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Abstract— We study the problem of “desynchronization”,
i.e., semantics-preserving “asynchronous implementation” of
a “synchronous design”. In a synchronous design, system
components (which we model as input-output automata (I/O-
automata)) communicate over synchronous channels and their
combined behavior can be described using synchronous compo-
sition, whereas in an asynchronous implementation, communi-
cation among components occurs over asynchronous channels
(which we also model as I/O-automata) and the behavior
of an asynchronous implementation can be described us-
ing asynchronous composition. The presence of asynchronous
communication can result in additional behavior that is not
present under synchronous communication and can thus cause
the semantics of a synchronous design to be not preserved
under asynchronous implementation. We formalize the notion
of system response to an input sequence and by using it,
define a criterion for correct desynchronization. We define
the simulation of I/O-automata, and argue that the simulation
of the asynchronous implementation by a synchronous design
is sufficient to guarantee the correctness of desynchroniza-
tion. This is a new way of characterizing the correctness of
desynchronization (as compared to the “iso-/endo-chrony” type
conditions proposed in previous works). Under the practical
assumption that the communication delay is bounded, the
proposed simulation condition is algorithmically verifiable.
Keywords: Synchronous Language, Asynchronous Implementa-
tion, GALS, Desynchronization, Discrete-Event Systems, Input-
Output Automata

I. INTRODUCTION

Synchronous programming languages, such as Esterel,
Lustre and Signal, have been proposed as means for the
design of real-time systems which react to the environment
(see for example [1], [2], [3]). These synchronous languages
rely on synchronous hypothesis that computation and com-
munication are “zero-time”, and a program can react to the
external inputs instantaneously [4]. Synchronous languages
offer numerous advantages in the real-world designs, simpli-
fying specification, synthesis and verification, and providing
the designers with ideal primitives [5]. However, the real-
life architectures do not obey the ideal model of perfect syn-
chrony, namely, “zero-time” computation and instantaneous
broadcast communication [6]. Many systems such as indus-
trial control systems are physically distributed and hence
asynchronous [7]. In the hardware world, when the circuit
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size becomes large, maintaining global synchrony becomes
quite expensive or infeasible [8]. Thus the synchronous
hypothesis can not usually be satisfied, which leads to a
disconnect between a synchronous design and its physical
(non-synchronous) implementation.

A. Desynchronization Problem

In a physical implementation, since the presence of asyn-
chronous communication can result in additional behavior
that is not present under synchronous design, the semantics
of a synchronous design may be not preserved under the
implementation. Thus a primary issue of desynchronization
is the correctness of the implementation, i.e, the preservation
of the synchronous semantics [9]. The efficiency of an im-
plementation is also an important issue, namely, the amount
of overhead required for guaranteeing the correctness [10].
The following example [11], [12] shows the loss of semantics
while performing desynchronization.

Example 1: Suppose a system, as shown in Figure 1,
consists of an arbiter, an emitter and two counters (1bit and
2bit in restart mode and resume mode respectively) operating
concurrently.

Each time the message p arrives from the environment
at the arbiter, it starts or stops the counters by sending
the messages st2, sp2, st1, sp1 alternately, where sti (resp.,
spi) starts (resp., stops) counter-i. Each time the arbiter
receives a message a from the environment, it transmits that
to a counter that is currently running (and if no counter
is currently running the message a is ignored). A running
counter counts the occurrences of message a relayed by the
arbiter and transmits the count value as out to the emitter
when it reaches the maximum count value (“2” for 1bit
counter and “4” for 2bit counter). The emitter then emits
that value to the environment. Note the 1bit counter is reset
when the stop signal sp1 arrives, but no resetting occurs for
the 2bit counter upon the arrival of the stop signal sp2.

Suppose the message sequence received from the envi-
ronment is “paaaappaappaap”. In the synchronous setting,
the sequence of outputs will be “42”. A possible execution
sequence resulting from the same message sequence in an
asynchronous setting is depicted in a message sequence chart
format in Figure 2. In the asynchronous scenario, a message
a that departed earlier than a message sp2 ends up arriving
later than the message sp2. This causes the sequence of
outputs to be “24”. Clearly, the desynchronization leads to a
loss of semantics of the synchronous setting.

