let C([0,T ])
denote the space of continuous functions on [0,T ]. Given an
input v(·) ∈C([0,T ]) and an initial output value ζ ∈ [−1,1],
the output of the hysteron w = γβ ,α [v(·),ζ ] ∈ C([0,T ]) is
defined as follows:

w(t) =

⎧⎨
⎩

max{w(t−),δ (v(t)−α)} if v(t) > v(t−)
min{w(t−),δ (v(t)−β )} if v(t) < v(t−)
w(t−) if v(t) = v(t−)

,

(2)

where w(0−) = ζ , t− = limε↓0 t − ε .
A KP operator Γ is a weighted combination of m KP

hysterons with different threshold pairs, (β i,αi), i = 1, · · · ,m,
as illustrated in Fig. 2(b). Note that all hysterons share the
same ridge function δ , characterized by the parameter a.
Each hysteron has a weight µ(β i,αi), which is typically
assumed to be nonnegative. Given an input v(·) ∈C([0,T ])
and the initial condition {ζi}m

i=1, the output u = Γ[v(·),{ζi}]
reads:

u(t) =
m

∑
i=1

µ(βi,αi)γβi,αi
[v(·),ζi](t). (3)
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Fig. 2. (a) A KP hysteron γβ ,α ; (b) Illustration of the KP operator.

More generally, one can define a KP operator consisting
of a continuum of hysterons. Define the half plane P =
{(β ,α) : β ≤ α}. Given a Borel measurable configuration
of all hysterons, ζ0 : P → [−1,1], the output u of the KP
operator can be expressed as

u(t) = Γ[v(·),ζ0](t)

=
∫

P
µ(β ,α)γβ ,α [v(·),ζ0(β ,α)](t)dβdα , (4)

where µ is a Borel measurable density function that is
integrable on P . One can assume that µ has a compact
support, in which case it suffices to consider a compact
subset P0 ⊂ P:

P0 = {(β ,α) : −r0 ≤ β ≤ α ≤ r0,},
for some r0 > 0.

Using variants of the KP hysteron as building elements,
one can obtain other Preisach-type operators. For instance,
the classical Preisach operator uses the delayed relays as
hysterons (Fig. 3(a)), which are also characterized by a
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pair of thresholds (β ,α). Weighted superposition of linear
play operators (Fig. 3(b)) and that of linear stop operators
(Fig. 3(c)), lead to the Prandtl-Ishlinskii (PI) operators of the
play type, and of the stop type, respectively. Note that play
or stop operators are parameterized by a single variable r
instead of a pair.

+1

v

–1

(a)

r v
r

slope = 1

(b)

r

v

r

slope = 1

(c)

Fig. 3. (a) A Preisach hysteron; (b) a play operator; (c) a stop
operator.

B. Properties of Preisach-Type Operators

The inversion algorithm to be presented requires two
properties of Preisach-type operators, piecewise monotonicity
and Lipschitz continuity, which are precisely defined below.

Definition 2.1: A Preisach-type operator Γ is piecewise
monotone if, given a monotone input v ∈ C([0,T ]) for
arbitrary T > 0 and any initial condition ζ0, the following
holds:

(Γ[v(·),ζ0](T )−Γ[v(·),ζ0](0)) · (v(T )− v(0))≥ 0. (5)
Definition 2.2: A Preisach-type operator Γ is Lipschitz

continuous if, given a monotone input v ∈ C([0,T ]) for
arbitrary T > 0 and any initial condition ζ0, for any t1,t2 ∈
[0,T ], the following holds:

|Γ[v(·),ζ0](t2)−Γ[v(·),ζ0](t1)| ≤ L|v(t2)− v(t1)|, (6)

for some constant L > 0.
Note that an alternative definition of Lipschitz continuity

can be given using the L∞ norm of C([0,T ]) [25]. Defini-
tion 2.2, however, suffices for the purpose of this paper.

Proposition 2.1: Let the weighting function µ be non-
negative. Then all the Preisach-type operators described in
Section II-A (i.e., the KP operator, the classical Preisach op-
erator, and the PI operators of play/stop types) are piecewise
monotone.

