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Abstract— Accurate detection and isolation of faults is a
critical component of a reliable fault-tolerant control system. In
a recent work, it has been demonstrated that using a nonlinear
controller to enforce a specific structure in the closed-loop
system allows data-based detection and isolation of certain
faults that would otherwise not be isolable using data-based
techniques without the necessary closed-loop system structure.
In this work, we demonstrate through a multi-unit chemical
process example how this approach can be applied in a plant-
wide setting. Nonlinear, model-based control laws are used to
enforce a decoupling structure in the closed-loop system, and
data-based statistical process monitoring methods are used for
fault detection with isolation of the faults based on the imposed
closed-loop system structure.

I. INTRODUCTION

Implementation of a successful fault-tolerant control struc-

ture in a chemical process setting requires quick and accurate

fault detection and isolation (FDI) [1], [2]. Some of the

major difficulties in performing successful fault detection

and isolation stem from the fact that most chemical plants are

highly nonlinear and frequently have fully coupled dynamics.

This makes process behavior hard to predict and makes

state responses to different faults generally indistinguishable.

Methods of fault detection based on process measurements

as developed in the field of statistical process monitoring

are fairly reliable and accurate for detecting the presence

of a fault [3]. However, fault isolation is a more difficult

task. Generally, fault isolation techniques are divided into

two categories: model-based and data-based. Model-based

techniques rely on a mathematical model of the process to

create dynamic filters and compute residuals that directly

relate to specific faults. Using the model-based approach,

fault isolation can be performed for specific model and

fault structures [4]. On the other hand, data-based methods

of fault detection and isolation rely exclusively on process

measurements. In general, data-based methods require histor-

ical data obtained from the system under faulty behavior in

order to distinguish between faults. Other methods have been

developed that consider the contribution of particular states

to the shift from normal operation [5]. Many data-based

methods take advantage of principle component analysis

(PCA) to more effectively handle large amounts of data or to
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find relationships within the data [6], [7]. It is also common

to group data based on process subsystems or process distinct

timescales as in multi-block or multi-scale PCA [8], [9].

While these methods have had varying degrees of success,

isolation remains a difficult task, particularly for nonlinear

systems where historical data under faulty operation is hard

to obtain or are insufficient to discriminate between faults.

For a comprehensive review of model-based and data-based

fault detection and isolation methods, the reader may refer

to [10], [11].

The focus of this work is to demonstrate in a plant-wide

setting a recently introduced method of fault detection and

isolation that integrates model-based controller design with

data-based fault detection in order to perform fault isola-

tion. In [12], the authors demonstrated how a model-based

controller could be designed to enhance the isolability of

particular faults in the closed-loop system. In this approach,

specific faults are partially decoupled from other states in

the system in order to create a unique response for indi-

vidual faults in the system. Data-based process monitoring

techniques are used to detect the presence of a fault and to

allow isolation based upon the enforced structure within the

closed-loop system. This is demonstrated using a multi-unit

process consisting of a two CSTR system and a flash tank

separator with recycle.

II. PRELIMINARIES

A. Fault Signatures

The objective of this paper is to demonstrate the method

proposed in [12] of controller enhanced fault detection and

isolation in a multi-unit setting. Controller enhanced FDI was

introduced in [12] as a method of dividing the state vector

into a number of partially decoupled subvectors which can be

monitored for their individual responses to particular faults in

the system using process measurements only. Based on their

responses and the system structure imposed by the model-

based controllers, it is possible to discriminate between

individual faults or groups of faults. Dividing the state

vector into partially decoupled subvectors is accomplished

by using model-based control laws to enforce an appropriate

structure. First, in order to understand the necessary structure

to perform isolation, we review the definitions of the inci-

dence graph, the reduced incidence graph and the isolability

graph [12], [13].

Definition 1: The incidence graph of an autonomous sys-

tem ẋ = f(x) with x ∈ Rn is a directed graph defined by n

nodes, one for each state, xi, i = 1 . . . n, of the system. A
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Fig. 1. Isolability graph of the system of Eq.1.

directed arc with origin in node xi and destination in node

xj exists if and only if
∂fj

∂xi
6= 0.