The main reason for the loss of semantics is that
not all variables are “present” in all communications,
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Fig. 1. Arbiter-Emitter-Counters system and their models

Fig. 2. Message sequence chart of a possible execution

and the absence of certain variables cannot be sensed
in the asynchronous setting [9]. For example, in a com-
munication from the arbiter to the counter-i, only one
of sti or spi or a is present at any instant, while the
others are absent. For illustration, consider the prefix
“paaaap” of the message sequence mentioned earlier. Then
the following sequence is received by the channel from
the arbiter: (ε, st2, ε)(a, ε, ε)(a, ε, ε)(a, ε, ε)(a, ε, ε)(ε, ε, sp2),
where ε denotes “absent”.

Assuming the first four messages are delivered to the
counter-2 in the same order as they were received by the
channel, the channel state at this point is (a, ε, sp2). Due
to the asynchrony of communication, at this point, it is
possible that sp2 is delivered by the channel to counter-
2 before the delivery of a, resulting in the channel state
of (a, ε, ε). (Another possibility is “in-order” delivery of
a as in the synchronous setting resulting in the channel
state of (ε, ε, sp2).) This scenario is not possible in the
synchronous setting and leads to the loss of correctness under
desynchronization, i.e., an output 2 proceeding an output 4.

B. Related Work

Prior works on the problem of desynchronization include
the latency-insensitive systems [13], the notions of iso-/endo-

chrony [6], and the notions of weak iso-/endo-chrony [10].
A latency-insensitive system is a synchronous distributed

system composed of functional components that exchange
data on communication channels using a latency insensi-
tive protocol which guarantees the preservation of the syn-
chronous semantics [13]. Such a protocol introduces delays
and reduces the speed of the system. Benveniste el al. [6]
proposed the concepts of isochrony and endochrony, where
isochrony requires that when a pair of transitions are not
synchronizable, i.e., they disagree on the value of a shared
variable, then the shared nonempty variable should carry
a contradictory value. Whereas, endochrony requires that a
system should be able to infer presence/absence of all its
input variables incrementally as a function of the current
state and the values of the input variables currently available.
This property is used for “resynchronization”, i.e., recon-
struction of a synchronous behavior from the asynchronous
observation of the system behavior. In [14], it is shown that
using wrappers a system (resp., pair of systems) can always
be made endochronous (resp., isochronous). A drawback of
endochrony is that it is not compositional, i.e., composition
of endochronous system need not be endochronous. In [10],
Potop-Butucaru et al. proposed the weaker notions of weak
endochrony (which is compositional) and weak isochrony,
which together guarantee the correctness of desynchroniza-
tion. Further as the case with iso-/endo-chrony, wrappers can
be designed to make systems weakly iso-/endo-chronous.

C. Contribution

In this paper, we study the problem of correct desyn-
chronization over a “GALS” (globally asynchronous and
locally synchronous) architecture, in which the synchronous
components interact by exchanging signals connected by
asynchronous channels. We model individual systems as
well as asynchronous channels using input-output automata
(I/O automata), and use their compositions to come up
with the models of the synchronous design as well as
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the asynchronous implementation. We define the notion of
simulation of I/O-automata and show that the simulation
of the asynchronous implementation by the synchronous
design suffices for the correctness of desynchronization. This
condition is different from the prior proposed condition
of isochrony [6], and can be verified under the practical
assumption that the communication delay is bounded.

II. NOTATION AND PRELIMINARIES

In this section, we define several notions which are
needed to formulate the problem of desynchronization and
for proposing a solution.

A. System Model

In GALS architecture, the systems communicate with each
other and their environments via communication channels.
We model each system and each communication channel as
an input/output automaton (I/O-automaton). In the following,
the notion A is used to denote A∪{~ε}, for any vector alphabet
A. Note ~ε serves as the identity of concatenation (i.e., α~ε =
~εα = α for any α ∈ A

∗
) and A

∗
= A∗.