Proof. It is clear that each hysteron satisfies (5) if one
replaces Γ by a hysteron γ . The claim then follows con-
sidering the definition of a Preisach-type operator and the
nonnegativity assumption on the weighting function µ . �

We next establish the Lipschitz continuity of the KP
operator under fairly general conditions.

Proposition 2.2: A KP operator is Lipschitz continuous if

1) it consists of a finite number of hysterons (see (3)); or
2) it consists of a continuum of hysterons (see (4)), where

the weighting function µ is Borel measurable and
integrable on P .

Proof. First consider the case 1). Suppose that the input
increases from v to v+∆v for sufficiently small ∆v > 0. A
necessary condition for the output of a hysteron γ βi,αi

to
increase is v ∈ [αi,αi +a). Define the set of hysterons S+(v)
as

S+(v)
�
= {i : v−a < αi ≤ v}.

The output increase for a hysteron in S+(v) is at most 2∆v
a ,

and thus the output increase for the KP operator under an
input increase of ∆v is bounded by L+∆v, where

L+ �
= sup

v
∑

i∈S+(v)

2|µ(βi,αi)|
a

. (7)

Similarly, one can show that the output decrease for the KP
operator corresponding to an input decrease of ∆v is bounded
by L−∆v, with

L− �
= sup

v
∑

i∈S−(v)

2|µ(βi,αi)|
a

, (8)

S−(v)
�
= {i : v−a≤ βi < v}.

Note that L = max{L+,L−} is bounded since the total
number of hysterons is finite. It is clear that the KP operator
(3) is Lipschitz with constant L.

The proof for case 2) is analogous and its details will be
omitted. The Lipschitz constant L in this case is

L = max{L+,L−},
L+ �

= sup
v

2
a

∫ v

v−a

∫ α

−∞
|µ(β ,α)|dβdα ,

L− �
= sup

v

2
a

∫ v

v−a

∫ ∞

β
|µ(β ,α)|dαdβ .

The boundedness of L follows from the integrability of µ .
�

Remark 2.1: One can also show the Lipschitz continuity
of a KP operator that has a mixture of discrete and continuum
hysterons. Proposition 2.2 can be easily extended to PI oper-
ators, thanks to the finite slopes of their hysterons. However,
for classical Preisach operators, the Lipschitz continuity only
holds for the continuum case (with appropriate condition on
µ). For a Preisach operator consisting of countable hysterons,
its output takes values in a countable set. The consequence
of this discontinuity in hysteresis inversion will be discussed
in Section III.

III. INVERSION ALGORITHM

Fig. 4 illustrates the idea of hysteresis inversion. Given a
desired output trajectory ud(·) and an initial condition ζ0

for a Preisach-type operator Γ, the (approximate) inverse
operator Γ̂−1 generates v(·) as the input to Γ, such that
u(t) = Γ[v(·),ζ0](t)≈ ud(t), i.e., Γ◦ Γ̂−1 ≈ Identity operator.
Γ̂−1 defined this way is called the right (as opposed to left)
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inverse of Γ, which is typically used for cancellation of
hysteresis preceding other dynamics. A feedback controller
can then be designed to handle the remaining non-hysteretic
dynamics (see Fig. 1).

1ˆud v u

Fig. 4. Illustration of hysteresis inversion.

In the interest of digital control, the inversion algorithm
will be discussed in discrete time. The initial condition ζ (0)
of the Preisach-type operator is assumed to be known. In
practice, this can be achieved by applying certain (e.g.,
maximum or minimum) initialization input [6]. The initial
condition, together with the past input history v(·), allows
one to keep track of the states of hysterons at any time
instant n. Given the current configuration of hysterons ζ (n),
the inversion problem is to find the input value v(n+1) so
that the hysteresis output is equal (or close) to the desired
value ud(n+1) for the next time instant n+1. It is implicitly
understood that the input changes monotonically from v(n) to
v(n+1) to avoid any ambiguity in evaluating the hysteresis
operator.

The following two assumptions are made about Γ:
• (A1) Γ is piecewise monotone;
• (A2) Γ is Lipschitz continuous with constant L > 0.

