
 
 

 

 

Summary: The Fisher information matrix summarizes the 
amount of information in a set of data relative to the 
quantities of interest and forms the basis for the Cramér-
Rao (lower) bound on the uncertainty in an estimate. There 
are many applications of the information matrix in 
modeling, systems analysis, and estimation. This paper 
presents a resampling-based method for computing the 
information matrix together with some new theory related 
to efficient implementation. We show how certain 
properties associated with the likelihood function and the 
error in the estimates of the Hessian matrix can be 
exploited to improve the accuracy of the Monte Carlo-
based estimate of the information matrix.    
 

Key words: System identification; Monte Carlo 
simulation; Cramér-Rao bound; simultaneous perturbation 
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1.  Problem Setting  

The Fisher information matrix has long played an 
important role in parameter estimation and system 
identification (e.g., Ljung, 1999, pp. 215−218). In many 
practical problems, however, the information matrix is 
difficult or impossible to obtain analytically. This includes 
nonlinear and/or non-Gaussian models as well as some 
linear problems (e.g., Segal and Weinstein, 1988; Levy, 
1995).   

In previous work (Spall, 2005), the author has presented 
a relatively simple Monte Carlo means of obtaining the 
Fisher information matrix for use in complex estimation 
settings.  In contrast to the conventional approach, there is 
no need to analytically compute the expected value of 
either the Hessian matrix of the log-likelihood function or 
the outer product of the gradient of the log-likelihood 
function.  The Monte Carlo approach can work with either 
evaluations of the log-likelihood function or evaluations of 
the gradient of the log-likelihood function, depending on 
what information is available. The required expected value 
in the definition of the information matrix is estimated via a 
Monte Carlo averaging combined with a simulation-based 
generation of “artificial” data. An extension to this basic 
Monte Carlo method is given in Das et al. (2007), where it 
is shown that prior knowledge of some of the elements in  
 

 

in the information matrix can lead to improved estimates 
for all elements. 

This paper introduces two simple modifications to the 
approach of Spall (2005) that improve the accuracy of the 
Monte Carlo estimate. These modifications may be 
implemented with little more difficulty than the original 
approach. These modifications may be used with or without 
the approach of Das et al. (2007) for handling prior 
information.    
  

2.  The Fisher Information Matrix and Associated 
Approximations 
 Consider a collection of n random vectors Z ≡ [z1, z2, …, 
zn]T; these vectors are not necessarily i.i.d. Let us assume 
that the general form for the joint probability density or 
probability mass (or hybrid density/mass) function for the 
random data matrix Z is known, but that this function 
depends on an unknown vector θ.  Let the probability 
density/mass function for Z be pZ(ζ|θ) where ζ (“zeta”) is a 
dummy matrix representing the possible outcomes for the 
elements in Z. The corresponding likelihood function, say 
(θ|ζ), satisfies  

θ|ζ) = pZ(ζ|θ).                             (2.1) 
With the definition of the likelihood function in (2.1), we 
are now in a position to present the Fisher information 
matrix. The expectations below are with respect to the data 
set Z. Let L(θ) = −log (θ|Z) (so we are suppressing the 
data dependence in L). 
 The p × p information matrix F(θ) for a differentiable 
log-likelihood function is given by    

( ) T
L LE ∂ ∂⎛ ⎞≡ ⎜ ⎟∂ ∂⎝ ⎠

F θ
θ θ

.                        (2.2) 

In the case where the underlying data {z1, z2, …, zn} are 
independent, the magnitude of F(θ) will grow at a rate 
proportional to n since L will represent a sum of n random 
terms. The bounded quantity ( ) nF θ  is employed as an 
average information matrix over all measurements. Note 
also that when the data depend on some analyst-specified 
inputs , then F(θ) also depends on these inputs. For 
notational convenience—and since many applications 
depend on cases (such as i.i.d. data) where there are no 
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inputs—we suppress this dependence and write F(θ) for 
the information matrix.   
 Except for relatively simple problems, however, the form 
in (2.2) is generally not useful in the practical calculation of 
the information matrix. Computing the expectation of a 
product of multivariate nonlinear functions is usually a 
hopeless task. A well-known equivalent form follows by 
assuming that L is twice continuously differentiable in θ 
(a.s. in Z). That is, the Hessian matrix 