Definition 1: An input/output automaton (I/O-automaton)
is a six-tuple G = (X,U, Y, T, X0, Xm), where
• X is the set of state-vectors (can be r-dimensional)
• U is the set of input-vectors (can be p-dimensional)
• Y is the set of output-vectors (can be q-dimensional)
• T ⊆ X × U × Y × X is the transition set, i.e., each

t ∈ T is a four-tuple, t = (ot, ~ut, ~yt, dt), where
– ot ∈ X is the origin state of transition t,
– ~ut ∈ U is the input for transition t,
– ~yt ∈ Y is the output from transition t,
– dt ∈ X is the destination state of transition t

• X0 ⊆ X is the set of initial state-vectors
• Xm ⊆ X is the set of marked (or accepting) states.
For any ~u ∈ U and ~y ∈ Y , some components of ~u and

~y can be “absent”, i.e., letting ~u(i) and ~y(j) denote the ith
and jth components of ~u and ~y respectively, we can have
~u(i) = ε or ~y(j) = ε.

An I/O-automaton G = (X,U, Y, T, X0, Xm) is said to be
deterministic if for all x ∈ X,~u ∈ U ,
• |X0| = 1
• |{t ∈ T |ot = x, ~ut = ~u}| ≤ 1
• |{t ∈ T |ot = x, ~ut = ~ε}| = 0.
In the following, a concatenation of two “vector-

sequences” is taken to be the component-wise concatenation.
For example, for ~u1, ~u2 ∈ U∗, ~u1~u2(i) = ~u1(i)~u2(i), where
i ∈ {1, · · · , p}.

Definition 2: The input-output behavior of a system G is
described by its generated input-output language, L(G) ⊆
(U × Y )∗, where

(~u0, ~y0)(~u1, ~y1) . . . (~un, ~yn) ∈ L(G),

if and only if for each i ≤ n (n ∈ N , the set of natural
numbers), there exists transition ti = (oi, ~ui, ~yi, di) such that
• o0 ∈ X0, and
• di = oi+1 for i < n.

Further if dn ∈ Xm, then (~u0, ~y0)(~u1, ~y1) . . . (~un, ~yn) ∈
Lm(G), which is the marked input-output language of G.

The response of G to an input sequence is defined as
follows.

Definition 3: Given G, the set of all generated (resp.
accepted) responses to an input sequence, µ ∈ U∗, denoted
L(G, µ) ⊆ Y ∗ (resp. Lm(G,µ)), is defined as:

L(G,µ) := {γ ∈ Y ∗ | ∃(~u0, ~y0) . . . (~um, ~ym) ∈ L(G),
and µ = ~u0 . . . ~um, γ = ~y0 . . . ~ym}

Lm(G,µ) := {γ ∈ Y ∗ | ∃(~u0, ~y0) . . . (~um, ~ym) ∈ Lm(G),
and µ = ~u0 . . . ~um, γ = ~y0 . . . ~ym}

Note in the above definition, we have used the fact that
for any trace α ∈ U∗ ∪ Y ∗, α~ε = ~εα = α. In the following,
we only consider the system components which are modeled
as deterministic I/O-automata.

B. Channel Model

Without loss of generality, it is assumed that each channel
carries a single signal. If a channel represents a “bus”, the
entire packet communicated over the bus is viewed as a
single signal. Since multiple signals may be shared between
two systems, we view two systems to be connected by a
“vector-channel”. While each individual channel of a vector-
channel has a FIFO behavior, their asynchronous nature
(i.e., variable delay) causes a vector-channel to unnecessarily
behave in a FIFO manner. Next, an asynchronous vector-
channel is presented by I/O-automaton. Unless otherwise
stated, we will use “channel” to refer to an “asynchronous
vector-channel”.

Definition 4: An asynchronous vector-channel (or simply
a channel) with inputs/outputs belonging to a set Z =

∏
i Zi

is an I/O-automaton,

Ca = (
∏

i

Z∗i , Z, Z, T, {~ε}, {~ε})

possessing transitions of the following form:

(ζ, ~z,~ε, ζ~z); and (ζ,~ε, ~z, ζ\~z).
Here the channel state is a sequence ζ ∈ ∏

i Z∗i , denoting the
sequence that has arrived in the channel but has not departed
yet, i.e., the sequence buffered in the channel. On an arrival
transition (ζ, ~z,~ε, ζ~z), the channel state ζ is appended with a
new input ~z ∈ Z changing it to ζ~z, whereas on a departure
transition (ζ,~ε, ~z, ζ\~z), an output ~z ∈ Z is removed from
the head of the channel state ζ changing it to ζ\~z. Here the
notation “\” is the component-wise “after” operation, i.e.,
ζ\~z is the “suffix vector” whose ith component is obtained
by removing the prefix ~z(i) from ζ(i). Note that in an
arrival (resp., departure) transition nothing is outputted (resp.,
inputted). Thus arrivals and departures occur asynchronously.