The inversion algorithm computes the value for v(n + 1)
iteratively:{

v[k+1](n+1) = v[k](n+1)+ ud(n+1)−Γ[v[k](n+1),ζ (n)]
L

v[0](n+1) = v(n)
.

(9)
The algorithm (9) is adapted from the inversion algorithm

for a classical Preisach operator in the space of piecewise
monotone, continuous functions [21]. The following conver-
gence result is adapted from Proposition 4.1 of [21], and its
proof is omitted here for brevity.

Proposition 3.1: Suppose that the input is restricted to
[vmin,vmax]. Let u−sat and u+

sat denote the negative and positive
saturation values of Γ, respectively. Let (A1) and (A2) be
valid. Then for any ud(n+1) ∈ [u−sat ,u+

sat ], the algorithm (9)
converges, v[k](n+1)→ v∗(n+1) as k→∞, where v∗(n+1)
satisfies Γ[v∗(n + 1),ζ (n)] = ud(n + 1). Furthermore, given
any ε > 0, the following holds:∣∣∣Γ[v[k](n+1),ζ (n)]−ud(n+1)

∣∣∣≤ ε , (10)

for k ≥ Nε , where Nε is the smallest integer satisfying Nε ≥
L(vmax − vmin)/ε .

The proposition provides an upper bound on the number
of iterations for the inversion error to reach any tolerance
(above the machine precision). In the context of FPGA-based
embedded inversion, Preisach-type operators consisting of a
finite number of hysterons are of practical interest. From
the discussions in Section II-B, the algorithm (9) is then
directly applicable to KP and PI operators. For classical

Preisach operators (with discrete hysterons), however, there
is a limit on how small the tolerance ε can be chosen.
An alternative (approximate) inversion algorithm for such
Preisach operators is the closest-match algorithm proposed
by Tan and coworkers [26], which requires only the property
of piecewise monotonicity.

IV. FPGA IMPLEMENTATION OF INVERSE HYSTERESIS

COMPENSATOR

An FPGA is a silicon device containing high-density
programmable logic components and interconnects, which
can be reconfigured by an end user (hence the term “field-
programmable”) to perform fast application-specific process-
ing [27]. The speed and the processing power of FPGAs are
comparable to those of application-specific integrated circuit
(ASIC) chips, but they offer several important advantages
over ASICs, e.g., instant manufacturing turnaround, low
start-up costs, and ease of design changes.

Each iteration of the inversion algorithm (9) involves
the evaluation of the Preisach-type operator Γ. When the
operator has a large number of hysterons (a typical case
in practice), the computational cost becomes prohibitive for
general-purpose digital signal processors (DSPs), where the
contributions of individual hysterons are evaluated sequen-
tially. The parallel computing paradigm of FPGAs, however,
is especially suitable for Preisach-type operators - such an
operator is parallel in nature since all hysterons receive the
same input. In addition, the characteristics of a hysteron
can often be best described using logic elements, leading
to convenient implementation of hysterons on FPGAs.

Fig. 5 shows the diagram for implementing the hysteresis
inversion algorithm on FPGA. While the KP operator is used
as an example, the general structure applies to PI operators
and other Preisach operators meeting conditions (A1) and
(A2).

( 1 , 1)

( m , m)

+[ 1]( 1)kv n

1z

[ ]( 1)kv n
+ +–

| | ?e
Yes (close
the switch)

No

( 1)du n

( 1)v n

1/L e

e

Fig. 5. Implementation of the hysteresis inversion algorithm in FPGA.

Note that although the evaluations of all hysterons can be
performed in parallel, the summation on weighted hysteron
outputs is a bottleneck. To minimize the computation time, an
adder tree is implemented for the summation. For example,
suppose that the number of hysterons m = 8. The first level
of the adder tree will have four adders, each adding the
contributions from a pair of hysterons. The second level will
have two adders, each adding the results of a pair of adders
from the previous level. The third and last level will have just
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one adder, adding the results of the adders from the second
level. Therefore a total of three clock cycles is needed for
completing the summation operation. In general, the adder
tree for m hysterons will take log2 m clock cycles. Since
the summation is the speed-limiting factor in the FPGA-
based hysteresis inversion, the computational time scales
as O(log2 m) with respect to the number of hysterons m.
This is in contrast to the O(m) time-complexity required
by general-purpose DSPs. One can further speed up the
inversion process in FPGA by implementing pipelining for
the summation process.

