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Abstract— This paper studies the problems of stability analy-
sis and state feedback controller design for continuous-time net-
worked control systems (NCSs). Model of NCSs with multiple-
packet transmission and packet dropout in both the sensor-to-
controller channel and controller-to-actuator channel is derived,
then the stability condition for NCSs with multiple-packet
transmission is presented, and a new method for controller
design is also proposed by using linear matrix inequality (LMI)-
based method. The simulation results illustrate the effectiveness
of the proposed controller design for NCSs with multiple-packet
transmission and packet dropout.

I. INTRODUCTION

As is well known, in modern industrial systems, sensors,
controllers and plants are often connected over a network
medium, such systems are usually called networked control
systems (NCSs). There are many advantages in NCSs, such
as low cost, reduced weight and power requirements, simple
installation and maintenance, and high reliability. Thus,
increasing research interests have been paid to the study of
the stability and stabilization of NCSs.

By decomposing network-induced delays into fixed and
varying parts, the NCSs were modeled as parameter-
uncertain systems and controller design methods based on
delay-dependent stability conditions were presented (see [1]-
[2]). However, the time delay considered in [1] was shorter
than a sampling period. [3] designed the stochastic optimal
controllers for networked control systems with network-
induced delay longer than a sampling period. By using
Lyapunov-Razumikhin function and Lyapunov-Krasovskii
function methods, [4] was dedicated to the design of state
feedback controllers and the admissible upper bounds of time
delay and packet dropout were also presented. In [5], a model
of the NCSs was provided under consideration of both the
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network-induced delay and the data packet dropout. For other
results dealing with time delay and packet dropout, see also
[6]-[9]. The problem of H∞ controller design for NCSs was
considered in [10].

All works mentioned above discussed the case of single-
packet transmission of NCSs. However, especially in dis-
tributed NCSs, once the length of sampled data surpasses the
maximum admissible length of the network packet, multiple-
packet transmission is ubiquitous (such as the systems based
on Device-Net). For this case, the sampled data and control
inputs are split into multiple separated packets which may
not arrive at the destination simultaneously. Obviously, the
NCSs with single-packet transmission is a subclass of the
NCSs with multiple-packet transmission.

As for the problem of multiple-packet transmission, to the
best of our knowledge, few papers discussed it thoroughly
except in [11] and [12]. As one can see, [11] presented
the discretized model of MIMO NCS with multiple time
delays, and the closed-loop NCS model only included a
standard controller designed without considering the time
delay effect a priori. [12] considered the case that multiple-
packet transmission exists only in sensor-to-controller chan-
nel and the controller-to-actuator channel must be single-
packet transmission, if multiple-packet transmission also
exists in controller-to-actuator channel, the result of [12] is
not applicable.

This paper presents a model of NCSs with multiple-
packet transmission and packet dropout in both the sensor-
to-controller channel and the controller-to-actuator channel,
the stability analysis and state feedback controller design are
also presented by using LMI-based method (see [13]). Three
examples are finally given to illustrate the effectiveness and
less conservatism of our method.

II. MODELING OF NCSS AND PRELIMINARIES
Throughout this paper, we assume that the sensor is clock-

driven, the controller and actuator are event-driven (realized
via zero-order holders). The controller and the actuator will
be updated until the new data packet arrives. Denote T as
the length of sampling period.

Under a linear control law, the controlled system can be
expressed as

ẋ(t) = Ax(t)+Bu(t),
x(t) = φ(t), t < 0,
uC(t) = KxC(t),

(1)

where x(t)∈ℜn, u(t)∈ℜp, A and B are constant matrices of
appropriate dimensions. φ(t) is a continuously differentiable
initial function. xC is the delayed version of x, u is the
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delayed version of uC, and xC and uC are the input and the
output of controller, respectively.

The plant state is split into r parts

x(t) =
[

XT
1 (t) · · · XT

r (t)
]T

, (2)

and every part with its time stamp is lumped into a packet.
Similarly, the control signal is split into s parts

uC(t) =
[

UC
1 (t)T · · · UC

s (t)T
]T

, (3)

and every part with its time stamp is also lumped into a

packet, where Xi(t) ∈ ℜri , ri ∈ Z+, and
r
∑

i=1
ri = n; UC

i (t) ∈

ℜsi , si ∈ Z+, and
s
∑

i=1
si = p.

For simplicity, we consider the case that the plant state
and the control signal are split into two parts, respectively.
Fig. 1 illustrates the model of NCSs with multiple packets
transmission.