2
( ) T

L∂
≡

∂ ∂
H θ

θ θ
 

is assumed to exist. Further, assume that the likelihood 
function is “regular” in the sense that standard conditions 
such as in Wilks (1962, pp. 408−411; pp. 418−419) or 
Bickel and Doksum (1977, pp. 126−127) hold. One of 
these conditions is that the set {ζ: (θ|ζ) > 0} does not 
depend on θ. A fundamental implication of the regularity 
for the likelihood is that the necessary interchanges of 
differentiation and integration are valid. Then, the 
information matrix is related to the Hessian matrix of L 
through: 

2
( ) T

LE
⎛ ⎞∂

≡ ⎜ ⎟
∂ ∂⎝ ⎠

F θ
θ θ

                       (2.3) 

The form in (2.3) is usually more amenable to calculation 
than the product-based form in (2.2). 
  Note that in some applications, the observed information 
matrix at a particular data set Z (i.e., H(θ)) may be easier to 
compute and/or preferred from an inference point of view 
relative to the actual information matrix F(θ) in (2.3) (e.g., 
Efron and Hinckley, 1978).  Although the method in this 
paper is described for the determination of F(θ), the 
efficient Hessian estimation described in Section 4 may 
also be used directly for the determination of H(θ) when it 
is not easy to calculate the Hessian directly. 

Expression (2.3) directly motivates a Monte Carlo 
simulation-based approach, as given in Spall (2005). Let 
Zpseudo(i) be a Monte-Carlo generated random matrix from 
the assumed distribution for the actual data based on the 
parameters θ taking on some specified value (typically an 
estimated value). Note that Zpseudo(i) represents a sample of 
size n, analogous to the real data Z, and that dim(Zpseudo(i)) 
= dim(Z). Further, let |

ˆ
k iH  represent the kth estimate of 

H(θ) at the data vector Zpseudo(i); |
ˆ

k iH  is to be used in an 
averaging process as described below. As described below, 
the estimate |

ˆ
k iH  is generated via efficient simultaneous 

perturbation (SPSA) principles (Spall, 1992) using either 
log-likelihood L(θ) values (alone) or the gradient (score 
vector) g(θ) ≡ ( )L∂ ∂θ θ  if that is available. The former 
usually corresponds to cases where the likelihood function 
and associated nonlinear process are so complex that no 
gradients are available.  To highlight the fundamental 
commonality of approach, let Gk|i(θ ) represent either a 

gradient approximation (based on L(θ) values) or the exact 
gradient g(θ), as used in the kth Hessian estimate at the 
given Zpseudo(i).   
 Let Δk|i ≡ [Δk1|i, Δk2|i,…, Δkp|i]T be a mean-zero random 
vector such that the scalar elements {Δkj|i} are independent, 
identically distributed, symmetrically distributed random 
variables that are uniformly bounded and satisfy 

( )|1| |kj iE Δ  < ∞.  The latter condition excludes such 
commonly used Monte Carlo distributions as uniform and 
Gaussian.  Further, assume that the Δkj|i are bounded in 
magnitude. Note that the user has full control over the 
choice of the Δkj|i distribution.  A valid (and simple) choice 
is the Bernoulli ± 1 distribution (it is not known at this time 
if this is the “best” distribution to choose for this 
application).   
 The formula for estimating the Hessian at the point θ is: 

| |1 1
| | |

ˆ 1
2 2 2

T
k i k iT T

k i k i k ic c
− −δ δ⎧ ⎫⎪ ⎪⎛ ⎞= +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
( ) ( )

G G
H Δ Δ ,    (2.4) 

where |k iδG  ≡ | |( )k i k ic+G θ Δ  − | |( )k i k ic−G θ Δ , 1
|k i

−Δ  

denotes the vector of inverses of the p individual elements 
of Δk|i , and c > 0 is a “small” constant. The prime rationale 
for (2.4) is that |

