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Abstract— In this paper, an adaptive fuzzy approach is
proposed to deal with robust output tracking of unknown
nonlinear systems with actuator failures. The actuator failures
under consideration can be both of lock-in-place and loss
of effectiveness. By incorporating fuzzy logic approximation,
adaptive algorithm and attenuation technique to our design,
a fault tolerant control law is developed to guarantee desired
output tracking of the controlled system to the given reference
model as well as the closed-loop stability, despite there are
unknown actuator failures and large uncertainties in the system.
A numerical simulation example illustrates the effectiveness of
the proposed control approach.

I. INTRODUCTION

With the development of modern industry, lots of systems

are becoming more and more advanced and complicated.

However, this also makes it more possible that some faults

may occur in these systems. As actuator faults may cause

undesired system behavior and sometimes lead to instability

or even catastrophic accidents, it is very important to develop

fault tolerant control (FTC) approaches that would achieve

control objective in spite of actuator faults. Adaptive control

has been used widely in linear systems to accommodate

actuator faults. For example, lock-in-place (stuck at an un-

known value) failures were compensated based on matching

conditions in [1], loss of effectiveness was studied in [2]-[4]

in the framework of linear matrix inequality and multiple

simultaneous actuator failures were dealt with in [5]-[6]

using Multiple Models, Switching, and Tuning method.

However, most real-life systems are nonlinear in nature.

So, nonlinear adaptive FTC has attracted much attention. Tao

et al also developed adaptive control for nonlinear systems

with actuator failures in [1]. And [7] extended its results to

multiple-input-multiple-output systems based virtual group-

ing. However, only feedback linearizable and parametric-
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strict-feedback systems were considered. Boskovic consid-

ered multiple simultaneous actuator failures for known non-

linear systems in [8]. [9] proposed fault accommodation

approach for systems with Lipschitz nonlinearities. However,

the related results have not appeared in nonlinear systems

whose nonlinearities are completely unknown.

With the development of artificial intelligence, fuzzy logic

and neural network have been introduced into fault detec-

tion and accommodation. Polycarpou presented a general

framework for constructing automated fault diagnosis and

accommodation architectures using on-line approximators in

[10], he furthered his research in [11] based on a neural

network to fault tolerant control of nonlinear flight control

systems. [12]-[15] provided FTC shemes using fuzzy logic

systems (FLSs) or neural networks (NNS), however these

results were obtained on the basis of fault detection and

diagnosis (FDD) mechanism. Since [16] proved that FLSs

are universal approximators and [17] gave the stable adaptive

fuzzy control design for unknown nonlinear systems, many

researchers studied nonlinear systems using adaptive fuzzy

systems to approximate the unknown functions. Though [18]

presented fault tolerant adaptive fuzzy control for a turbine

engine, there is few results on adaptive fuzzy control of sys-

tems with unknown nonlinearities and external disturbances

to accommodate actuator faults without FDD.

This paper studies fault tolerant tracking control for un-

known nonlinear systems with external disturbances against

actuator faults. The main properties compared with the

existing results are that: first, a novel adaptive fuzzy FTC

scheme without FDD is prosed, so the undesired system

behavior caused by false or omitted alarm of FDD mech-

anism is avoided; second, external disturbance is attenuated

effectively to achieve robustness besides the fault tolerant

ability of the closed-loop system; third, our design can

broaden the tolerable fault set by allowing any combination

of lock-in-place and loss of effectiveness happen only if the

system is still controllable. The difficulty in the design is

that the system functions are not continuous because of the

occurred faults, so piecewise analysis is used.

The rest of this paper is organized as follows. Section

II formulates the problem first. Section III introduces the

proposed adaptive fuzzy fault tolerant control scheme. In

Section IV, a numerical simulation example illustrates the

effectiveness of the control method. Finally, Section V con-

cludes this paper.
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II. PROBLEM FORMULATION:

Consider the following nonlinear plant

ẋn = f (x)+
m

∑
i=1

gi(x)ui +d

y = x1

(1)

where x = (x1, x2, · · · , xn)
T = (x1, ẋ1, · · · , x

(n−1)
1 )T ∈U ⊆Rn

is the state vector, U is a compact set in Rn, y ∈ R is the

output, and ui ∈ R is the control input which may fail during

operation, i = 1, 2, · · · , m, m ≥ 2 provides some redundancy

of the actuator so that when some of them are failed, the

remaining part can still drive the system stable and achieve

acceptable performance. This is reasonable because for some

practical systems, the control surfaces can be divided into

several individually actuated segments. For example, the

aileron segments of an aircraft provide some redundancy

needed for failure compensation. f (x) ∈ R and gi(x) ∈ R

are unknown nonlinear smooth functions. d ∈ R denotes the

external disturbance which is unknown but bounded. So we

cannot get the model of the controlled plant.