Definition 2: The reduced incidence graph of an au-

tonomous system ẋ = f(x) with x ∈ Rn is the directed

graph of nodes qi, where i = 1, ..., N , that has the maximum

number of nodes, N , and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi =
{xj}. These sets of states are a partition of the state

vector of the system, i.e.,

⋃
Xi = {x1, . . . xn}, Xi

⋂
Xj = ∅, ∀i 6= j.

• A directed arc with origin qi and destination qj exists

if and only if ∂fl

∂xk
6= 0 for some xl ∈ Xi, xk ∈ Xj .

• There are no loops in the graph.

Definition 3: The isolability graph of an autonomous sys-

tem ẋ = f(x, d) with x ∈ Rn, d ∈ Rp is a directed graph

made of the N nodes of the reduced incidence graph of

the system ẋ = f(x, 0) and p additional nodes, one for

each possible fault dk. The graph contains all the arcs of

the reduced incidence graph of the system ẋ = f(x, 0). In

addition, a directed arc with origin in fault node dk and

destination to a state node qj exists if and only if ∂fl

∂dk
6= 0

for some xl ∈ Xj .

These definitions are convenient in presenting the basic

dependencies within a state vector. In most complex systems,

the states are fully coupled and the isolability graph contains

a single node representing all of the states in the system.

However, in systems with partially decoupled dynamics this

graph demonstrates graphicly the partially independent sub-

sets of the state vector. Consider, for example, the following

system:

ẋ1 = −x1 + x2 + d1

ẋ2 = −x2 + x1 + d2

ẋ3 = −x3 + x1 + d3

(1)

Because x1 and x2 are mutually dependent but are not

affected by x3, they form a partially decoupled subsystem

represented by a single node (q1) in the isolability graph

leaving x3 to form a node by itself (q2). Figure 1 shows the

isolability graph for the system of Eq.1. With the isolability

graph of a system, it is possible to consider fault isolation

based upon monitoring the subsystems. For this purpose it is

necessary to review the definition of a fault signature given

below [12]:

Definition 4: The signature of a fault dk of an autonomous

system subject to p faults ẋ = f(x, d) with x ∈ Rn, d ∈
Rp is a binary vector W k of dimension N , where N is

the number of nodes of the reduced incidence graph of the

system. The ith component of W k, denoted W k
i , is equal to

1 if there exists a path in the isolability graph from the node

corresponding to fault k to the node qi corresponding to the

set of states Xi, or 0 otherwise.

Using this definition of a fault signature and the isolability

graph shown in Figure 1, it is possible to identify the fault

signatures for the three faults considered in the system of

Eq.1. In this case, because the node q2 = {x3} does not

affect the node q1 = {x1, x2}, the fault d3 has the signature

W 3 = [0 1] and the two faults d1 and d2 which affect q1

and q2 have the signature W 1 = W 2 = [1 1]. Based on

this, it is expected that a failure in d1 or d2 will affect all

of the states, whereas a failure in d3 is expected to affect

only those in q2. In this regard, it is possible to distinguish

between a failure in d3 from a failure in d1 or d2 based on

the system response. However, it is not generally possible to

discriminate between a failure in d1 and d2.

B. Process Monitoring

The discussion in the previous section focused on deter-

ministic process behavior in which evaluation of the fault

signature based on the isolability graph is straight-forward.

On the other hand, in noisy processes, it is possible to have

false positives and false negatives in determining the affect

of a fault on the state trajectories. In the simulation results

section of this paper, autocorrelated process noise is added

to the right-hand side of the dynamic process model in Eq.5

and white sensor noise is added to process measurements.

For this reason, in order to make a comparison between

the fault signature based on the expected response of the

system from the isolability graph and the system signature

based on the actual behavior, it is necessary to use a method

of monitoring the state trajectories that clearly distinguishes

normal behavior from faulty behavior and is tolerant to

the normal amount of process variation. Additionally, it is

assumed that faults of interest will be sufficiently large

so that their effect will not be masked by normal process

variation.