ˆ
k iH  is a nearly unbiased estimator of the 

unknown H(θ).  Spall (2000) gives conditions such that the 
Hessian estimate has an O(c2) bias (the main such condition 
is smoothness of L(θ), as reflected in the assumption that 
g(θ) is thrice continuously differentiable in θ near the 
nominal value of interest).   
 The symmetrizing operation in (2.4) (the multiple 1/2 
and the indicated sum) is convenient to maintain a 
symmetric Hessian estimate. To illustrate how the 
individual Hessian estimates may be quite poor, note that 

|
ˆ

k iH  in (2.4) has (at most) rank two (and may not even be 

positive semi-definite). This low quality, however, does not 
prevent the information matrix estimate of interest from 
being accurate since it is not the Hessian per se that is of 
interest. The averaging process eliminates the inadequacies 
of the individual Hessian estimates.    
 The main source of efficiency for (2.4) is the fact that the 
estimate requires only a small (fixed) number of gradient or 
log-likelihood values for any dimension p. When gradient 
estimates are available, only two evaluations are needed 
(i.e., the two values | |( )k i k ic±G θ Δ  = ( )kc±g θ Δ  
evaluated at Zpseudo(i) are used to form the Hessian 
estimate). When only log-likelihood values are available, 
each of the gradient approximations | |( )k i k ic±G θ Δ  require 
two evaluations of L( · ).  Hence, one approximation |

ˆ
k iH  

uses four log-likelihood values. The gradient 
approximations at the two design levels are:  
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| | | | 1
| |2

( ) ( )
( ) k i k i k i k i

k i k k i
L c c L c c

c
c

−± + − ± −
± =G

θ Δ Δ θ Δ Δ
θ Δ Δ                      

(2.5) 
where |k iΔ  =  [ ]1| 2| |, ,...., T

k i k i kp iΔ Δ Δ  is generated in the 
same statistical manner as Δk|i  , but independently of Δk|i (in 
particular, choosing |kj iΔ  as independent Bernoulli ± 1 
random variables is a valid—but not necessary—choice), 

1
|k i

−Δ  denotes the vector of inverses of the p elements of 

|k iΔ  , and c  > 0 (like c) is a small constant. 
 The Monte Carlo approach of Spall (2005) is based on a 
double averaging scheme. The first “inner” average forms 
Hessian estimates at a given Zpseudo(i) (i = 1, 2,..., N) from k 
= 1, 2, ..., M values of |

ˆ
k iH  and the second “outer” average 

combines these sample mean Hessian estimates across the 
N values of pseudo data. Therefore, the Monte Carlo-based 
estimate of F(θ) in Spall (2005), denoted , ( )M NF θ ,  is: 

, |
1 1

1 1 ˆ( )
N M

M N k i
i kN M= =

≡ ∑ ∑F Hθ ,                (2.6) 

or, in equivalent recursive (in i = 1, 2,…, N) form: 

, , 1 |
1

1 1 ˆ( ) ( )
M

M i M i k i
k

i
i iM−

=

−
= + ∑F F Hθ θ        (2.7) 

( ,0MF  = 0). The aim of this paper is to introduce two 
modifications to the “basic” form in (2.6) and (2.7). 
 

3.  Characterization of Error in Hessian Estimate  
 This section provides a few key facts about |

ˆ
k iH , as 

used in the averaging process for the estimation of the 
information matrix (eqn. (2.6)). We will use these facts in 
Sections 4 and 5 to show how the accuracy can be 
improved relative to the basic averaging process in (2.6) 
and (2.7). The probabilistic big-O terms appearing below 
are to be interpreted in the almost surely (a.s.) sense (e.g., 

2( )O c  implies a function that is a.s. bounded when divided 
by c2, c → 0); all associated equalities hold a.s.   
 One of the key ways in which the error in the Fisher 
estimate will be reduced is through the use of feedback. We 
now present an expression for the error in the Hessian 
estimates that is useful in creating the feedback term. From 
Spall (2006), it is known that |