The failure model under consideration for fault tolerant

control of the system (1) is

uF
i = ρiui, ρi ∈ [ρ

i
, ρ̄i], i ∈ {1,2, · · · ,m} (2)

and

uF
j = ū j, j ∈ {1,2, · · · ,m} (3)

In this failure model, (2) describes the fault of loss of

effectiveness, where ρi denotes the percentage of the remain-

ing effective part of the corresponding actuator, 0 < ρ
i
≤ 1,

0 < ρ̄i ≤ 1, are the lower and upper bounds of ρi respectively,

ρ
i
≤ ρ̄i. If ρ

i
= ρ̄i = 1, there is no failure occurred, i.e. the

actuator is normal. For (2), ρi = 0 which means the complete

loss of effectiveness is not considered since it is included in

(3) for ū j = 0. (3) describes the lock-in-place (stuck at an

unknown value) failure. If (3) has occurred, the actuator must

completely lose the effectiveness, thus the control input has

no impact on the controlled system, but the actuator failure

will bring some disturbances if ū j 6= 0. Actuators can be

failed as (2) or (3), also, both (2) and (3) may occur during

operation.

The reference model is:

ẋm = Amxm +Bmr

ym = Cmxm
(4)

where

Am =













0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · ·
0 0 · · · 0 0 1

−kn − kn−1 · · · − k2 − k1













∈ Rn×n,

Bm = [ 0 · · · · · ·0 1]T ∈ Rn×1

Cm = [1 0 · · · · · ·0 0] ∈ R1×n

(5)

k1, · · · ,kn are constants designed such that sn + k1s(n−1) +
· · ·+ k(n−1)s+ kn is a Hurwitz polynomial.

The objective for actuator fault tolerant control is to use

feedback control design for the plant (1) with the actuator

failures (2) or/and (3), to guarantee that all signals in the

closed-loop system are bounded and robust tracking the

output of the given reference model ym. Here the “robust

tracking” refers to attenuate the fuzzy approximation error

and the external disturbance to a prescribed level η . In order

to accomplish this task, the following basic assumption for

the actuator fault tolerant control problem is needed.

Assumption 1: The plant (1) is so constructed that for any

p actuators fail as (3), 0 ≤ p ≤ m− 1, and all the other(s)

may lose effectiveness as (2), the remaining effective part of

the actuators can still achieve the desired control objective.

Remark 1: From Assumption 1 we can see that, if only

failure (2) occurred in the system, it allows no redundancy of

the actuator; but as long as failure (3) may occur there must

be some redundant actuators for fault-tolerant. Here both (2)

and (3) are taken into account, so we make m ≥ 2.

III. ADAPTIVE FUZZY FAULT TOLERANT CONTROL

In this section, the design of the fault tolerant control using

adaptive fuzzy approach for plant (1) with actuator failures is

presented. Inspired by [1], a specific structure is considered

in order to obtain the closed-loop stability and the robust

output tracking when the system model and the actuator

failures are all uncertain, here we respect to the nonlinear

system under control is unknown and with disturbance; the

failure style (which actuator has failed and as which failure

model), the failure value (ρi and ū j), and the failure time (at

which the failure occurred) are all unknown.

First we rewrite system (1) in its equivalent matrix form:

ẋ = Ax+B( f (x)+gT (x)u+d)
y = Cx

(6)

where g(x) = (g1(x), g2(x), · · · , gm(x))T , u =
(u1, u2, · · · , um)T ,

A =













0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · ·
0 0 · · · 0 0 1

0 0 · · · 0 0 0













∈ Rn×n, B = Bm, C = Cm (7)

