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Abstract— This paper presents an outer-approximation al-
gorithm to address a generalized maximum entropy sampling
(GMES) problem that determines a set of measurement loca-
tions providing the largest entropy reduction. A new mixed-
integer semidefinite program (MISDP) formulation is proposed
to handle a GMES problem with a jointly Gaussian distribution
over the search space. This formulation employs binary vari-
ables to indicate if the corresponding measurement location is
selected, and exploits the linear equivalent form of a bilinear
term involving binary variables to ensure convexity of the objec-
tive function and linearity of the constraint functions. An outer-
approximation algorithm is developed for this formulation that
obtains the optimal solution by solving a sequence of mixed-
integer linear programs. Numerical experiments are presented
to verify the solution optimality and the computational effective-
ness of the proposed algorithm by comparing it with an existing
branch-and-bound method that utilizes nonlinear programming
relaxation. Sensor selection for best tracking of a moving
target under a communication budget constraint is specifically
considered to validate the superiority of the suggested algorithm
in handling quadratic constraints.

I. INTRODUCTION

One frequently addressed objective in the context of sensor

networks is to find a set of measurement points that leads to

the largest reduction in entropy of certain random variables

of interest, which is referred to as maximum information

gain sampling (MIGS). Guestrin et al. [1]–[3] dealt with

sensor placement in a finite gridspace to achieve the largest

entropy reduction of a sensor-vacant region when the spatial

distribution of the temperature is described by a Gaussian

process or a graphical model. Williams et al. [4] addressed

a sensor management problem that schedules the sensors to

turn on in order to best track the motion of moving targets

with considering communication cost as well. Zhang and

Ji [5] handled facial expression understanding within the

dynamic Bayesian network framework by treating each facial

motion as a measurement and each expressional attribute as

a quantity of interest. Recently, Choi et al. [6,7] addressed

the targeting of mobile sensor platforms to improve the

weather forecast at a specified verification site. In addition,

communication- and power-aware multi-sensor cooperation

can be addressed as a decentralized form of MIGS.

As a similar concept addressed in different contexts,

maximum entropy sampling (MES) is decision making to
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select a set of design points representing the largest entropy,

which was first introduced for design of experiments [8] and

was named by Shewry and Wynn [9]. In the case that all of

the random variables are jointly Gaussian, MES corresponds

to finding the submatrix of the covariance matrix that has

the largest determinant; however, it was shown to be NP-

hard even if all the entries of the covariance matrix are

rational, whether or not the cardinality of the selected set

is predetermined [10].

MIGS is a different (and usually harder) problem than

MES, since information gain, unlike entropy, is not submod-

ular in general [1]; however, MIGS and MES are closely

related. MIGS for which the posterior covariance matrix

is diagonal can be reduced to a decision very similar to

MES, which this work refers to as generalized maximum

entropy sampling (GMES). Since submodularity holds for

GMES, solution techniques for MES can incorporate GMES

without extensive modification. A sensor selection problem

for moving target tracking presented in Williams et al. [4]

is a GMES problem. GMES is further reduced to MES,

if the posterior covariance matrix is a scalar multiplier of

the identity matrix and the number of selection points is

given. Also, MES-type decision making has approximated

MIGS when the computation of the conditional entropy is

computationally intractable [11]. Thus, developing a good

solution strategy for MES (or GMES) can be conducive to

solving MIGS.

One approach to find the optimal solution of MES (or

MIGS) for the Gaussian case is to formulate it as an

optimization problem employing binary variables to indicate

which rows and columns of the covariance matrix will be

chosen. This type of approach has been quite successful,

and all existing optimization-based methods have been based

on the branch-and-bound (BB) algorithm with various upper

bounding mechanisms: largest eigenvalues of the covariance

matrix [10,12]–[14], nonlinear programming relaxation us-

ing rational and exponential mixture function of the bi-

nary variables [14,15], partition-based spectral bound [16],

linear-integer programming bound for improving the spectral

bound [17], and factored mask spectral bound [18] that

generalizes the eigenvalue bound and the partition-based

bound.

In contrast, this work addresses the generalized maximum

entropy sampling problem within the outer-approximation

(OA) framework. The OA algorithm, which was first devel-

oped by Duran and Grossmann [19], extended to a general

mixed-integer convex program (MICP) [20] and to mixed-
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integer (nonconvex) nonlinear programs (MINLP) [21,22],

alternately solves a primal problem and a relaxed master

problem. The primal problem is a nonlinear program (NLP)

with all the integer variables being fixed in value, and the

relaxed master problem is a mixed-integer linear program

(MILP) constructed by linearizing the objective function and

the constraints around a solution point of the primal problem.