ˆ
k iH  in (2.4) can be 

decomposed into three parts: 
2

| |
ˆ ( ) ( )k i k i O c= + +H H θ Ψ ,                (3.1) 

where Ψk|i is a p × p matrix of terms dependent on H(θ), 
Δk|i , and, when only L values are available, the additional 
perturbation vector |k iΔ  (see Spall, 2006). Note that Ψk|i 
represents the error due to the simultaneous perturbations 
(Δk|i  and, if relevant, |k iΔ ). The specific form and notation 
for the Ψk|i term depends on whether L (θ) values or g(θ) 

values are available,  represented as Ψk|i = ( )
|
L

k iΨ  or Ψk|i = 
( )
|k i
gΨ , respectively, in the notation below. Finally, the big-

O error is a reflection of the bias in the Hessian estimate; in 
the case where only L values are available, the 2( )O c  bias 
assumes that c c  is O(1) (c → 0).  
 Let us define  

1
| | |

T
k i k i k i p

−= −( )D IΔ Δ  and 1
| | |

T
k i k i k i p

−= −( )D IΔ Δ  

where I p is the p × p identity matrix (note that Dk|i and |k iD  
are symmetric when the perturbations are i.i.d. Bernoulli 
distributed). Given Dk|i and |k iD  above, it is shown in Spall 

(2006) that with the | |( )k i k ic±G θ Δ  formed from L 
measurements only (see (2.5)):  

( ) 1
| | | || 2

1
| | | |2 , (3.2)

L T T
k i k i k i k ik i

TT T
k i k i k i k i

⎡ ⎤( ) = +⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+

+

H D HD D H HD

D HD D H HD

Ψ
          

while with the | |( )k i k ic±G θ Δ  formed from direct g values: 
( ) 1 1

| || 2 2( ) T
k i k ik i ≡ +g H HD D HΨ .              (3.3) 

  

4.  Implementation with Independent Perturbation per 
Measurement 
 Let us assume in this section that the n data vectors 
entering each Zpseudo(i) are mutually independent 
(analogous to the real data z1, z2, …, zn being mutually 
independent). The “basic” structure in Section 2 can be 
improved by exploiting this independence. In particular, the 
variance of the elements of the individual Hessian estimates 

|
ˆ

k iH  can be reduced by decomposing |
ˆ

k iH  into a sum of n 
independent estimates, each corresponding to one of the 
data vectors. A separate perturbation vector can then be 
applied to each of the independent estimates, which 
produces variance reduction in the resulting estimate 

,M N′F . the independent perturbations above reduce the 
variance of the elements in the estimate of F(θ) from 

1( )O N  in Spall (2005) to 1 ( )( )O nN . The complete 
version of the paper available upon request includes these 
results.  
 

5.  Feedback-Based Method for F(θ) Estimation 
 Aside from the independent perturbation idea of Section 
4, variance reduction is possible by using the current 
estimate of F(θ) to reduce the variance of the next Hessian 
estimate. This, in turn, reduces the variance of the next 
estimate for F(θ). This feedback idea applies whether or 
not the independent perturbations of Section 4 are used. 
The idea here is in the spirit of Spall (2006), but the context 
is different in that the primary quantity of interest is F(θ), 
not the Hessian matrix. In essence, the variance reduction 
below follows from the fundamental property that var(X) ≤ 
E(X 

2) for any random variable X having a finite second 
moment. 
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 Let ,M N′F  denote the feedback-based form of this 

section. So ,M N′F  is a direct replacement for ,M NF  in 
Sections 2 − 4. Using the basic recursive form in (2.7) as 
the starting point, the feedback-based form for the estimate 
of the information matrix in recursive (in i) form is 

( )

, , 1

| | , 1
1

1( ) ( )

1 ˆ ( ) , (5.1)