For the purpose of process monitoring, we use Hotelling’s

T 2 statistic, a well established method in statistical process

control that monitors multivariate data using a single statis-

tic [14]. Because of its suitability for continuous, serially

correlated chemical processes, the method of using single

measurements is applied [15], [16]. The T 2 statistic is

computed using the multivariate state vector (or subset of

the state vector) x ∈ Rn, the expected or desired mean x̄

(the normal operating point) and the estimated covariance

matrix S obtained using h historical measurements of the

system under normal operation:

T 2 = (x − x̄)T S−1(x − x̄). (2)

The upper control limit for the T 2 statistic is obtained from
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its distribution

T 2

UCL =
(h2 − 1)n

h(h − n)
Fα(n, h − n) (3)

where Fα(n, h−n) is the value from the F distribution with

(n, h−n) degrees of freedom corresponding to a confidence

level α.

The T 2 statistic is used to both detect that a fault has

occurred as well as provide the system signature that can be

compared with the fault signatures defined in the isolability

graph. In order to perform these tasks, the T 2 statistic based

on the full state vector x with upper control limit T 2
UCL

is used to detect the presence of a fault. Additionally, the

statistic T 2
i with T 2

UCLi where i = 1, . . . , N that is based on

each of the nodes qi and their corresponding states xj ∈ Xi

is used to monitor the status of each subset of the state vector.

The fault detection and isolation procedure then follows

the steps given below [12]:

1. A fault is detected if T 2(t) > T 2
UCL ∀t tf ≤ t ≤ TP

where tf is the first time T 2 crosses the UCL and

TP is chosen so that the window TP − tf is large

enough to allow fault isolation within a desired degree

of confidence. Choosing TP depends on the process

time constants and potentially on available historical

information on the process behavior.

2. A fault that is detected can be isolated if the signature

vector of the fault W (tf , TP ) can be built as follows:

T 2
i (t) > T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 0.

In such a case, fault dk is detected at time TP if

W (tf , TP ) = W k. If two or more faults are defined

by the same signature, isolation between them is not

possible on the basis of the fault signature obtained from

the isolability graph.

Remark 1: In the data-based FDI method presented above,

the upper control limit is chosen based on common-cause

variance, including process and sensor noise, in order to

minimize false alarms. Additionally, to further avoid false

alarms, a period of persistent failure is required, TP − tf .

For these reasons, small disturbances or failures are likely

to go undetected if the magnitude and effect of the distur-

bance is on the same level as that of the inherent process

variance. Specifically, in order to declare a fault, dk must be

sufficiently large in order for T 2
i (t) to exceed the threshold

T 2
UCLi ∀t tf ≤ t ≤ TP . Clearly, faults that do not meet

the criteria for declaring a fault are, from the point of view

of faulty behavior, not of major consequence. However, it

should be noted that there is the probability (albeit low) that

there is a fault dk that is large enough to signal a fault in the

full state vector, x, but is not large enough to signal a fault

in all of the affected subgroups. In this case, it is possible

to have a false isolation.

C. Controller Design

This approach to fault detection and isolation can be

applied if the signatures of the faults in the closed-loop

system are distinct. The uniqueness of a fault depends on

the structure of the closed-loop system as shown in the

isolability graph. In general, complex nonlinear systems are

fully coupled and faults cannot be isolated using the afore-

mentioned method. In order to perform isolation, the closed-

loop system structure must be such that the isolability graph

has multiple nodes and thus multiple fault signatures. In fully

coupled systems, the appropriate structure can be imposed

in the closed-loop system in order to make such isolation

possible. This can be accomplished implementing a model-

based control law that has been appropriately designed to

enforce an isolable structure in the closed-loop system. As

an example this is demonstrated with the system of Eq.1.

Consider a controller added to the right-hand side of the

dynamic equation for the state x1 of the form:

u = −x2 + v

where v is an external controller that may be used for

stabilizing the system. With this controller, the closed-loop

system takes the form:

ẋ1 = −x1 + d1 + v

ẋ2 = −x2 + x1 + d2

ẋ3 = −x3 + x1 + d3

(4)

Since there are no longer loops in the system, the reduced

incidence graph is now equivalent to the incidence graph

having three nodes (one for each state). Consequently, it

becomes possible to distinguish between faults d1 and d2

using the method described above. This method will be

applied to the reactor-separator system described in the next

section.

III. REACTOR-SEPARATOR PROCESS

A. Process Description and Modeling

The process considered in this study is a three ves-

sel, reactor-separator system consisting of two continuously

stirred tank reactors (CSTRs) and a flash tank separator [17].