Remark 1: Note that in an asynchronous channel, multiple
outputs may be possible for one input due to a variable delay
among the individual channels of a vector-channel, i.e., there
may exist multiple transitions at some state ζ, each with
the same input ~z1 but with different outputs ~z2. This causes
the asynchronous channel model to be nondeterministic in
general (as can be seen in Figure 1).
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Remark 2: The buffering length of an asynchronous chan-
nel is bounded in practice. Supposing the bound is n, the
number of possible channel states are

∏
i(|Zi| + 1)n. Thus

asynchronous channels can be represented by finite-state I/O-
automata.

Remark 3: Note in the synchronous mode of operation
the departure of a channel output occurs before the arrival
of the next channel input. Thus a synchronous channel can be
modeled as a special type of asynchronous channel with I/O-
automaton model Cs = (Z, Z, Z, {(~ε, ~z,~ε, ~z), (~z,~ε, ~z,~ε)|z ∈
Z}, {~ε}, {~ε}), where any arrival transition of the form
(~ε, ~z,~ε, ~z) is immediately followed by the corresponding
departure transition (~z,~ε, ~z,~ε).

C. Synchronous Vs. Asynchronous Composition

When two systems Gi = (Xi, Ui, Yi, Ti, X0,i, Xm,i), i =
1, 2, interact with each other by the way of sharing some
inputs and outputs, their input and output sets are further
partitioned as follows (i, j = 1, 2, i 6= j):

Ui = Pi × S × Iji, Yi = Ei × Iij ,

where
• Pi is private external inputs to system i
• S is shared external inputs between systems i and j
• Ei is external outputs of system i
• Iij is internal outputs of system i to system j.
When G1 and G2 interact synchronously, the “communi-

cation variables” Iij travel over a synchronous channel Cs
ij .

In the synchronous mode of operation, the combined system
is given by the synchronous composition of G1 and G2:

Definition 5: Given I/O-automata, Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), i = 1, 2, their synchronous
composition is given by, G1||G2 := (X1 × X2, P1 ×
P2 × S,E1 × E2, T||, X0,1 × X0,2, Xm,1 × Xm,2), where
T‖ = T a ∪ T b ∪ T c, satisfying:

((o1, o2), (~p1, ~p2, ~s), (~e1, ~e2), (d1, d2)) ∈ T a

⇔ ∃(~i12,~i21) ∈ I12 × I21 − {(~ε,~ε)} :
(o1, (~p1, ~s,~i21), (~e1,~i12), d1) ∈ T1,

(o2, (~p2, ~s,~i12), (~e2,~i21), d2) ∈ T2.

((o1, o2), (~p1,~ε, ~s), (~e1,~ε), (d1, o2)) ∈ T b

⇔ (o1, (~p1, ~s,~ε), (~e1,~ε), d1) ∈ T1.

((o1, o2), (~ε, ~p2, ~s), (~ε,~e2), (o1, d2)) ∈ T c

⇔ (o2, (~p2, ~s,~ε), (~e2,~ε), d2) ∈ T2.
Remark 4: It is obvious that synchronous composition of

two I/O-automata is also an I/O-automaton, and further it
can be verified that the synchronous composition operation
is commutative as well as associative.

Note due to the non-buffering nature of the synchronous
channel, G1‖G2 is isomorphic to G1‖Cs

12‖G2‖Cs
21, and so

there is no need to include Cs
ij explicitly in the definition of

synchronous composition of G1 and G2.