M i M i

M

k i k i M i
k

i
i

iM

−

−
=

−′ ′=

⎡ ⎤′+ −⎣ ⎦∑

F F

H F

θ θ

Ψ θ
  

where |k iΨ  = ( )
|
L

k iΨ  or |k iΨ  = ( )
|k i
gΨ  from (3.2) or (3.3), as 

appropriate ( ,0M′F  = 0). Note that the current best estimate 
of F(θ) (i.e., , 1M i−′F ) is used in place of H when evaluating 

|k iΨ ). 
  The main result related to improved accuracy is 
Theorem 1 (and its Corollary 1) below. Because of the 
frequent need to refer to the specific θ of interest, as well as 
expansions of functions around that point of interest, we let 
θ∗  represent the particular θ at which we wish to determine 
F(θ); also, for convenience, let F∗ = F(θ∗). As a first step 
towards analyzing the variance reduction due to feedback, 
we show in the Lemma below that  ,M N′F  → F∗ + O(c2) in 
mean square as N → ∞ (fixed M). The results below apply 
when |

ˆ
k iH  is formed from either L(θ) values (alone) or 

from gradient (score) values g(θ ) and/or when the 
independent perturbation idea of Section 4 is used. 
Following the previously established notation for the third 
derivatives of L, let L′′′′(θ) denote the 1 × p4 row vector of 
all possible fourth derivatives of L. Vector and matrix 
norms are the standard Euclidean norm; in the matrix case, 
this corresponds to the Frobenius norm: 2A  
= 2

iji j
a∑ ∑ , where the aij are the components of A. 

  

Lemma. For some open neighborhood of θ∗, suppose 
L′′′′(θ) exists continuously (a.s. in Z) and that 

( )2( )E L′′′′ θ  is bounded in magnitude. Further, let 

( )2
|

ˆ
k iE H  < ∞ (recall that the |

ˆ
k iH  are identically 

distributed for all k and i). Then, given the basic conditions 
on Δk|i in Section 2 (applying also to |k iΔ  when only L 
values are used for |

ˆ
k iH ), ( )2

, ( )M NE ∗ ∗′ − −F F B θ  → 0 
as N → ∞ for any fixed M ≥ 1 and all c sufficiently small, 
where B(θ∗) is a bias matrix satisfying B(θ∗) = O(c2).  
 

Proof. Due to space limitations, we do not include the 
proof of the Lemma here; the proof is available upon 
request. A similar proof is in Spall (2006).  
 

 We are now in a position to establish that feedback 
reduces the asymptotic mean-squared error of the estimate 
for the information matrix. In the proofs of Theorem 1 and 
Corollary 1, we use the mean-squared convergence result 

of the Lemma to establish the main result on improved 
accuracy. Note that Theorem 1 and Corollary 1 only 
consider the p ≥ 2 case because at p = 1, ,M N′F  = ,M NF  
due to the errors in (3.2) and (3.3) being identically zero.  
 

Theorem 1. Suppose that the conditions of the Lemma 
hold, p ≥ 2, 

2
( )E ∗⎛ ⎞

⎜ ⎟
⎝ ⎠

H θ  < ∞, F∗ ≥ 0, and F∗ ≠ 0. 
Further, suppose that for some δ > 0 and δ′ > 0 such that 

1(1 )−+ δ  + 1(1 )−′+ δ  = 1, ( )2 2( )E L ′+ δ′′′′ θ  is uniformly 
bounded in magnitude for all θ in an open neighborhood of 
θ∗, ( )2 2

|1 kj iE + δΔ  < ∞ and, when only L values are used, 

( )2 2
|1 kj iE + δΔ  < ∞ (arbitrary i, j, and k by the i.i.d. 

assumption for the perturbation elements). Then the 
accuracy of ,M N′F  is greater than the accuracy of ,M NF  in 
the sense that  

2
,

2
2

,

lim 1 ( )
M N

N
M N

E
O c

E

∗

→∞ ∗

⎡ ⎤′ −⎢ ⎥⎣ ⎦ ≤ +
⎡ ⎤−⎢ ⎥⎣ ⎦

F F

F F
.        (5.2) 

 