Fig. 1. An NCS with multiple-packet transmission

Just as shown in Fig. 1, at the instant t, the state data pack-
ets, which are waiting for transferring, in S1, S2 are X1(ki1T )
and X2(ki2T ) (ki1 , ki2 ∈ Z+), respectively. Meanwhile, the
controller input data packets XC

1 (t), XC
2 (t), which are waiting

to be updated, are equal to X1(k1T ), X2(k2T ) (k1, k2 ∈
Z+), respectively. Throughout this paper, we suppose the
controller will calculate the control inputs based on the
latest available plant states. Thus, the process of state data
transmission can be described as follows:
Case 1 : If the switch is in position S3, i.e., the state data
packets X1(ki1T ) and X2(ki2T ) are dropped in the sensor-to-
controller channel, then

XC
1 (t) = X1(k1T ), XC

2 (t) = X2(k2T ).

Case 2 : If the switch is in position S2, then

XC
1 (t) = X1(k1T ), XC

2 (t) =
{

X2(ki2T ), if ki2 > k2,
X2(k2T ), otherwise.

Case 3 : If the switch is in position S1, then

XC
2 (t) = X2(k2T ), XC

1 (t) =
{

X1(ki1T ), if ki1 > k1,
X1(k1T ), otherwise.

Therefore, there exist k j1 , k j2 ∈ Z+, such that

xC(t) =
[

XC
1 (t)

XC
2 (t)

]
=

[
X1(k j1T )
X2(k j2T )

]
.

Define τsc(t)=
[

τsc
1 (t)

τsc
2 (t)

]
, where τsc

i (t)= t−k jiT (i = 1, 2),

then τsc
i represents the delay of the ith state data part, and

xC(t) =
[

X1(t− τsc
1 (t))

X2(t− τsc
2 (t))

]
.

The process of control signal transmission is similar to the
process of state data transmission, here it is omitted.

Denote tk (k ∈ Z+) as the instant that the actuator receives
the kth control signal, tC

k (k ∈ Z+) as the instant that
the controller sends the kth control signal to the actuator.
Suppose u(t+k ) is based on the outputs of controller at the
instant tC

k1
and tC

k2
, respectively, i.e.,

u(t+k ) =
[

U1(t+k )
U2(t+k )

]
=

[
UC

1 (tC
k1

)
UC

2 (tC
k2

)

]

= D1uC(tC
k1

)+D2uC(tC
k2

), (4)

where

D1 = diag{Is1 , 0}, D2 = diag{0, Is2}.
Similarly, the input of controller at the instant tC

k1
is based

on the states of plant at the instant k1
1T and k2

1T , the input
of controller at the instant tC

k2
is based on the states of plant

at the instant k1
2T and k2

2T , respectively, i.e.,

xC(tC
k1

) =
[

XC
1 (tC

k1
)

XC
2 (tC

k1
)

]
=

[
X1(k1

1T )
X2(k2

1T )

]

= C1x(k1
1T )+C2x(k2

1T ),

xC(tC
k2

) =
[

XC
1 (tC

k2
)

XC
2 (tC

k2
)

]
=

[
X1(k1

2T )
X2(k2

2T )

]

= C1x(k1
2T )+C2x(k2

2T ), (5)

where
C1 = diag{Ir1 , 0}, C2 = diag{0, Ir2},

and k1
1, k2

1, k1
2, k2

2 ∈ Z+.
Thus, for t ∈ [tk, tk+1), we obtain

u(t) = u(t+k ) = D1KC1x(k1
1T )+D1KC2x(k2

1T )
+D2KC1x(k1

2T )+D2KC2x(k2
2T ). (6)

Denote t− ki
jT as τi j(t), i.e,

τi j(t) = t− ki
jT, ∀ t ∈ [tk, tk+1), (7)

analogous to the case of two-packet transmission, for the
case of multiple-packet transmission, for t ∈ [tk, tk+1), we
have

u(t) =
s

∑
j=1

r

∑
i=1

D jKCix(ki
jT ) =

s

∑
j=1

r

∑
i=1

D jKCix(t− τi j(t)),

(8)
Ci = diag{0, · · · , Iri︸ ︷︷ ︸

i

, · · · , 0}, (9)

D j = diag{0, · · · , Is j︸ ︷︷ ︸
j

, · · · , 0}. (10)
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Assumption 1. The pair (A, B) is stabilizable.