Consider the actuator failures described as (2) and (3), the

actual control input vector u can be expressed as

u = ρυ(t)+σ(ū−ρυ(t)) (8)

where υ(t) = [υ1(t), υ2(t), · · · , υm(t)] is the applied control

to be designed, and

ρ = diag{ρ1, ρ2, · · · , ρm},
σ = diag{σ1, σ2, · · · , σm},

σ j =

{

1 i f the jth actuator f ails as (3)
0 otherwise

ū = [ū1, ū2, · · · , ūm]T

(9)

Note that ρυ(t) includes the case where the actuator has no

failure when the corresponding ρi, i ∈ {1, 2, · · · , m}, equals

to 1.
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With the actual input (8) in the presence of actuator

failures (2) and/or (3), the plant (6) can be rewritten as

ẋ = Ax+B( f (x)+gT (x)σ ū+gT (x)(I −σ)ρυ +d),
y = Cx

(10)

where I = diag{1, · · · , 1}m×m. Here a specific proportional

actuation structure is used,

υi(t) = biυ0(t) i = 1, · · · , m (11)

where bi is a nonzero constant, υ0(t) is the control signal

needs to be designed.

With the proportional actuation structure (11), (10) is

equivalent to the following form

ẋ = Ax+B( f (x)+ ∑
j= j1,··· , jp2

g j(x)ū j

+ ∑
j 6= j1,··· , jp2

g j(x)ρ jb jυ0 +d),

y = Cx

(12)

where p2 is the total number of the actuators which fail as

(3), ∑
j 6= j1,··· , jp2

g j(x)ρ jb j 6= 0 from Assumption 1 to accom-

plish the control task. For this condition to be always true,

Assumption 2 is set

Assumption 2: sign(g j(x)) is known.

Without loss of generality, the sign of b j is made the same

as the sign of g j(x), so ∑
j 6= j1,··· , jp2

g j(x)ρ jb j > 0 holds.

Let

f̄ (x) = f (x)+ ∑
j= j1··· jp2

g j(x)ū j

ḡ(x) = ∑
j 6= j1··· jp2

g j(x)ρ jb j
(13)

Then the formation (12) can be described as

ẋ = Ax+B( f̄ (x)+ ḡ(x)υ0 +d),
y = Cx

(14)

Assumption 3: Assume x is available.

Then, if f̄ (x) and ḡ(x) are known, and there is no external

disturbance come into the system, the control signal

υ i
0 =

1

ḡ(x)
(− f̄ (x)− kT x+ r) (15)

with k = (kn · · · k1)
T makes the system (14) meet that

ẋ = Ax−BkT x+Br = Amx+Bmr (16)

which exactly matches the reference model if x(0) = xm(0).
Let e = x− xm, then from (4) and (16), one can get

ė = Ame (17)

From (5) we see that the matrix Am is defined stable, so there

exit symmetric positive definite matrices P and Q such that

AT
mP+PAm ≤−Q (18)

is satisfied. Then from the Lyapnov stability theory, it can

be seen that lim
t→∞

e = 0, thus lim
t→∞

y = ym. So, the conclusion

can be drawn that if the nonlinear functions f̄ (x) and ḡ(x)

are known, and there is no disturbance, with the control law

(15), the output of system (1) will asymptotically track the

output of the reference model (4).

But the problem is that the nonlinear functions f̄ (x) and

ḡ(x) are unknown, thus the ideal control law (15) can not

be applied directly. Since FLS are universal approximators,

they can be used to approximate the unknown functions.

Lemma 1: For any given real continuous function F(x),
on a compact set U ⊆ Rn, there exits an FLS of the following

form that can uniformly approximate F(x) over U to arbitrary

accuracy.

Y (x) = θ T ξ (x)

where θ = (θ1,θ2, · · · ,θM)T is the estimate parameter vector,

and ξ (x) = (ξ1(x),ξ2(x), · · · ,ξM(x))T is the vector of fuzzy

basis functions, M is the number of fuzzy rules. One can

refer to [16] and [17] for more details.