Proof. Let Nf , Nf ′ , and f 
∗denote corresponding (arbitrary) 

scalar elements of ,M NF  (no feedback estimate), ,M N′F , 
and F∗, respectively. That is, Nf  and Nf ′  are estimates for 
one of the ( 1) 2p p +  unique elements in the information 
matrix. Further, let ψi , iψH , and iψF  be the corresponding 
scalar elements of the error matrices ( )1| 1i i−′FΨ , 

( )1| ( )i
∗HΨ θ , and 1| ( )i

∗FΨ  (corresponding to the 
component of the information matrix being estimated by 

Nf  and Nf ′ ). Only ( )1| 1i i−′FΨ  is actually computed in the 
algorithm; however, the other two errors, ( )1| ( )i

∗HΨ θ  and 

1| ( )i
∗FΨ , play a key role in the proof below (recall that 

H(θ∗), in general, depends on Zpseudo(i)). Also, let îh  be 
the scalar element of 1|

ˆ
iH  corresponding to the component 

of ,M NF  and ,M N′F  being estimated by Nf  and Nf ′ , 
respectively.  

Because (5.2) is based on the Frobenius norm, it is 
sufficient to show that  

( ) ( )2 2
lim N NN

E f f E f f∗ ∗

→∞

⎡ ⎤ ⎡ ⎤′ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 ≤ 1 + O(c2) 

for all of the ( 1) 2p p +  unique elements. As in the proof 
of the Lemma, without loss of generality, take M = 1. From 
(5.1), 

1

1 ˆ( )
N

N i i
i

f h
N =

′ = − ψ∑ . 

Then, from the fact that ( )2
1|

ˆ
iE H  < ∞ (with ( )2

1|
ˆ

iE H  
= ( )2

1|
ˆ

jE H  for all i and j) and fact that 1,i′F  converges in 

2398



 
 

 

mean square to F∗ + B(θ∗) (Lemma), it is known that the 
mean-squared error 2( )NE f f ∗⎡ ⎤′ −⎣ ⎦  exists for all N. Thus, 
by the standard bias-variance decomposition of mean-
squared error (e.g., Spall, 2003, p. 333),  

2 4
2

1

1 ˆvar( ) ( ) ( )
N

N i i
i

E f f h O c
N

∗

=

⎡ ⎤′ − = − ψ +⎣ ⎦ ∑ ,     (5.3) 

where the summation follows from the uncorrelatedness of 
the summands î ih − ψ , which follows by the independence 
across i of the Δ1|i (and 1|iΔ  when the estimates are based 
only on measurements of L), and the O(c4) term follows 
from the fact that the elements of the bias matrix B(θ∗) are 
O(c2) (the Lemma). Analogously, in the no-feedback case 
(eqns. (2.6) and (2.7)) 

2 4
2

1

1 ˆvar( ) ( ) ( )
N

N i
i

E f f h O c
N

∗

=

⎡ ⎤− = +⎣ ⎦ ∑          (5.4) 

(the specific analytical form of the squared bias 
contribution O(c4) is identical in both the feedback and 
non-feedback cases).  

From expressions (5.3) and (5.4) for the mean-squared 
errors, it is clear that the relative errors in the feedback and 
non-feedback cases are determined by analyzing the 
relative behavior of ˆvar( )i ih − ψ  and ˆvar( )ih . It can then 
be shown that, 

2ˆvar var( ) ( ) ( )i i i i ih h O c− ψ = + ψ − ψ +H ,     (5.5) 
 

2ˆvar var( ) ( ) ( )i i ih h O c= + ψ +H .           (5.6) 

In the case of having direct g values, ei is simpler: ei is a 
numerator of sums of elements in ( )L′′′′ θ  times terms 
within Δ1|i over a denominator of one term from Δ1|i . The 
arguments above then follow analogously, leading to the 
relationships in (5.5) and (5.6).  