A feed stream to the first CSTR contains the reactant A

which is converted into the desired product B. The desired

product can then further react into an undesired side-product

C. The effluent of the first CSTR along with additional fresh

feed makes up the inlet to the second CSTR. The reactions

A → B and B → C (referred to as 1 and 2, respectively)

take place in the two CSTRs in series before the effluent

from CSTR 2 is fed to a flash tank. The overhead vapor

from the flash tank is condensed and recycled to the first

CSTR, and the bottom product stream is removed. A small

portion of the overhead is purged before being recycled to

the first CSTR. All three vessels are assumed to have static

holdup. The dynamic equations describing the behavior of

the system, obtained through material and energy balances
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Fig. 2. Reactor-separator system with recycle.

under standard modeling assumptions, are given below.

dxA1

dt
=

F10

V1

(xA10 − xA1) +
Fr

V1

(xAr − xA1)

−k1e
−E1

RT1 xA1

dxB1

dt
=

F10

V1

(xB10 − xB1) +
Fr

V1

(xBr − xB1)

+k1e
−E1

RT1 xA1 − k2e
−E2

RT1 xB1

dT1

dt
=

F10

V1

(T10 − T1) +
Fr

V1

(T3 − T1) +
Q1

ρCpV1

+−∆H1

Cp
k1e

−E1

RT1 xA1 + −∆H2

Cp
k2e

−E2

RT1 xB1 + u1

dxA2

dt
=

F1

V2

(xA1 − xA2) +
F20

V2

(xA20 − xA2)

−k1e
−E1

RT2 xA2

dxB2

dt
=

F1

V2

(xB1 − xB2) +
F20

V2

(xB20 − xB2)

+k1e
−E1

RT2 xA2 − k2e
−E2

RT2 xB2

dT2

dt
=

F1

V2

(T1 − T2) +
F20

V2

(T20 − T2) +
Q2

ρCpV2

+−∆H1

Cp
k1e

−E1

RT2 xA2 + −∆H2

Cp
k2e

−E2

RT2 xB2 + u2

dxA3

dt
=

F2

V3

(xA2 − xA3) −
Fr + Fp

V3

(xAr − xA3)

dxB3

dt
=

F2

V3

(xB2 − xB3) −
Fr + Fp

V3

(xBr − xB3)

dT3

dt
=

F2

V3

(T2 − T3) +
Q3

ρCpV3

(5)

The definitions for the variables used in Eq.5 can be found

in Table I, with the parameter values given in Table II. Each

of the tanks has an external heat input. In both CSTRs, the

heat input is a manipulated variable for controlling the reac-

tors at the appropriate operating temperature. These are the

only control actuators considered in the system. The model

of the flash tank separator operates under the assumption

that the relative volatility for each of the species remains

TABLE I

PROCESS VARIABLES

xA1, xA2, xA3 mass fractions of A in vessels 1, 2, 3
xB1, xB2, xB3 mass fractions of B in vessels 1, 2, 3
xC1, xC2, xC3 mass fractions of C in vessels 1, 2, 3
xAr , xBr , xCr mass fractions of A, B, C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, 3
T10, T20 feed stream temp. to vessels 1, 2
F1, F2, F3 effluent flow rate from vessels 1, 2, 3
F10, F20 feed stream flow rate to vessels 1, 2
Fr , Fp flow rates of the recycle and purge
V1, V2, V3 volume of vessels 1, 2, 3
u1, u2 manipulated inputs
E1, E2 activation energy for reactions 1, 2
k1, k2 pre-exponential values for reactions 1, 2
∆H1, ∆H2 heats of reaction for reactions 1, 2
αA, αB , αC relative volatilities of A, B, C
Q1, Q2, Q3 heat input into vessels 1, 2, 3
Cp, R heat capacity and gas constant

constant within the operating temperature range of the flash

tank. This assumption allows calculating the mass fractions

in the overhead based upon the mass fractions in the liquid

portion of the vessel. It has also been assumed that there is

a negligible amount of reaction taking place in the separator.

The following algebraic equations model the composition of

the overhead stream relative to the composition of the liquid

holdup in the flash tank:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αAxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αAxC3

αAxA3 + αBxB3 + αCxC3

(6)

The open-loop system of Eq.5 is fully coupled and is

represented by a single node in the reduced incidence graph.