We make the fuzzy approximation of f̄ (x) and ḡ(x) as

ˆ̄f (x) = θ T
f ξ (x)

ˆ̄g(x) = θ T
g ξ (x)

where estimate parameter vectors θ f and θg can be adjusted

by the corresponding adaptive laws respectively. Define the

optimal parameters as

θ ∗
f = argmin

[

sup

∣

∣

∣

ˆ̄f (x)− f̄ (x)
∣

∣

∣

]

θ ∗
g = argmin

[

sup
∣

∣ ˆ̄g(x)− ḡ(x)
∣

∣

]

The minimum approximation error of FLS is

ωe = ( ˆ̄f (x|θ ∗
f )− f̄ (x))+( ˆ̄g(x|θ ∗

g )− ḡ(x))υ0

= (θ ∗
f

T ξ (x)− f̄ (x))+(θ ∗
g

T ξ (x)− ḡ(x))υ0

(19)

The estimate parameter errors are

θ̃ f = θ f −θ ∗
f

θ̃g = θg −θ ∗
g

(20)

The estimate of the ideal control law (15) is obtained as

υ̂ i
0 =

1

ˆ̄g(x)
(− ˆ̄f (x)− kT x+ r) =

1

θ T
g ξ (x)

(−θ T
f ξ (x)− kT x+ r)

(21)

And note that the disturbance should be taken into account

when design the applied control law. Inspired by [19], we

employ extra control signal ua to attenuate the external

disturbance d and the fuzzy logic approximation error ωe

in (19).

ua = −
1

r
BT Pe (22)

where r is a positive scalar value satisfies the following

Riccati-like equation

AT
mP+PAm +Q−

2

r
PBBT P+

1

η2
PBBT P = 0 (23)

η is the prescribed attenuation level.Then the applied control

signal is designed as

υ0 =
1

θ T
g ξ (x)

(−θ T
f ξ (x)− kT x+ua + r) (24)
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We design the adaptive laws as follows:

θ̇ f = γ1eT PBξ (x)

θ̇gi =







γ2eT PBξi(x)υ0 i f θgi > δ or

(θgi = δ and eT PBξi(x)υ0 > 0)
0 otherwise

(25)

where γ1 and γ2 are the adaptive gain, and δ is a chosen small

positive constant. The project algorithm of the adaptive law

is used to keep ˆ̄g(x) off an neighborhood of zero, so that the

proposed control law will be nonsingular. Here we think that

the estimate parameters θ f and θg are within certain bound

by the adjustment of (25) to clarify the presentation. The

adaptive fuzzy control scheme has the following properties.

Theorem 1: With the designed controller (24) and the

adaptive laws (25), the controlled unknown nonlinear system

(1) with external disturbance and unknown actuator failures

(2) and/or (3) will achieve the control objective that all

closed-loop signals are bounded, and the output robustly

tracks the output of the reference model (4) with the fol-

lowing H∞ performance:

∫ t j

t j−1
eT Qe dt ≤ eT (t+j−1)Pe(t+j−1)+ 1

γ1
θ̃ T

f (t+j−1)θ̃ f (t
+
j−1)+

1
γ2

θ̃ T
g (t+j−1)θ̃g(t

+
j−1)+η2

∫ t j

t j−1
ωT ωdt

(26)

where ω = (ωe − d) ∈ L2(t j−1, t j), (t j−1, t j) is the interval

where the actuator failure pattern is unchanged.

Proof: Take the control (24) into the system formulation

(14), and by the reference model (4), we can get the

following error equation

ė = Ax+B( f̄ (x)− ˆ̄f (x)+ ḡ(x)υ0 − ˆ̄g(x)υ0 +d − kT x+ua+
r)−Amxm −Bmr

= Ax−BkT x+Br−B[(θ f −θ ∗
f )

T ξ (x)+(θg −θ ∗
g )T ξ (x)

υ0 +(θ ∗
f

T ξ (x)− f̄ (x))+(θ ∗
g

T ξ (x)− ḡ(x))υ0 −ua −d]

−Amxm −Bmr

= Ame−B(θ̃ T
f ξ (x)+ θ̃ T

g ξ (x)υ0 −ua −ω)

(27)

Suppose that one or more than one actuators fail at time

instant t j, j = 1, 2, · · · , q, 1 ≤ q ≤ m−1 if all faults are of

the form (3), 1 ≤ q ≤ m otherwise. And at time t ∈ (t j−1, t j),
there are p1(0 ≤ p1 ≤ m) actuators fail as (2), and p2(0 ≤
p2 ≤ m−1) actuators fail as (3). Define Lyapunov function

on the interval (t j−1, t j), as

Vj−1 =
1

2
eT Pe+

1

2γ1
θ̃ T

f θ̃ f +
1

2γ2
θ̃ T

g θ̃g (28)