Assumption 2. There exist constants hi j such that

0≤ τi j(t)≤ hi j, ∀ i = 1, 2, · · · , r, j = 1, 2, · · · , s. (11)

Denoting h = max1≤i≤r, 1≤ j≤s{hi j}, then the model of NCSs
with multiple-packet transmission under Assumption 1 and
2 can be described as

ẋ(t) = Ax(t)+
s

∑
j=1

r

∑
i=1

BD jKCix(t− τi j(t)), (12)

x(t) = φ(t), t ∈ [−h, 0] (13)
0≤ τi j(t)≤ hi j, i = 1, 2, · · · , r; j = 1, 2, · · · , s.

(14)

For convenience of analysis, the system (12)-(14) can be
rewritten as follows:

ẋ(t) = Ax(t)+
m

∑
l=1

Alx(t− τl(t)), (15)

x(t) = φ(t), t ∈ [−h, 0] (16)
0≤ τl(t)≤ hl , l = 1, 2, · · · , m. (17)

where

Al = BD jKCi, τl(t) = τi j(t), hl = hi j,

∀ l = ( j−1)× r + i, i = 1, 2, · · · , r; j = 1, 2, · · · , s.
(18)

In this paper, we will analyze the stability criteria of
the closed-loop system (15)-(17) and study the problem of
state-feedback controller design.

Remark 1. If m = 1, then the system (15)-(17) is the same
as the system with single-packet transmission which has
been considered in [5], for convenience of comparison, the
main result (Corollary 1) in [5] is listed as follows.

Lemma 1. [5] The system (15)-(17) with m = 1 is asymptoti-
cally stable if there exist matrices P > 0, T > 0, and matrices
Xi (i = 1, 2, 3) such that

Λ =




Λ11 Λ12 NT
3 − (X3A)T +X1 +P h1N1

∗ Λ22 −NT
3 +X2− (X3BK)T h1N2

∗ ∗ X3 +XT
3 +h1T h1N3

∗ ∗ ∗ −h1T


 < 0,

(19)
where

Λ11 = N1 +NT
1 −X1A− (X1A)T ,

Λ12 = NT
2 −N1− (X2A)T −M1BK,

Λ22 =−N2−NT
2 −X2BK− (X2BK)T .

III. MAIN RESULTS

In this section, we analyze asymptotic stability of the
closed-loop system (15)-(17), and propose a method of
designing state feedback controllers.

A. Stability Analysis

Theorem 1. The system (15)-(17) is asymptotically stable if
there exist symmetrical matrices P > 0, Ri ≥ 0, Si > 0 and
matrices M1, M2, · · · , M2m+2, such that

Ω < 0, (20)

where

Ω =
[

Ω1 Ω2
∗ Ω3

]
−MA − (MA )T ,

Ω1 =




m
∑

i=1
(Ri−Si) P

∗
m
∑

i=1
h2

i Si


 ,

Ω2 =
[

Ω21 Ω22 · · · Ω2m
]
,

Ω2i =
[

Si 0
0 0

]
(i = 1, 2, · · · , m),

Ω3 = diag{Ω31, Ω32, · · · , Ω3m},
Ω3i =

[ −2Si Si
∗ −Ri−Si

]
(i = 1, 2, · · · , m),

M =
[

MT
1 MT

2 · · · MT
2m+2

]T
,

A =
[

A −I A1 0 · · · Am 0
]
.

Proof: Construct a Lyapunov functional as

V (t) = V1(t)+V2(t)+V3(t), (21)

with
V1(t) = xT (t)Px(t),

V2(t) =
m
∑

i=1

∫ t
t−hi

xT (s)Rix(s)ds,

V3(t) =
m
∑

i=1

∫ 0
−hi

∫ t
t+β ẋT (s)hiSi

.
x(s)dsdβ .

(22)

Using the Cauchy-Schwarz inequality [14], and denoting
ζ = [xT (t), ẋT (t), xT (t − τ1(t)), xT (t − h1), · · · , xT (t −
τm(t)), xT (t−hm)]T , one gets

.
V (t)≤ ζ T Ωζ (23)

So, it is not difficult to see that (20) guarantees
.

V (t) < 0, this
immediately implies the asymptotic stability of the system
(15)-(17), thus it completes the proof.
Remark 2. By using the Cauchy-Schwarz inequality,
a stability condition of the system (15)-(17) is derived
in Theorem 1. Since the Newton-Leibniz formula is not
employed, the structure of the derived inequality in Theorem
1 is simple. In addition, there are some redundant variables
among Mi (i = 1, 2, · · · , 2m+2), which will be verified in
the following.