However, using appropriately designed model-based nonlin-

ear state feedback control laws for the manipulated inputs u1

and u2, it is possible to separate the closed-loop system into

four nodes in the isolability graph. Consider the following

nonlinear control laws which decouple the full state vector
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TABLE II

PARAMETER VALUES

T10 = 300, T20 = 300 K

F10 = 1.4 · 10−3, F20 = 1.4 · 10−3 m3

s

Fr = 1.4 · 10−2, Fp = 1.4 · 10−3 m3

s

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5 · 104, E2 = 6 · 104 J
mol

k1 = 2.77 · 103, k2 = 2.5103 1

s

∆H1 = −6 · 104, ∆H2 = −7 · 104 J
mol

Cp = 4.2 · 103 J
kgK

R = 8.314
J

molK

ρ = 1000
kg

m3

Q1 = 3.5 · 105, Q2 = 4.5 · 105, Q3 = 3.5 · 105 J
s

αA = 3.5, αB = 1, αC = 0.5 unitless

into 4 subvectors [18]:

u1 =
Fr

V1

(T3ss − T3) +
∆H1

Cp
k1e

−E1

RT1 (xA1 − xA1ss)

+
∆H2

Cp
k2e

−E2

RT1 (xB1 − xB1ss) + v1

u2 =
∆H1

Cp
k1e

−E1

RT2 (xA2 − xA2ss)

+
∆H2

Cp
k2e

−E2

RT2 (xB2 − xB2ss) + v2

(7)

where the subscript ss refers to values at the steady state, or

set point. The terms v1 and v2 are external controllers used

to stabilize the system and achieve offset-free output tracking

and are defined, according to standard proportional-integral

control formulas, as follows:

v1(t) = K1(T1ss − T1 +
1

τI1

∫ t

0

(T1ss − T1)dt)

v2(t) = K2(T2ss − T2 +
1

τI2

∫ t

0

(T2ss − T2)dt)

(8)

where K1, K2 are the proportional controller gains and

τI1 and τI2 are the integral time constants. The closed-

loop system operating under the control laws defined in

Eqs.7-8 decouples T1 from xA1, xB1 and T3 and T2 from

xA2 and xB2. The four subgroups created by the controller

of Eqs.7-8 are q1 = {T1}, q2 = {T2}, q3 = {T3}
and q4 = {xA1, xA2, xA3, xB1, xB2, xB3}. The resulting

isolability graph is shown in Figure 3. From the isolability

graph the fault signatures can be defined as follows:

W 1 = [1; 1; 1; 1]
W 2 = [0; 1; 1; 1]
W 3 = [0; 0; 1; 0]
W 4 = [0; 0; 0; 1]

(9)

The four faults shown in Figure 3 are those that will

be considered in this example. They represent failures in

the heat inputs to each of the tanks (faults d1, d2, d3)

and a feed stream concentration disturbance in species A

q1 q2

q4 q3

d1 d2

d3d4

Fig. 3. Isolability graph for the reactor-separator system.

in the inlet to CSTR 1 (d4). These are added to the right-

hand side of the dynamic equations for T1, T2, T3 and

xA1. For comparison purposes, in the simulation results,

a PI controller with the form given in Eq.8 is used. This

control law is used for comparing the isolability of faults,

using process measurements only, in the closed-loop system

under PI-only control and in the closed-loop system under

the nonlinear feedback control which enforces the isolable

structure. Although a PI controller is used for comparison in

this work, any controller that does not enforce an isolable

structure in the closed-loop system would yield similarly

indistinguishable faults. Additionally, the PI-only controller

will be used to evaluate the additional cost incurred by the

nonlinear feedback controller in order to enforce an isolable

structure in the closed-loop system.

B. Simulation Results

The model presented in Section III-A was numerically

simulated using a standard Runge-Kutta integration method.

The system was modeled with both process and sensor noise.