It’s derivative along error equation (27) with the control

signal (24) is

V̇j−1 = 1
2

(

ėT Pe+ eT Pė
)

+ 1
γ1

θ̃ T
f

˙̃θ f + 1
γ2

θ̃ T
g

˙̃θg

= 1
2
[eT AT

mPe− (θ̃ T
f ξ (x)+ θ̃ T

g ξ (x)υ0 −ua −ω)BT Pe+

eT PAme− eT PB(θ̃ T
f ξ (x)+ θ̃ T

g ξ (x)υ0 −ua −ω)]+
1
γ1

θ̃ T
f

˙̃θ f + 1
γ2

θ̃ T
g

˙̃θg

(29)

By the definition of ua in (22), (29) can be rewritten as

V̇j−1 = 1
2
eT (AT

mP+PAm − 2
r
PBBT P)e+ eT PBω − eT PBθ̃ T

f

ξ (x)− eT PBθ̃ T
g ξ (x)υ0 + 1

γ1
θ̃ T

f
˙̃θ f + 1

γ2
θ̃ T

g
˙̃θg

= − 1
2
eT Qe− 1

2η2 eT PBBT Pe+ eT PBω − ε

= − 1
2
eT Qe− 1

2
( 1

η eT PB−ηω)2 + 1
2
η2ω2 − ε

≤− 1
2
eT Qe+ 1

2
η2ω2 − ε

(30)

Where the Riccati-like equation (23), the adaptive laws (25)

and the fact that ˙̃θ f = θ̇ f , ˙̃θg = θ̇g are considered. ε is

defined as follows: ε = 0, if for all i, θgi > δ or θgi =
δ and ξ T PBζiυ0 > 0; ε = ∑i θ̃giξ

T PBζiυ0, otherwise. It can

be proved easily that ε ≥ 0, then the following inequality is

obtained

V̇j−1 ≤−
1

2
eT Qe+

1

2
η2ω2 (31)

Integrating both sides of (31) from t j−1 to t j, and by the de-

finition of the Lyapunov function (28), the H∞ performance

(26) can be obtained, which means that the tracking error e

is bounded. Because θ f and θg are bounded with adaptive

laws (25), then all closed-loop signals are bounded. Thus

Theorem 1 has been proven.

Remark 2: If θ f and θg are bounded with (25), the

following parameter Projection algorithm can be implied to

modify the adaptive laws

θ̇ f =







γ1eT PBξ (x) i f ‖θ f ‖ < M f or

(‖θ f ‖ = M f and eT PBθ T
f ξ (x) < 0)

Pf [·] i f ‖θ f ‖ = M f and eT PBθ T
f ξ (x) > 0

θ̇g =







γ2eT PBξ (x)υ0 i f ‖θg‖ < Mg or(‖θg‖ = Mg and

eT PBθ T
g ξ (x)υ0 < 0)

Pg[·] i f ‖θg‖ = Mg and eT PBθ T
g ξ (x)υ0 > 0

where M f and Mg are the boundary of θ f and θg respectively,

and

Pf [·] = γ1eT PBξ (x)−θ f

γ1eT PBθ T
f ξ (x)

‖θ f ‖2

Pg[·] = γ2eT PBξ (x)υ0 −θg

γ2eT PBθ T
g ξ (x)υ0

‖θg‖2

then θ f and θg can be constrained to be bounded.

Remark 3: Actuators fail at time t = t j, j = 1, 2, · · · , q,

then there may be a finite jumping in the optimal parameters

θ ∗
f and θ ∗

g , so θ̃ f and θ̃g will change their values to form

the new Lyapunov function Vj on the next time interval

(t j, t j+1). Consequently, the H∞ boundary of the output

tracking will jump infinitely. If after some actuator failures,

the the boundary of the output tracking error will jump to

a level that not be satisfying any more, then we can tune

the attenuation level η to further decrease the boundary of

the output tracking error. This can be reasonable because

computer is used to achieve the control task, so the prescribed

attenuation level η can be tuned on-line. For example, if

|e| ≤ me is requested after the initial transient adjustment. If

after some time t, |e| > me, then a higher attenuation level

η will be adopted to recover the requested output tracking
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performance if it is possible. So the proposed control scheme

can guarantee the tracking performance as well as the closed-

loop stability of the controlled system with actuator failures.