Note that hi and iψH  − ψi are uncorrelated and hi and ψi 
are uncorrelated (the uncorrelatedness at each i follows by 
the form for 1|iΨ  and the independence of the Δ1|i , 
Zpseudo(i), and, when the estimates are based only on 
measurements of L, 1|iΔ ). Then, the variance terms on the 
right-hand side of (5.5) and (5.6) satisfy  

var var var( ) ( ) ( )i i i i i ih h+ ψ − ψ = + ψ − ψH H ,     (5.7) 
 

var var var( ) ( ) ( )i i i ih h+ ψ = + ψH H .         (5.8) 
As a vehicle towards characterizing the relative values of 

ˆvar( )i ih − ψ  and ˆvar( )ih  via (5.5) − (5.8), we now show 
that the second term on the right-hand side of (5.7) satisfies 
var( )i iψ − ψH  − var( )i i−ψ ψH F  → O(c2) as i → ∞. Note 
that,  

2 2 2var( ) ( ) ( ) ( )i i i i i iE E⎡ ⎤ ⎡ ⎤− ψ = − ψ = − ψ⎣ ⎦ ⎣ ⎦ψ ψ ψH F H F H F ,                      

(5.9) 
where the first equality follows from ( )iE ψH  = ( )iE ψF  = 
0 and the second equality follows by the independence of 
the Δ1|i , Zpseudo(i), and (when the estimates are based only 
on measurements of L) 1|iΔ  at each i. Hence, from the 
Lemma,   

2lim var var( ) ( ) ( )i i i ii
O c

→∞
⎡ ⎤ψ − ψ − − =⎣ ⎦ψ ψH H F ,   (5.10)  

as desired. Relative to the right-hand side of (5.8),     
2var( ) ( )i iE ⎡ ⎤= ⎣ ⎦ψ ψH H ,                     (5.11) 

implying from (5.9) that var( )i i− ψψH F  ≤ var( )iψH  (the 
inequality is strict when 2( )iE ⎡ ⎤ψ⎣ ⎦

F  ≠ 0; see Corollary 1). 
Therefore, by the principle of Cesàro summability (e.g., 

Apostol, 1974, Theorem 8.48), it is known from (5.5) − 
(5.11) that  

1

1 1 1

1 ˆ ˆlim var var

var var 0 (5.12)

( ) ( )

( ) ( )

N

i i i
N

i

h h
N→∞

=

⎡ ⎤− − ψ⎣ ⎦

= − − ≥ψ ψ ψ

∑
H H F

                 

(it is sufficient to consider only first values, 1ψH  and 1ψF , 
in the limiting variance due to the identical distribution of 

iψH  and iψF ). 
 To establish the result to be proved, we need to ensure 
that the indicated limit in (5.2) exists. From (5.3), (5.4), and 
(5.12) (which show that the numerator and denominator 
have the same 1( )O N  convergence rate to unique limits), 
the limit in (5.2) exists if 1̂var( )h  > 0 for at least one of the 

( 1) 2p p +  elements being estimated (for all sufficiently 
small c). From (5.6) and (5.8), 1̂var( )h  = var(h1) + 

1var( )ψH  + O(c2). In the case where H(θ∗) is 
deterministic, we know from the error decompositions in 
(3.2) and (3.3), that 1var( )ψH  > 0 for at least one element 
because H(θ∗) = F∗ and it is assumed that F∗ ≥ 0 and F∗ ≠ 
0. In the case where H(θ∗) is random (i.e., at least one 
element is non-degenerate random), var(h1) for the non-
degenerate elements exist (by the assumption 

( )2
( )E ∗H θ  < ∞) and satisfy var(h1) > 0. Hence, by 

(5.6) and (5.8), 1̂var( )h  > 0 for at least one element. 
Finally, for any element such that 1̂var( )h  > 0, we know 

by (5.3), (5.4), (5.5), (5.6), and (5.12) that  

( )
( )

2
2

1 1 1
2 2

1 1

2

var var
lim

var var

(5.13)

( ) ( ) ( )
( ) ( ) ( )

1 ( ).

N

N
N

E f f h O c
h O cE f f

O c

∗

→∞ ∗

⎡ ⎤′ −⎢ ⎥ − +⎣ ⎦ =
⎡ ⎤ + +−⎢ ⎥⎣ ⎦

+ ψ ψ
ψ

≤ +

H F

H
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The result to be proved in (5.2) then follows by the fact that 
the results in (5.5) − (5.12) show that any elements with 

1̂var( )h  = 0 do not contribute to the norms in either the 
numerator or denominator. Q.E.D. 
 