As an example, the inversion algorithm (9) has been
implemented on a Xilinx Virtex-II Pro FPGA. The im-
plementation utilizes only logic resources, and deliberately
avoids using the two on-chip PowerPC cores and RAM
resources, which may not be available for low-end FPGAs.
The implementation for inverting a KP operator with 21
hysterons takes about 30% of the logic resources on Virtex-
II Pro. The device usage can be further reduced through
optimization of resource allocation. Each iteration (9) in the
inversion takes 11 clock cycles. This implies close to 5×106

iterations per second if a 50 MHz clock is used.
The thresholds of hysterons are chosen based on a regular

lattice on the (β ,α) plane, as illustrated in Fig. 6. The
evaluation of a KP hysteron (2) involves the shifted ridge
function of the form δ (v(t)− c), with c = β i or αi. To save
multiplier resources, the slope portion of (1) is rewritten as

−1+
2(v(t)− c)

a
= v(t) · 2

a
− a+2c

a
.

For every new input v(t), the product v(t) · 2
a is evaluated

only once, and then each hysteron accesses the product
and shifts it by − a+2c

a (pre-computed and stored) with the
corresponding c.

Fig. 6. Threshold pairs (represented by black dots) for the KP operator.

Experiments have been conducted to verify the FPGA-
based inversion algorithm. A collection of weights is as-
signed to the 21 KP hysterons. The values of the weights
are shown in Fig. 7. An example of the hysteresis loop for
this KP operator is shown in Fig. 8. The range of the input
and the output of FPGA is set to be [−10,10] V through
A/D and D/A interfaces.

A reference trajectory ud(·), generated from a PC (through
dSPACE DS1104), is sent to the FPGA hysteresis compen-
sator. The inversion output v(·) is then converted to an analog
signal and acquired by dSPACE. The “achieved” output u(·)

−9.76

−6.83

−3.91

−0.98

1.95

4.88

4.881.95−0.98−3.91−6.83−9.76

0

0.5
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1.5

α (V)

β (V)

W
ei

gh
t (

V
)

Fig. 7. Hysteron weights used for verification of inversion.
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Fig. 8. Hysteresis loop of the KP operator with weights in Fig. 7.

of the KP operator is evaluated in Matlab based on the input
v(·), and compared to the reference ud(·). Fig. 9 shows the
comparison between ud and u when ud is a sinusoidal signal
with frequency 1000 Hz, while Fig. 10 shows the result when
ud is a combination of two sinusoids (300 Hz and 50 Hz).
In both experiments, the tracking performance is satisfactory,
where the tracking error is consistent with the set tolerance
ε = 0.1 in inversion.

V. CONCLUSIONS

In this paper a unified, embedded approach to hysteresis
compensation was presented for Preisach-type operators. The
approach exploits the massive parallelism in FPGAs to speed
up the otherwise time-consuming inversion process. The
reprogrammable nature of FPGAs allows one to find the
most appropriate Preisach-type operators for specific appli-
cations without changing the architecture of the compensator.
Implementation results were reported on inversion of a KP
operator. One potential application of this work is to use the
embedded hysteresis compensator as a plug-on device for
smart material actuators. By eliminating the bottleneck in
control of such hysteretic systems, one can realize precision
tracking control with high bandwidth (over kHz).

Future work includes incorporating parameter adaptation
[28] into the hysteresis inversion framework. The parallel
processing capability of FPGA will again be advantageous in
that it allows hysteron weights to be updated simultaneously.
The embedded compensator will also be combined with
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Fig. 9. Embedded inversion-based tracking performance for a 1 kHz
reference signal.
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Fig. 10. Embedded inversion-based tracking performance for a reference
signal consisting of 300 Hz and 50 Hz components.

feedback control and applied to demanding applications
such as high-speed nanopositioning driven by (hysteretic)
piezoelectric actuators.
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