At each iteration, the best primal solution so far provides a

lower bound (LBD) (in case of maximization), while the

relaxed master problem gives a upper bound (UBD) on the

optimal solution value and determines the next integer value

to visit. The algorithm terminates when UBD converges to

LBD, thus guaranteeing global optimality. The comparison

of OA and BB in terms of computation time is controversial

and problem-specific; however, OA has the following nice

properties, which are exploited in the algorithm presented

herein. First, it is no longer a concern to devise algorithmic

heuristics such as the branching order and node selection,

which, if inappropriately devised, could cause computational

inefficiency in BB algorithms, because the order of integer

values to visit is automatically determined by the relaxed

master problem. Second, for pure integer-convex programs

(ICP), the primal problem becomes just a function evaluation

and only a sequence of MILPs needs to be solved. Thus, with

a reliable solver for MILP such as CPLEX [24], an ICP can

be solved very efficiently by OA.

This work presents a mixed-integer semidefinite program

(MISDP) formulation for generalized maximum entropy

sampling, in which binary variables indicate selection of the

corresponding rows and columns, and continuous variables

enable a convex reformulation of the objective function and

the constraint functions. It will be shown that this formulation

does not require the solution of any primal semidefinite pro-

gram (SDP), since the primal feasible set is reduced to a sin-

gleton; therefore, only MILP relaxed master problems need

to be solved. Algorithmic details of the proposed approach

are described with highlighting the relative convenience of

the computation of gradient and Hessian information in

contrast to the case of the nonlinear programming-based

BB (BB-NLP) algorithm. Numerical experiments validate the

suggested method and compare its computation time with

the BB-NLP method. In particular, the sensor management

problem, which addresses measurement selection under a

limited communication budget in order to minimize tracking

uncertainty of a moving target, is presented to distinguish

the performance of the proposed algorithm from that of the

BB-NLP algorithm.

II. PROBLEM FORMULATION

A. Generalized Maximum Entropy Sampling

Maximum entropy sampling determines the set of sensing

points from a given search space that represents the largest

entropy amongst them. If the joint probability distribution for

any subset of the search space is Gaussian, MES corresponds

to picking a principal submatrix of the covariance matrix

for the search space P ∈ R
N×N that provides the largest

determinant:

max
s⊂S:|s|=n

log det P [s, s] (MES)

where S , [1, N ]∩Z and P [s, s] denotes the n×n principal

submatrix of P consisting of rows and columns indicated by

index set s. For the sake of well-posedness of the problem,

P should be symmetric positive definite. The cardinality of

s is usually specified, as otherwise the solution of (MES) is

trivially S by the principle of “information never hurts.” [23]

The existence of other constraints may allow for removal of

the cardinality restriction, although most existing algorithms

for MES have assumed specified cardinality.

This paper considers the following constrained decision

called generalized MES:

max
s⊂S

log det P [s, s] − log det Q[s, s]

s.t. Aeqy = beq, Ay ≤ b

yT Gky ≤ gk, k = 1, · · · ,m,

(GMES)

with Q ≻ 0 being diagonal. The i-th element of the binary

vector y ∈ {0, 1}N is related to s such that yi = 1 if i ∈ s,

and 0 otherwise. In the context of sensor networks, Q may

represent the posterior covariance matrix for the search space

by the backward selection formulation described in Choi et

al. [6]. Since Q is diagonal, log det Q[s, s] =
∑N

i=1 yi log qii

where qii is the (i, i) element of Q. Regarding the con-

straints, a linear equality constraint can represent the car-

dinality constraint, while a linear inequality constraint can

model power (or economic) budget limitation. The quadratic

constraints can be used to represent restriction of communi-

cation capability. Note that the quadratic constraints defined

by Gk ∈ R
N×N and gk ∈ R are in general nonconvex. To

the authors’ best knowledge, no optimization algorithm for

MES has taken into account quadratic constraints, although

information maximization with consideration of communi-

cation budget has been one of the most important issues in

sensor network applications.

B. Mixed-Integer Semidefinite Program Formulation

This work poses the following mixed-integer semidefinite

program (MISDP), which is a mixed-integer convex program

(MICP), to address (GMES) described in the previous sec-

tion:

max
y,x

f(y,x) ≡ log det S(y,x) + cT y + dT x (P)

s.t.