When G1 and G2 interact asynchronously the “commu-
nication variables” Iij travel over an asynchronous channel
Cij . In such a mode, the combined system is given by the
synchronous composition of G1, G2 and the asynchronous
channels:

Definition 6: Given I/O-automata, Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), i = 1, 2, their asynchronous
composition is given by,

G1||aG2 := G1||Ca
12||G2||Ca

21,

where Ca
ij , i, j = 1, 2, i 6= j is an I/O-automaton representing

the asynchronous channel between systems i and j, i.e.,

Ca
ij = (

∏

k

Iij(k)∗, Iij , Iij , Tij , {~ε}, {~ε}).
Remark 5: Note that the asynchronous composition can

be obtained by first encapsulating the output channels within
a system to obtain an “asynchronized” system, and next
taking the synchronous composition of the asynchronized
systems. Formally, in order to define the asynchronous
composition of {Gi, i ≤ n}, we define for each i, the
asynchronized system, Ga

i := Gi‖j 6=iC
a
ij , which is the

encapsulation of Gi and all its output channels. Then ‖a
i Gi =

‖iG
a
i . In this manner, the asynchronous composition is a type

of synchronous composition (of systems encapsulating their
output channels), and so enjoys the same set of properties
such as commutativity and associativity.

Due to the nondeterminism of the asynchronous channels,
the asynchronous composition of G1 and G2 is in general
nondeterministic.

D. Notion of (Bi)-Simulation

The notion of (bi)-similarity of two systems was intro-
duced by Milner [15]. Here we apply the definition to the
context of I/O-automata [16].

Definition 7: Given two I/O-automata Gi =
(Xi, U, Y, Ti, X0,i, Xm,i), i = 1, 2, a binary relation
Φ ⊆ (X1 ∪ X2) × (X1 ∪ X2) is a simulation relation if
(x1, x2) ∈ Φ implies
x1 ∈ Xm,1 ⇒ x2 ∈ Xm,2 and
∀t1 = (x1, ~u1, ~y1, x1) ∈ T1 ∪ T2,
∃t21t22 . . . t2k :
{t2j = (x2j , ~u2j , ~y2j , x2j+1), j ≤ k} ⊆ T1 ∪ T2,
∃j ≤ j′ ≤ k : [~u2j = u1, ~y2j′ = y1] ∧ ∀j 6= j : [~u2j =
~ε ], ∀j 6= j′ : [~y2j = ~ε ],
x21 = x2, (x1, x2k+1) ∈ Φ.

Note when xi ∈ Xi ⊆ X1 ∪X2, (xi, ~u, ~y, x′i) ∈ T1 ∪ T2

if and only if (xi, ~u, ~y, x′i) ∈ Ti. x1 is said to be simulated
by x2, denoted x1 vΦ x2, if exists a simulation relation Φ
such that (x1, x2) ∈ Φ. x1 and x2 are said to be similar (or
simulation equivalent), denoted x1 ∼Φ x2, if x1 vΦ x2 and
x2 vΦ x1. When Φ is symmetric, the similar x1 and x2 are
called bisimilar, denoted x1 'Φ x2.

X1 is said to be simulated by X2, denoted X1 vΦ X2, if
exists a simulation relation Φ such that for each x1 ∈ X1,
exists x2 ∈ X2 and (x1, x2) ∈ Φ. We write X1 ∼Φ X2

if X1 vΦ X2 and X2 vΦ X1. For two I/O automata
Gi = (Xi, U, Y, Ti, X0,i, Xm,i), i = 1, 2, G1 is said to

1731



be simulated by (resp., similar or bisimilar to) G2, denoted
G1 vΦ G2 (resp., G1 ∼Φ G2 or G1 'Φ G2), if exists a
simulation (resp., similarity or bisimulation) relation Φ such
that X0,1 vΦ X0,2 (resp., X0,1 ∼Φ X0,2 or X0,1 'Φ X0,2).
Sometimes we omit the subscript Φ meaning that it is
understood to exist.