By using the elimination Lemma ([13], p.22), Ω < 0 is
equivalent to

Φ = N T
A ΩNA < 0, (24)

where NA denotes the full-rank matrix representations of
the right annihilator of A.

By the Schur complement, Φ < 0 is equivalent to

Φ̄ < 0, (25)
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where

Φ̄ =
[

Ω1 Ω2
∗ Ω3

]
− M̃A − (M̃A )T ,

M̃ =
[

P1 −
m
∑

i=1
h2

i Si 0 · · · 0
]T

,

and Ω1, Ω2, Ω3, A are defined in (20). So, it follows that
Ω < 0 in (20) is equivalent to Φ̄ < 0 in (25).

Comparing with (25), it is easy to see that
M3, M4, · · · , M2m+2 are all redundant in (20). So,
the simplified form of Theorem 1 is given as follows.

Theorem 2. The system (15)-(17) is asymptotically stable if
there exist symmetrical matrices P > 0, Ri ≥ 0, Si > 0 and
matrices M1, M2, such that

Ω̃ < 0, (26)

where

Ω̃ =
[

Ω1 Ω2
∗ Ω3

]
−MA − (MA )T ,

M =
[

MT
1 MT

2 0 · · · 0
]T

,

and Ω1, Ω2, Ω3, A are defined in (20).

From Theorem 2, we can derive a stability condition for
the system (15)-(17) with m = 1 as follows.

Corollary 1. For given scalar h1, the system (15)-(17) with
m = 1 is asymptotically stable if there exist symmetric
matrices P > 0, R ≥ 0, S > 0 and matrices M1, M2, such
that

Θ =
[

Θ1 Θ2
∗ Θ3

]
< 0, (27)

where

Θ1 =
[

R−S−M1A− (M1A)T P+M1− (M2A)T

∗ h2
1S +M2 +MT

2

]
,

Θ2 =
[

S−M1BK 0
−M2BK 0

]
,

Θ3 =
[ −2S S

∗ −R−S

]
.

Now, by comparing Corollary 1 and Lemma 1, we can get
the following result.

Theorem 3. If Λ < 0 in Lemma 1 is feasible, Θ < 0 in
Corollary 1 is also feasible.

Proof: Pre- and post-multiplying both sides of Λ with

Π1 =




I 0 0 −h−1
1 I

0 I 0 h−1
1 I

0 0 I 0
0 0 0 I


 (28)

and its transpose, it follows that

Λ1 < 0, (29)

where

Λ1 =



−h−1

1 T h−1
1 T P

∗ −h−1
1 T 0

∗ ∗ h1T


−X

[
A BK −I

]

− (X
[

A BK −I
]
)T ,

X =
[

XT
1 XT

2 XT
3

]T
.

By using the elimination Lemma and the Schur complement,
Λ1 < 0 is equivalent to

Λ2 < 0, (30)

where

Λ2 =



−h−1

1 T +PA+AT P h−1
1 T +PBK h1AT T

∗ −h−1
1 T h1(BK)T T

∗ ∗ −h1T


 .

Let

R = 0, S = h−1
1 T, M1 =−P, M2 =−h1T,

then Θ in Corollary 1 becomes

Λ3 =




Λ31 h1AT T h−1
1 T +PBK 0

∗ −h1T h1T BK 0
∗ ∗ −2h−1

1 T h−1
1 T

∗ ∗ ∗ −h−1
1 T


 , (31)

where
Λ31 =−h−1

1 T +PA+AT P.

Note that

Π2Λ3ΠT
2 =

[
Λ2 0
∗ −h−1

1 T

]
< 0, (32)

where

Π2 =




I 0 0 0
0 0 I I
0 I 0 0
0 0 0 I


 ,

so, Λ2 < 0 is equivalent to Λ3 < 0. This implies that Θ < 0
in Corollary 1 is feasible.
Remark 3. Theorem 3 shows that Theorem 2 with m = 1 is
less conservative than Lemma 1.

B. Stabilization of NCSs via State Feedback

Based on Theorem 2, we are now in a position to
design the feedback gain K to render system (15)-(17)
asymptotically stable.