IV. SIMULATION EXAMPLE

In this section, the presented adaptive fuzzy fault tolerant

control law is applied to a nonlinear system with external

disturbance and actuator faults described as (2) and (3).

Example: We consider the nonlinear system which can be

written as the following form with redundant actuators and

external disturbance.

ẋ1 = x2

ẋ2 =
5sinx1−0.02x2

2 cosx1 sinx1

3−0.2cosx1 cosx2
+ cos2 x1

3−0.2cosx1 cosx2
u1+

2cos2 x1
3−0.2cosx1 cosx2

u2 +d

(32)

where the actuator of u1 is stuck at 2 at t = 4s, i.e. uF
1 = 2

when t ≥ 4, while the actuator of u2 loses 80% effectiveness

at t = 13s that is uF
2 = 0.2u2 when t ≥ 13 in simulation. The

situation of the failure is already very severe. The external

disturbance d is assumed to be a square wave with the

amplitude 0.05 and the period 2π . The reference model is

as follows:
(

ẋm1

ẋm2

)

=

(

0 1

−1 −2

)(

xm1

xm2

)

+

(

0

1

)

r

where xm = (xm1, xm2)
T = (π/30sin(t), π/30cos(t)), r =

π/15cos(t). Choose k1 = 2, k2 = 1, and Q = diag(10,10).
Then by solving Riccati-like equation (23) one can obtain

P =

[

15 5

5 5

]

γ1 = 0.1, and γ2 = 0.01 for adaptive adjusting. We define

seven fuzzy sets over each axis, which label as F1
i , · · · , F7

i ,

i = 1,2, respectively. The fuzzy membership functions are

µF1
i
(xi) = 1

1+exp(5×(xi+0.6))

µF2
i
(xi) = exp(−(xi +0.4)2)

µF3
i
(xi) = exp(−(xi +0.2)2)

µF4
i
(xi) = exp(−x2

i )

µF5
i
(xi) = exp(−(xi −0.2)2)

µF6
i
(xi) = exp(−(xi −0.4)2)

µF7
i
(xi) = 1

1+exp(−5×(xi−0.6))

So we have M = 7×7 = 49 rules for each fuzzy logic system.

The initial values are selected as θ f (0) = 0, θg(0) = 0.2I49×1,

and x(0) = (0.2, 0.2)T . Two cases are simulated: in one case,

η is 0.1 for all the time; while in the other case, η is changed

from 0.1 to 0.05 when the condition 100
∫ t

0 eT e dt > 2.1
which is equivalent to |e| > me is met due to the severe

actuator failures. The simulation results of the both cases for

0 ≤ t ≤ 40 are shown in Fig.1 - Fig.4

We can see from the results that with the proposed control

scheme, the controlled system can be stable and achieve

robust output tracking performance. However, some severe

actuator failures may cause obvious tracking error between

the output of the system and the reference model (see Fig.1
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Fig. 1. The output tracking with unvaried η
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Fig. 2. 100
∫ t

0 eT e dt with unvaried η
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Fig. 3. The output tracking with variable η
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and Fig.2). If the attenuation level can be changed higher on-

line when the output tracking performance is not satisfying,

the tracking error can be decreased effectively to get almost

perfect output tracking (see Fig.3 and Fig.4).

V. CONCLUSION

This paper studies fault tolerant control problem for un-

known nonlinear systems with actuator failures and external

disturbance. With the developed adaptive fuzzy control law,

the closed-loop system can be guaranteed stable and the

output tracks the reference model output robustly. This is

achieved by an adaptive control law with fuzzy logic systems

approximating the unknown system functions and actuator

failures together, and attenuation technique to attenuate the

influence of both fuzzy logic approximation error and exter-

nal disturbance on the tracking error to a prescribed level,

the adaptive laws adjusting estimate parameters in the fuzzy

logic approximators are obtained on the basis of Lyapunov

stability theory. Note that the proposed adaptive fuzzy fault

tolerant control approach need not resort to the fault detection

and isolation mechanism by adaptively adjust the control

law, thus the undesired system behavior caused by false

alarm or omitted alarm can be avoided. And the fault under

consideration can be lock-in-place, loss of effectiveness or

both of them, so the types of actuator fault that can be

tolerant have been broadened even in unknown nonlinear

system with external disturbance.The simulation results show

the effectiveness of the proposed control scheme though the

fault occurred is severe.
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