S(y,x) ≡ I +
∑N

i=1yiYi +
∑N−1

i=1

∑

j>ixijXij ≻ 0 (1)

xij ≤ yi, xij ≤ yj , xij ≥ yi + yj − 1, ∀i, ∀j > i (2)

Aeqy + Beqx = beq, Ay + Bx ≤ b (3)

y ∈ {0, 1}N , x ∈ [0, 1]N(N−1)/2 (4)

where Yi and Xij are defined as

Yi = (pii − 1)[eie
T
i ], Xij = pij [eie

T
j + eje

T
i ]. (5)

pij is the (i, j) element of the matrix P , and ei is the i-th
unit vector. The set of linear constraints in (2) equivalently
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represent the bilinear relation xij = yiyj when yi and yj are

integers. Thus, (2) being satisfied, S(y,x) is related to the

original covariance as follows

[S(y,x)]ij =

{

pij , if yi = yj = 1

δij , otherwise
(6)

where δij is a Kronecker delta. Thus, the determinant of

S(y,x) is equal to that of P [s, s]. The linear matrix inequal-

ity (LMI) constraint in (1) maintains the positive definiteness

of S(y,x); note that positive definiteness is always satisfied

with binary y and corresponding x that satisfies (2). Also

note that a nonconvex quadratic constraint in (GMES) can

be written as a linear constraint in terms of both y and

x by replacing y2
i by yi and yiyj by xij for binary yi’s.

Similarly, the linear term dT x in the objective function

enables consideration of a bilinear cost function, although

it is not involved in (GMES).

Observe that (P) becomes a convex program if integrality

of y is relaxed, since LMI and linear constraints comprise

a convex feasible set and log det(·) is a concave function

in the space of symmetric positive definite matrices [26]. It

should be pointed out that (P) is not the only possible way

to formulate a MICP for GMES; however, the authors have

found that the rational-exponential mixture formulation given

in [15] is not suitable for the purpose of applying the outer-

approximation algorithm because the gradient and Hessian

are not defined everywhere for that formulation, while (P)

might not be suitable for implementing branch-and-bound

because of the computational burden of solving a large SDP

relaxation.

III. ALGORITHM

A. Primal Problem

The primal problem for the k-th iteration of the OA

algorithm is, in general, a convex program finding a best real

decision vector x⋆(yk) for a given integer decision vector

yk. In the case of pure integer programming, this reduces to

a function evaluation using yk. It is noticed that the latter

is the case for (P), although continuous decision variables

xij’s are apparently involved. For any integer yk, constraint

(2) restricts the feasible set for x to a singleton; the primal

optimal solution is

x⋆
ij(y

k) = yk
i yk

j (7)

for a feasible yk. Then, the primal optimal objective value

f(yk,x⋆(yk)) becomes an underestimate of the optimal

value of (P); if it is larger than the tightest lower bound

LBD, it replaces LBD.

The integer vector yk is the optimal solution to (k−1)-th
relaxed master problem (section III-B) for k > 1; such yk

is always a feasible solution to (P), if (P) itself is a feasible

problem. In order to generate the initial binary vector y1,

this work proposes a MILP feasibility problem:

max
y,x

∑N
i=1yi log pii + cT y + dT x

subject to the same linear constraints as (P). This MILP

provides an upper bounding solution to feasible (P) [7];

its infeasibility means (P) is an infeasible problem. In case

the only constraint is cardinality restriction, the greedy

solution [6] is a good feasible candidate for y1.

B. Relaxed Master Problem

The relaxed master problem is, in general, a mixed-integer

linear program that optimizes the linear outer approximation

of the objective function linearized at primal solution points

over the feasible set. The relaxed master problem of (P) for

the k-th iteration is written as follows:

max
ηk, y,x

ηk (Mk)

s.t.

ηk ≤ f(ym,x⋆(ym))

+ ∇f(ym,x⋆(ym))T

(

y − ym

x − x⋆(ym)

)

, ∀m ≤ k (8)

xij ≤ yi, xij ≤ yj , xij ≥ yi + yj − 1, ∀i, ∀j > i (9)

Aeqy + Beqx = beq, Ay + Bx ≤ b (10)

ηk ∈ R, y ∈ {0, 1}N , x ∈ [0, 1]N(N−1)/2. (11)

The outer approximation of the LMI constraint in (1) can

be neglected because (9) defines a subset of the feasible set

of the LMI. Note that ηk is non-increasing in k because

one constraint is added at every iteration, and it provides an

upper bound on the optimal value f⋆. Thus, at every iteration

ηk represents the tightest upper bound UBD. The algorithm

terminates when UBD = LBD at a global optimum; every

(Mk) is feasible before termination, if (P) is feasible.