The sensor measurement noise was generated as Gaussian

distributed random noise with standard deviation σm and

was added to the state measurement at a sample rate of 0.1

sample/second. Noisy measurements were used in updating

the feedback control law described in Eqs.7-8 on the same

interval. Process noise was added to the right-hand side of

each equation in the system of ODEs found in Eq.5. Process

noise was generated as autocorrelated noise of the form

wk = φwk−1+ξk where k = 0, 1, . . . is the discrete time step

of 1 second, wk is a normally distributed random variable

with standard deviation σp and φ is the autocorrelation

factor. Table III contains the parameters used in generating

the noise. The sensor measurement and process noise were

generated independently for each state in the system. For

purposes of fault detection, a window of 30 seconds was

used in declaring a fault (i.e., TP − tf = 30 sec).

The controllers were designed as shown in Eqs.7-8 using

control parameters K1 = K2 = 0.01
sec

and τI1 = τI2 =
300sec. The PI controllers shown for comparison used the
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Fig. 4. Normalized histogram plots of each of the system states compared
with a normal distribution (dashed) for a large number of measurements
during fault-free operation under nonlinear feedback control

same parameters. The system was controlled at the set point

values of T1ss = 436.8 K and T2ss = 433.9 K. In

all cases, the system was initially at steady-state and was

simulated for 30 min fault-free and for 30 min after the

occurrence of the fault. The four faults were introduced as

added terms on the right-hand side of the ODEs in Eq.5; only

a single fault was applied in each simulation. The values

d1 = 1K
s

, d2 = 2K
s

, d3 = 1K
s

and d4 = −2 · 10−3 1

s

were added to the dynamic equations for T1, T2, T3 and

xA1, respectively. These represent changes in the heat input

(actuator/valve failures) for faults d1, d2 and d3 and an inlet

concentration disturbance in species A for fault d4. However,

these faults could also be thought of as any general faults

as the development of this method does not limit the values

that d can take.

Four simulation scenarios were carried out, one for each

fault, to demonstrate the method of detecting and isolating

faults in the closed-loop system. In order to apply the method

of fault detection and isolation presented in the preliminar-

ies, the data should be multivariate normal and fit the T 2

distribution under closed-loop operation. Figure 4 demon-

strates that the measurements from each of the states closely

approximates a Gaussian distribution. The distribution for

the measured T 2 values is shown in Figure 5. Again we see

that the measured statistic closely approximates the predicted

distribution, however, in this case the fit is less exact due to

correlation between states. Nonetheless, the distribution is

reasonably close. If necessary, the upper control limit can be

adjusted upward to provide a more conservative limit if false

alarms are problem.

Figure 6 shows the trajectories of the mass fractions in

each of the tanks and the recycle stream for the simula-

tion in closed-loop operation under the nonlinear feedback

controller with a failure in d1. The effects of the failure at

time t = 0.5 hr are visible in the plot. The temperature

trajectories for each of the tanks is shown in Figure 7

along with the control action requested. Once the failure is

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Fig. 5. Histogram of T 2 statistic for the full state vector compared with
the expected T 2 distribution (dashed) for a large number of measurements
during fault-free operation under nonlinear feedback control

TABLE III

NOISE PARAMETERS

σm σp φ

xA1 1E-3 1E-3 0.7
xB1 1E-3 1E-3 0.7
T1 1E-3 1E-2 0.7
xA2 1E-3 1E-3 0.7
xB2 1E-3 1E-3 0.7
T2 1E-3 1E-2 0.7
xA3 1E-3 1E-3 0.7
xB3 1E-3 1E-3 0.7
T3 1E-3 1E-2 0.7

detected at t = 0.5 hr, the T 2
i plots are used to determine

the fault signature for the system. Figure 8 shows the T 2

statistic results for the four subsets of the state vector as

well as for the full state vector. The fault is detected at time

t = 0.5 hr by the full T 2 and is isolated based on the four

T 2
i corresponding to the subsets. Based on the T 2

i plots the

signature of the system in this case is W = [1; 1; 1; 1] ≡ W 1.

Thus, the fault is correctly isolated as one affecting the states

in q1 = T1, or d1. Note that although the process data are

serially correlated on a short timescale, this was compensated

for by using a large amount of historical data for estimating

S. Additionally, it has been found that feedback control

makes the closed-loop system data more normally distributed

(see [16]). Thus, the assumption that the data are multivariate

normal for applying the T 2 statistic is reasonable. This was

also confirmed in Figures 4-5. The simulation with a failure

in d1 was repeated using only a PI controller for comparison.