 Corollary 1 establishes conditions for strict inequality in 
(5.2). The proof rests on the following: The solution matrix 
X to the equation AX + XB = 0 is unique (X = 0) if and 
only if the square matrices A and −B have no eigenvalues 
in common (Lancaster and Tismenetsky, 1985, p. 414). 
 

Corollary 1 to Theorem 1. Suppose that the conditions of 
Theorem 1 hold, rank(F∗) ≥ 2, and that the elements of Δk|i 
and |k iΔ  are generated according to the Bernoulli ± 1 
distribution. Then the inequality in (5.2) is strict (i.e., < 
instead of ≤). 
 

Proof. From (5.2) and the definition of Frobenius norm, it 
is sufficient to show that the inequality in (5.13) is strict for 
at least one scalar element. From (5.12), this strict 
inequality follows if var( )i i− ψψH F  < var( )iψH , which, 
as noted below (5.11), holds when 2( )iE ⎡ ⎤ψ⎣ ⎦

F  ≠ 0, 
requiring that iψF  cannot be 0 a.s. For both the case of L 
measurements and g measurements, we now establish that 

iψF  cannot be 0 a.s. for at least one scalar element.  
Let rank(F∗) = r ≤ p, and without loss of generality 

assume that the elements of θ are ordered such that the 
upper left r × r block of F∗ is full rank; in the arguments 
below, a subscript  r × r denotes the upper left r × r block of 
the indicated matrix. For the case of L measurements, we 
know from (3.2), 

( )
( )

( )
11| 12| 1 |1|

1
1| 1| 11| 12| 1 |2

1| ; 1| ;1 1
2 2

, ,....,

, ,....,

,

L
i i r ii

i i i i r i

i r r i r r

E

E

∗

∗ ∗

∗ ∗× ×

Δ Δ Δ

= + Δ Δ Δ

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

( )

0 0
0 0 0 0

F

F D D F

D D
F F

Ψ

 

where the first equality follows by the symmetry of F∗ and 
D1|i (the latter due to the assumed Bernoulli distribution for 
the perturbations) and the fact that 1|iD  has mean 0 while 
the second equality follows from D1|i having mean 0 (the 

1| ;i r r×D  submatrix  that remains is from the indicated 
conditioning). Because r r

∗
×F  and r r

∗
×−F  have no 

eigenvalues in common, the above-mentioned result in 
Lancaster and Tismenetsky (1985, p. 414) indicates that 

( )( )
11| 12| 1 |1| , ,....,L

i i r iiE ∗ Δ Δ Δ( )FΨ  = 0 (a necessary 
condition for ( )

1|
L
i

∗( )FΨ  = 0) if and only if 1| ;i r r×D  = 0. 

This cannot happen since 1| ;i r r×D takes on 2r−1 unique 
values (r ≥ 2), none of which are 0.  

Likewise, for the case of g measurements, we know from 
(3.3) that ( )( )

11| 12| 1 |1| , ,....,( ) i i r iiE ∗ Δ Δ Δg FΨ  is equal to the 
right-most expression above for 

( )( )
11| 12| 1 |1| , ,....,L

i i r iiE ∗ Δ Δ Δ( )FΨ . Hence, the same 
reasoning applies using the result in Lancaster and 
Tismenetsky (1985, p. 414). We thus know that iψF  cannot 
be 0 a.s. for at least one element of ( )

1|
L
i

∗( )FΨ  or 
( )
| ( )k i

∗g FΨ  (as relevant), completing the proof. Q.E.D.  
 

Final remarks and acknowledgment: A numerical study 
has been performed on the feedback idea in Section 5, 
showing strong improvement in the quality of the estimate 
on the problem setting considered in Spall (2005); details 
are available upon request. This work was partially 
supported by U.S. Navy Contract N00024-03-D-6606. 
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