The gradient of the objective function ∇f(y,x⋆(y)) can

be computed as

∂f
∂yi

=
[

S(y,x)−1
]

ii
(pii − 1) + ci (12)

∂f
∂xij

∣

∣

x⋆(y)
= 2

[

S(y,x)−1
]

ij
pij + dij (13)

by exploiting the self-concordance of the log det function

[25] where ci and dij are corresponding elements in the

linear objective term. It is noted that computation of the

above gradient does not require inversion of a (possibly)

large matrix S(y,x), which was often required for the case

for the NLP-based branch-and-bound algorithm [15], since

S(y,x)−1 is a sparse matrix with a very special form. It can

be shown that

[

S(y,x)−1
]

ii
= 1, if yi = 0 (14)

[

S(y,x)−1
]

ij: i 6=j
= 0, unless yi = yj = 1. (15)

Therefore, S(y,x)−1 can be computed effectively by invert-

ing the submatrix corresponding to those yi = 1.

IV. NUMERICAL EXPERIMENTS WITH MES

For validation of the proposed method, unconstrained

MES problems that involve only the cardinality condition

are first considered. Monte-Carlo experiments are performed

using MATLAB 7.1 with TOMLAB/CPLEX 10.0 [27] to

1820



TABLE I

AVERAGE COMPUTATION TIME (SEC.) [# OF UBD COMPUTATIONS]

N n OA BB-NLP # of cand.

20 10 3.5 [19.4] 11.1 [3.4] 184756

30 10 10.7 [20.8] 124.9 [8.6] 30045015

30 15 288.9 [122.8] 103.6 [10.6] 155117520

40 10 46.4 [36.0] >1000 [N/A] 847660528

solve the MILP relaxed master problems. The covariance

matrix is randomly generated as:

P = 1
M−1 ΠΠT , Π ∈ R

N×M (16)

where each entry Πij is i.i.d with N (0, 1). For the purpose of

comparison, NLP-based branch-and-bound (BB-NLP) [15]

is also implemented for the same setting, with TOM-

LAB/BARNLP [28] being used to solve the associated NLP

relaxations. The greedy rule [10] is adopted to determine

the branching order, and a node corresponding to the largest

upper bound is selected first. Optimality of the solutions by

OA and BB-NLP is verified by comparing them with the

solution from explicit enumeration with small-size problems.

Table I represents the average computation time and the

average number of upper-bounding problems – MILPs for

OA and NLPs for BB-NLP – of both algorithms. Five

different P matrices for each (N,n) setting are generated

with M(= 10N) sample vectors. The initial binary value y1

is selected in a greedy way. It is found that both algorithms

perform comparably in general; but, for a certain size of

problem OA performs much faster than BB-NLP.

V. SENSOR MANAGEMENT PROBLEM

A. Problem Description

The sensor management problem [4] addresses decision

making on which sensors located at fixed positions to turn

on under a limited communication budget, to reduce the

uncertainty in the position and velocity estimate of a moving

target over a specified time horizon. The motion of the target

in two-dimensional space is assumed to be modeled by the

following linear state-space model:

xt+1 = Fxt + wt (17)

where x = [px vx py vy]
T

and wt ∼ N (0,W ) is a white

Gaussian noise. F and W are given as

F =









1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1









, W = w











τ3

3
τ2

2 0 0
τ2

2 τ 0 0

0 0 τ3

3
τ2

2

0 0 τ2

2 τ











. (18)

The target is supposed to move along a straight line with

constant speed, but the process noise represented by a

random walk in acceleration perturbs the trajectory.

Denoting the measurement taken by s-th sensor at time t
as zs

t , a nonlinear measurement model is assumed:

zs
t = h(xt, s) + vs

t (19)

where vs
t ∼ N (0, Ri) that is independent of process noises

and sensing noises for other sensors. Each sensor measures

the quasi-distance h(xt, s) = α/(||Lxk − ls||22 +β) where L
is the matrix that extracts the position components from the

state, and ls is the location of s-th sensor. The constants α
and β are selected to model the signal-to-noise ratio (SNR)

of the sensor.