Remark 6: It follows from the definition of the simulation
relation Φ that if (x1, x2) ∈ Φ, then x1 ∈ Xm,1 implies
x2 ∈ Xm,2 and

∀t11t12 . . . t1k1 :
{t1j = (x1j , ~u1j , ~y1j , x1j+1), j ≤ k1} ⊆ T1 ∪ T2,
x11 = x1, ~u11 . . . ~u1k1 ∈ U
∃t21t22 . . . t2k2 :
{t2j = (x2j , ~u2j , ~y2j , x2j+1), j ≤ k2} ⊆ T1 ∪ T2,
x21 = x2, ~u11 . . . ~u1k1 = ~u21 . . . ~u2k2 ,
~y11 . . . ~y1k1 = ~y21 . . . ~y2k2 , (x1k1 , x2k2) ∈ Φ.

III. CONDITION FOR CORRECT DESYNCHRONIZATION

In this section, we present a condition that guarantees that
the semantics of a synchronous design is preserved under its
asynchronous implementation. We first present the criterion
for a correct desynchronization.

Definition 8: Given I/O automata Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), i ≤ n, their asynchronous
implementation is correct with respect to their synchronous
design if

∀µ ∈ U∗ : Lm(‖a
i Gi, µ) = Lm(‖iGi, µ),

where U is the set of inputs of the combined system.
The above definition of correct desynchronization requires

that for each input sequence, the set of accepted responses
of an asynchronous implementation is the same as that of
the synchronous design. Note that the equality of accepted
responses is required as this ensures that there is nothing
pending to be delivered in the communication channels.

Remark 7: It should be noted that a tighter criterion for
correctness may be specified in a timed-setting by requiring
that the response additionally meets some timing constraints,
such as an output appears within a certain delay of the cor-
responding input. Adding such timing constraints, however,
does not change the conceptual nature of the problem.

Using the simulation relation of I/O-automata defined
earlier, we propose a sufficient condition for correct desyn-
chronization. We first note that the synchronous composi-
tion of systems is always simulated by their asynchronous
composition. This requires establishing a few properties first.
Lemma 1 states that the synchronous composition preserves
the simulation relation. (A similar result can be found
in [17] but our definition of synchronous composition is
different from that in [17] and so the result in [17] does not
automatically imply the result of Lemma 1.) Due to space
considerations, the proof is omitted.

Lemma 1: Given I/O-automata Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), and G′i =
(X ′

i, Ui, Yi, T
′
i , X

′
0,i, X

′
m,i), i = 1, 2, if there exist simulation

relations Φi such that Gi vΦi G′i, then G1‖G2 v G′1‖G′2.

The following corollary follows from Lemma 1 and the
fact that synchronous composition is associative.

Corollary 1: Given I/O automata Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i) and G′i =
(X ′

i, Ui, Yi, T
′
i , X

′
0,i, X

′
m,i), i ≤ n, if Gi vΦi

G′i for
each i ≤ n, then ‖iGi v ‖iG

′
i.

Using the corollary above, next we prove that the syn-
chronous composition of systems is simulated by their asyn-
chronous composition.

Theorem 1: Given I/O-automata Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), i ≤ n, it holds that
‖iGi v ‖a

i Gi.
Proof: Recall that ‖a

i Gi can be written as ‖Ga
i , where Ga

i =
Gi‖j 6=iC

a
ij , and Ca

ij is the asynchronous channel from Gi to
Gj . In view of Corollary 1, it suffices to show that Gi v Ga

i

for each i.
Recall also that Gi is isomorphic to Gi‖j 6=iC

s
ij , where

Cs
ij is the synchronous channel from Gi to Gj . Further each

Cs
ij has its initial state marked, and transitions of the form

(~ε, ~z,~ε, ~z) followed by (~z,~ε, ~z,~ε), which are also present as
transitions at the marked initial state of Ca

ij . So it follows
that Cs

ij v Ca
ij . Applying Corollary 1, we can conclude that

Gi ≡ Gi‖j 6=iC
s
ij v Gi‖j 6=iC

a
ij = Ga

i , where the notation ≡
denotes the isomorphism. Another application of Corollary 1
provides, ‖iGi v ‖iG

a
i = ‖a

i Gi.
For presenting the main result of the paper, we need the

result of Lemma 2 presented below. Lemma 2 states that
the existence of simulation relation implies system-response
containment. (A result similar as that of Lemma 2 is given in
[17]. However the two settings are not the same, and so the
result of Lemma 2 does not automatically follow from that
in [17].) Due to space considerations, the proof is omitted.