The states were similarly all affected by fault d1 (Figure

omitted for brevity) and the control action requested was of

comparable magnitude with that of the nonlinear feedback

controller (see Figure 9). This demonstrates that the control

action requested by the nonlinear feedback control law to

enforce an isolable structure is not excessive in this case.

For the PI controller, the states of the closed-loop system

are all fully coupled and thus the state trajectories will all

be affected by any fault, making it impossible to distinguish
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Fig. 6. Plots of the mass fractions xA (solid), xB (dashed) and xC

(dotted) for the system under nonlinear feedback control with a failure in
d1 at t = 0.5 hr.
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Fig. 7. (top) Temperature trajectories for T1 (solid), T2 (dashed) and T3

(dotted) for the system under nonlinear feedback control with a failure in
d1 at t = 0.5 hr. (bottom) Control action requested for the same system
for u1 (solid) and u2 (dashed).

between faults on the basis of process measurements. The

simulation with a failure in d2, below, demonstrates this

point.

Figure 10 shows the T 2 results for the simulation in

closed-loop operation under the nonlinear feedback con-

troller with a failure in d2 occurring at t = 0.5 hr. Note

that although there may be a brief violation of the upper

control limit (e.g., at approximately t = 0.2 hr in Figure 10),

this is not declared as a fault nor is it a false alarm since a

fault is declared only after a persistent state of failure lasting

at least 30 seconds to avoid such situations. Once the fault

is declared around time t = 0.5 hr the signature of the

system can be determined from the T 2
i plots which show

W = [0; 1; 1; 1] ≡ W 2. For the PI-only controller, all of the

states were affected as they were in the case with a failure in

d1; however, the case with the nonlinear feedback controller

designed to enforce an isolable structure correctly shows that

T1 is decoupled from the fault, making it possible to isolate.
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Fig. 8. Plots of the T 2 statistic (solid) with the corresponding T 2

UCL
(dashed) for each of the subsystems and for the full state vector under
nonlinear feedback control with a failure in d1 at t = 0.5 hr.
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Fig. 9. (top) Temperature trajectories for T1 (solid), T2 (dashed) and
T3 (dotted) for the system under PI-only control with a failure in d1 at
t = 0.5 hr. (bottom) Control action requested for the same system for u1

(solid) and u2 (dashed).
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Fig. 10. Plots of the T 2 statistic (solid) with the corresponding T 2

UCL
(dashed) for each of the subsystems and for the full state vector under
nonlinear feedback control with a failure in d2 at t = 0.5 hr.
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Fig. 11. Plots of the T 2 statistic (solid) with the corresponding T 2

UCL
(dashed) for each of the subsystems and for the full state vector under
nonlinear feedback control with a failure in d3 at t = 0.5 hr.
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Fig. 12. Plots of the T 2 statistic (solid) with the corresponding T 2

UCL
(dashed) for each of the subsystems and for the full state vector under
nonlinear feedback control with a failure in d4 at t = 0.5 hr.

The T 2 plots for the system under nonlinear feedback

control with a failure in d3 are shown in Figure 11. This

also shows the expected behavior corresponding to the fault

signatures defined in Eq.9; that is, the fault affected only

the temperature of the flash tank and did not influence the

other states. The PI comparison (omitted) showed similar

results as before in that all states were affected and a fault

could not be isolated based on measured data. Finally, note

that for the system under nonlinear feedback control with

a failure in d4 (see Figure 12), the fault signature only

shows that the fault affects the dynamics of the states in

q4 = {xA1, xA2, xA3, xB1, xB2, xB3}. In this case the fault

signature indicates that there is a fault in d4, but is unable

to distinguish between any of the faults that directly affect

the states within this set.

IV. CONCLUSIONS

This work has demonstrated the application of a model-

based nonlinear controller designed to enforce an isolable

structure in the closed-loop system of a multi-unit reactor-

separator chemical process. Fault detection and isolation

were performed using statistical process monitoring tech-

niques and information based upon the imposed closed-loop

system structure. This was demonstrated through numerical

simulation studies of the closed-loop system in the presence

of four different faults. It was shown that by decoupling

faults of interest from certain states, it was possible to

achieve unique system responses to each of the four faults

allowing fault isolation based on process measurements only.
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