Obviously, (26) implies M2 is nonsingular, so there exists
a matrix U , such that M1 = M2U . Denoting

M̄2 = M−1
2 , P̄ = M̄2PM̄T

2 , R̄i = M̄2RiM̄T
2 ,

S̄i = M̄2SiM̄T
2 , ∀i = 1,2, · · · ,m,

we can obtain
AlM̄T

2 = BD jKCiM̄T
2 ,

where l = ( j−1)× r + i, j = 1, 2, · · · , s, i = 1, 2, · · · , r.
If

M̄2 = diag{M21, M22, · · · , M2r},
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where M2i ∈ℜri×ri (i = 1, 2, · · · , r), then

CiM̄T
2 = diag{0, · · · , Iri︸ ︷︷ ︸

i

, · · · , 0}

×diag{MT
21, MT

22, · · · , MT
2r}

= diag{0, · · · , MT
2i︸ ︷︷ ︸

i

, · · · , 0}. (33)

Partitioning K as

K =
[

K1 K2 · · · Kr
]
,

and denoting

Gi =
[

0 · · · Iri︸ ︷︷ ︸
i

· · · 0
]
,

where Ki ∈ ℜp×ri (i = 1, 2, · · · , r), and introducing new
variables Fi = KiMT

2i (i = 1, 2, · · · , r), it is easy to see that

AlM̄T
2 = BD jKCiM̄T

2

= BD j×
[

0 · · · Fi︸ ︷︷ ︸
i

· · · 0
]

= BD jFiGi, (34)

and

M̄T
2 = diag{MT

21, MT
22, · · · , MT

2r}

=
r

∑
i=1

diag{0, · · · , MT
2i︸ ︷︷ ︸

i

, · · · , 0}

=
r

∑
i=1

GT
i MT

2iGi, (35)

pre- and post-multiplying both sides of Ω̃ in (26) with
diag{M̄2, M̄2, · · · , M̄2} and its transpose, we can obtain
the following theorem.

Theorem 4. For given hi (i = 1, 2, · · · , m) and U ,
the system (15)-(17) is asymptotically stable if there exist
symmetrical matrices P̄ > 0, R̄i ≥ 0, S̄i > 0 (i = 1, 2, · · · , m)
and matrices Fj, M2 j ( j = 1, 2, · · · , r), such that

Ω̄ < 0, (36)

where

Ω̄ =
[

Ω̄1 Ω̄2
∗ Ω̄3

]
− M̄ ¯A − (M̄ ¯A )T ,

Ω̄1 =




m
∑

i=1
(R̄i− S̄i) P̄1

∗
m
∑

i=1
h2

i S̄i


 ,

Ω̄2 =
[

Ω̄21 Ω̄22 · · · Ω̄2m
]
,

Ω̄2i =
[

S̄i 0
0 0

]
(i = 1, 2, · · · , m),

Ω̄3 = diag{Ω̄31, Ω̄32, · · · , Ω̄3m},

Ω̄3i =
[ −2S̄i S̄i

∗ −R̄i− S̄i

]
(i = 1, 2, · · · , m),

M̄ =
[

UT I 0 · · · 0
]T

,
¯A =

[
H1 H2 N1 0 · · · Nm 0

]
,

H1 = A
r
∑

i=1
GT

i MT
2iGi,

H2 =−
r
∑

i=1
GT

i MT
2iGi,

Nl = BD jFiGi,
∀l = ( j−1)× r + i, i = 1, 2, · · · , r; j = 1, 2, · · · , s.

The state-feedback gain is then given by

K =
[

F1 F2 · · · Fr
]

×diag{M−T
21 , M−T

22 , · · · , M−T
2r }. (37)

Remark 4. In contrast with the controller design method
given in [12], Theorem 4 involves slack variables M1, M2.
By defining M1 = M2U , the controller gain K can be obtained
by solving a set of LMIs. However, the stabilization result
in [12] is only applicable to the case of multiple-packet
transmission occurred in state channel and single-packet
transmission in control channel. In addition, the restrict
PB = BM in [12] is not needed in Theorem 4, which will
introduce less conservatism. An example in the following
section will verify this fact.

Corollary 2. For given scalar h1 and matrices U , the system
(15)-(17) with m = 1 is asymptotically stable if there exist
symmetric matrices P̄ > 0, R̄≥ 0, S̄ > 0 and matrices F , M2,
such that

Ψ =
[

Ψ1 Ψ2
∗ Ψ3

]
< 0, (38)

where

Ψ1 =
[

R̄− S̄−UAMT
2 −M2ATUT P̄+UMT

2 −M2AT

∗ h2
1S +M2 +MT

2

]
,

Ψ2 =
[

S̄−UBF 0
−BF 0

]
,

Ψ3 =
[ −2S̄ S̄

∗ −R̄− S̄

]
.