The one-step lookahead sensor management decision at

time t considers the following maximum information gain

sensor selection:

max
st

H(xt|z0:t−1) −H(xt|z
st

t , z0:t−1) (20)

where z0:t−1 and zst

t denote the measurement sequence up

until time t−1, and the current measurement taken by sensors

s ∈ st, respectively; H(X1|X2) represents the conditional

entropy of a random vector X1 conditioned on X2. Note

that formulation (20) is equivalent to the following backward

formulation:

max
st

H(zst

t |z0:t−1) −H(zst

t |xt, z0:t−1) (21)

as a result of the commutativity of the mutual informa-

tion [23]. The backward formulation provides better com-

putational efficiency [6] and leads to a (GMES) problem

under the linear Gaussian assumption. The linear Gaussian

assumption means the entropy values of zt can be well

approximated by the log det of its covariance matrix that

can be derived by linearly propagating the covariance of the

state estimate. Then, the prior entropy of zt is presented as

H(zst

t |z0:t−1) = 1
2 log det

(

Hst

t Pxt|z0:t−1
(Hst

t )T +Rst

)

+λ

where λ = 1
2 log(2πe)|st| and Hst

t is Jacobian of the

observation function each row of which is represented as

Hs
t = −2α

||Lxt−ls||2
2
+β

(Lxt − ls)T L, ∀s ∈ st. (22)

Since the current measurement is conditionally independent

of previous measurements for a given current state, the

posterior entropy term is very simple:

H(zst

t |xt, z0:t−1) = 1
2

∑

s∈st
log Rs + λ. (23)

The selection decision incurs communication cost depend-

ing on the communication topology. This work assumes that

direct communication between two sensors incurs a cost

proportional to the squared distance between them: B̃ij =
γ||li−lj ||22 with an appropriate scaling coefficient γ, and that

distant sensors can communicate each other using a multi-

hop scheme. Thus, the communication cost between two

arbitrary sensors is the accumulated cost along the shortest

(in a squared distance sense) path: Bij =
∑nij

k=1 B̃ik−1ik

where {i0, · · · , inij
} is the shortest path from the sensor i =

i0 to j = inij
. This work considers a particular worst case

scenario in which every sensor must communicate to every

other sensor in the selected set. The communication budget

constraint in this case is written as
∑

i,j∈st
Bij ≤ Bmax.

Thus, sensor selection with a communication constraint

can be written as a generalized maximum entropy sampling

problem:

max
st

log det PS [st, st] −
∑N

i=1yi log Ri

s.t.
∑N

i=1

∑

j>iBijyiyj ≤ Bmax

(GMES-S)

1821



where the covariance matrix of the search space PS ∈ R
N×N

is defined as PS ≡ HS
t Pxt|z0:t−1

(HS
t )T + RS . Note that

the cardinality of st is not specified in advance. In this

work, the state covariance estimate Pxt|z0:t−1
is provided

by an extended Kalman filter (EKF). Given this information,

the presented outer-approximation algorithm can be imple-

mented to (GMES-S) straightforwardly.

B. Modification of BB-NLP

A modified version of BB-NLP method is considered

for comparison with the proposed outer-approximation al-

gorithm; modification is needed because the original BB-

NLP cannot handle quadratic constraints and unspecified

cardinality. Introducing additional real variables xij = yiyj

with the set of constraints in (2) enables BB-NLP to deal

with quadratic constraints. The original BB-NLP explicitly

utilizes cardinality information to effectively construct the

branch-and-bound tree. Two types of modification can be

conceived regarding unspecified cardinality. One way is

solving (GMES-S) with an additional cardinality constraint

1T y = n for reasonably chosen values of n – call this way

BB-NLP(1). The other way is modifying the branch-and-

bound tree in such a way that lower bounds are computed

for intermediate nodes as well as the leaf nodes, and leaf

nodes are determined by infeasibility of the communication

constraint rather than by the cardinality – denote this as

BB-NLP(2). It was found empirically that the first way is

usually faster than the second for small-size problems, while

the opposite is the case for large-size problems.

C. Numerical Results

For numerical experiments, the following parameter values

are set to be the same as in [4]:

τ = 0.25, w = 0.01, α = 2000, β = 100, Ri = 1. (24)

A total of N sensors are located at fixed locations determined

randomly on a 20× 20 two-dimensional space; the pairwise

communication cost values Bij’s are computed by solving

a shortest-path problem using dynamic programming [29].

The initial state value is x0 = [0, 2, 0, 2]
T

, which results

in the nominal position at t-th time step (0.5t, 0.5t). The

(GMES-S) sensor selection is addressed at time t = 20,

before which an EKF has used randomly selected n0 = 10
sensor measurements for state estimation every time step.