Lemma 2: Given I/O-automata G =
(X, U, Y, T, X0, Xm) and G′ = (X ′, U, Y, T ′, X ′

0, X
′
m),

if G vΦ G′, then ∀µ ∈ U∗, L(G,µ) ⊆ L(G′, µ) and
Lm(G,µ) ⊆ Lm(G′, µ).

Now we are ready to state the main result of this paper that
when the asynchronous composition of systems is simulated
by their synchronous composition, the desynchronization
will be correct.

Theorem 2: Given I/O-automata Gi =
(Xi, Ui, Yi, Ti, X0,i, Xm,i), i ≤ n, (n ∈ N ), let
Ga := ‖a

i Gi, Gs := ‖iGi. If Ga v Gs, then ∀µ ∈ U∗,
Lm(Ga, µ) = Lm(Gs, µ), that is, the asynchronous
implementation Ga is correct with respect to the synchronous
specification Gs.
Proof: Since Ga v Gs, from Lemma 2 we have that ∀µ ∈
U∗, Lm(Ga, µ) ⊆ Lm(Gs, µ). Also by Theorem 1, Gs v
Ga. It follows from a second application of Lemma 2 that
∀µ ∈ U∗, Lm(Gs, µ) ⊆ Lm(Ga, µ). Thus we obtain, ∀µ ∈
U∗, Lm(Gs, µ) = Lm(Ga, µ).

Example 2: Figure 3 shows the synchronous and asyn-
chronous compositions of two simple systems G1 and G2

which are connected by a vector channel C12. The buffering
size of the asynchronous channel is assumed to be one. In
this figure, each transition is labeled by ~u/~y, representing
the input and output of the transition. Also for the sim-
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Fig. 3. Simulation relation between G1||G2 and G1||aG2

plicity of illustration, only a partial automaton model of
the asynchronous channel Ca

12 is shown in Figure 3. (This
simplification comes from the fact that only “11” can arrive
as an input in Ca

12.)
It can be verified that the initial state (0, (~ε,~ε), 0) of

G1||aG2 is simulated by the initial state (0, (~ε,~ε), 0) of
G1||G2, and so the two systems have the same set of
accepted responses to a common sequence of inputs. That
is, the asynchronous composition G1||aG2 preserves the
semantics of the synchronous composition G1‖G2.

Remark 8: Our condition for the correctness of desyn-
chronization, namely the simulation of the asynchronous
system by the synchronous system is different from the
prior correctness notion of isochrony proposed in [6]. In
example 2, the pair of transitions (0, 0/(1, 1), 0) of G1 and
(0, (ε, 1)/ε, 2) or (0, (1, ε)/ε, 3) of G2 are not synchronizable
but not contradictory. It follows that G1 and G2 are not
isochronous, yet as can be seen by their asynchronous com-
position, they have the same accepted input-output response.

Remark 9: From Theorem 2, checking the correctness of
desynchronization requires checking whether Ga = ‖a

i Gi is
simulated by Gs = ‖iGi, which can be done by an existing
algorithm for checking a simulation relation. Note when Gi’s
are finite-state, so is Gs. Also when the communication chan-
nels have bounded buffering lengths (which is the practical
situation), Ga is also finite-state.

IV. CONCLUSION

We studied the problem of correctness of desynchroniza-
tion and presented a framework based on I/O-automata,
their compositions and their input/output responses to clearly
formulate the notion of correctness: the set of responses to
any input sequence is the same in the synchronous design and
in the asynchronous implementation. We defined the notion
of simulation over I/O-automata and concluded that if asyn-
chronous implementation is simulated by the synchronous
specification, then the desynchronization will be correct.
That is, under this condition, the asynchronous implementa-
tion preserves the semantics while moving from synchrony

(design) to asynchrony (implementation) guaranteeing the
correctness of desynchronization. This is a new way of
characterizing the correctness of desynchronization (as com-
pared to the “iso-/endo-chrony” type conditions proposed
in previous works). Under the practical assumption that the
communication delay is bounded, the proposed simulation
condition is algorithmically verifiable. We illustrated our
result through a simple example.
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