The state-feedback gain is then given by

K = FM−T
2 . (39)

Remark 5. A tuning parameter matrix U is employed in
Theorems 4 and Corollary 2. By applying a numerical opti-
mization algorithm [9], such as f minunc in the Optimization
Toolbox, the tuning parameter matrix can be obtained.

IV. NUMERICAL EXAMPLES

In the following, we will present three examples. Example
1 is given to compare with the result presented in [5],
Example 2 is delivered to compare with the result presented
in [12], and Example 3 is presented to illustrate the
effectiveness of the designed state feedback controllers for
NCSs with multiple-packet transmission.
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Example 1. Consider a system [5] with single-packet trans-
mission

ẋ(t) =
[

0 1
0 −0.1

]
x(t)+

[
0

0.1

]
u(t), (40)

and the controller is implemented through a network as
u(t) = Kx(t − d(t)), where K =

[ −3.75 −11.5
]

and
0≤ d(t)≤ h1. We can find the maximum allowable value of
h1 is 1.0081 by Corollary 1, while the corresponding value
of h1 was 0.8695 by Lemma 1 (Corollary 1 in [5]).

Example 2. Consider the state-space plant transmitted by
two packets in state channel, and by one packet in control
channel. This example is borrowed from [12].

[
ẋ1
ẋ2

]
=

[ −0.8 0.1
0.2 0.05

][
x1
x2

]
+

[
0
1

]
u. (41)

For simplicity, we assume that h1 = h2. The admissible upper
bounds of hi were found to be hi = 0.3102 (i = 1, 2) and
the corresponding feedback gain K =

[
0.0756 −4.1729

]
in [12], while we can obtain the maximum upper bound
hi = 13.6784 (i = 1, 2) and the corresponding feedback gain
K =

[ −0.0291 0.0762
]

by Theorem 4 with U = 0.0001I.
Obviously, it can be found that the method presented in this
paper may provide less conservatism than the one presented
in [12].

Example 3. Consider the following system



ẋ1
ẋ2
ẋ3
ẋ4


 =




−0.8 0.1 0.13 0.04
0.2 0.05 0 0.12
0 −0.03 −0.25 0.1

0.1 0 0.02 0.03







x1
x2
x3
x4




+




0 0.2
1 0

0.1 0
0 1




[
u1
u2

]
,

(42)
Case 1 : Single-packet transmission in both state channel
and control channel. Using Theorem 4 with U = 0.0001I,
the maximum allowable transfer intervals is found as h1 =
10.7434, and the corresponding state-feedback gain is

K =
[ −0.0122 −0.0829 0.0181 −0.0516
−0.0128 −0.0024 −0.0181 −0.0715

]
.

Case 2 : Single-packet transmission in control channel, and
two-packet in state channel. It is assumed that h1 = h2,

X1 =
[

x1
x2

]
, and X2 =

[
x3
x4

]
. Then using Theorem 4 with

U = 0.0001I, the maximum allowable transfer intervals are
found as hi = 9.0160 (i = 1,2), and the corresponding state-
feedback gain is

K =
[ −0.0536 −0.0998 −0.0324 −0.0581

0.0052 0.0096 −0.0453 −0.0818

]
.

Case 3 : Two-packet transmission in both state and control

channel. It is assumed that h1 = h2 = h3 = h4, X1 =
[

x1
x2

]
,

X2 =
[

x3
x4

]
and UC

1 = uC
1 , UC

2 = uC
2 . Using Theorem 4

with U = 0.0001I, it is found that, the maximum allowable
transfer intervals are hi = 8.9317 (i = 1, 2, 3, 4), and the
corresponding state-feedback gain is

K =
[ −0.0519 −0.0878 −0.0917 −0.0801

0 0 −0.0076 −0.0627

]
.

V. CONCLUSION

In this paper, a model for NCSs with multiple-packet trans-
mission and packet dropout in both the sensor-to-controller
channel and controller-to-actuator channel is given. A stabil-
ity criterion and a new method for state feedback controller
design are also presented by using LMI-based method. For
the case of single-packet transmission, it has been shown that
the newly proposed methods are less conservative than some
existing results. The numerical examples have illustrated the
effectiveness of the proposed methods.
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