N = 30, 40 are used; five randomly generated sets of

sensor deployments are considered for each N , while three

different values of Bmax = 100, 200, 300 are taken into ac-

count for each deployment. The modified branch-and-bound

method, BB-NLP(2) is used, as it performs faster than BB-

NLP(1) for most problems of this size. Every MILP relaxed

master problem in OA is solved using TOMLAB/CPLEX

10.0; TOMLAB/KNITRO [30] is utilized to solve NLP upper

bounding subproblems for BB-NLP(2).

Table II shows average computation times and numbers of

upper bounding problems for OA and BB-NLP(2) for various

(N,Bmax) settings. The maximum cardinality of feasible

sensor selection, nmax, is also tabulated as an indicator of

TABLE II

AVG. COMP. TIME (SEC.) [# OF UBD COMPUTATIONS] FOR SMP

N Bmax OA BB-NLP nmax

30 100 8.9 [7.0] 633.6 [4216] 6

30 200 20.2 [14.3] 870.6 [6794] 7

30 300 69.9 [27.8] 1419.8 [12017] 7.75

40 100 101.8 [38.0] >1hr [N/A] 7

40 200 216.7 [37.3] >1hr [N/A] 7.67

40 300 934.9 [83.5] >1hr [N/A] 8.33

the problem complexity. Optimality of the solutions from

OA and BB-NLP(2) are verified by crosscheck. First, it is

noticeable that OA performs an order-of-magnitude faster

than BB-NLP(2) with less than 100 subproblem calculations

being needed for all the cases. BB-NLP requires a much

larger number of subproblem computations than OA, while

it solved less subproblems than OA for unconstrained MES

cases. Seeing as unit computation time per UBD computation

for BB-NLP is small, it can be inferred that the main cause

of large computation time for BB-NLP is not merely intro-

duction of additional variables xij’s but weakness of upper

bounds from its NLP relaxations. The linear representation

in (2) is equivalent to the bilinear relation xij = yiyj

for integral y; however, such xij can be far from yiyj if

integrality of y is relaxed.

Regarding scalability of OA, bigger N leads to longer

computation time in two aspects: first, it increases the

number of decision variables and constraints, and second,

it results in a larger total number of feasible candidates for a

given Bmax. For the same value of Bmax, computation time

for N = 40 is about ten times longer than for N = 30. It is

also found that bigger Bmax leads to longer computation

time for given N ; however, the total number of UBD

computations does not increase as fast as the computation

time in this case. This implies that the computation time

grows mainly because unit computation time for solving each

MILP increases rather than because upper bounds provided

by the MILPs weaken. Note that the feasible set becomes

larger as Bmax increases; thus, each MILP has to consider a

bigger branch-and-cut tree (CPLEX utilizes branch-and-cut

algorithms for solving a MILP).

The optimal selection for larger Bmax usually consists of

more sensors than that for smaller communication budget –

on average, 5 and 6.75 sensors for Bmax = 100 and 300 for

both N = 30 and 40. On the other hand, Fig. 1 illustrates

the case for which both the solutions for Bmax = 200 and

300 consist of 7 sensors, to effectively represent the trade-

off between information and communication. The solid and

dashdotted lines depict the actual and estimated trajectories

of the target until t = 20 at which the one-step lookahead

sensor management decision is made. The optimal solution

for Bmax = 300 (blue diamonds) turns out to be the optimal

solution for unconstrained MES with fixed cardinality of 7;

thus, it is the best way choosing 7 sensors if an infinite

amount of communication is allowed. Under the limitation

of the communication budget Bmax = 200, the optimal

solution (red squares) selects two nearby sensors instead of

two sensors far from the other five.
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Fig. 1. An illustrative solution representing trade-off between information
and communication (N = 40)

VI. CONCLUDING REMARKS

This work presented the outer-approximation approach

to a generalized maximum entropy sampling problem. The

mixed-integer semidefinite programming formulation was

newly proposed; the outer-approximation algorithm resulting

in a sequence of mixed-integer linear programs is pre-

sented. Numerical experiments verified that the performance

of the suggested method is superior to the existing non-

linear programming-based branch-and-bound method espe-

cially in solving quadratically constrained problems such

as communication-constrained sensor management. Future

work will extend the presented outer-approximation algo-

rithm to more general maximum information gain sam-

pling. Also, other outer-approximation-based algorithms such

as LP/NLP-based branch-and-bound [32] and branch-and-

cut [31] can be adopted within the same MISDP framework.
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