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Abstract— The concept of an energy-based hybrid controller
involves a hybrid controller that emulates an approximately
lossless hybrid dynamical system and exploits the feature that
the states of the dynamic controller may be reset to enhance the
overall energy dissipation in the closed-loop system. Specifically,
the controller accumulates the emulated energy and when the
states of the controller coincide with a high emulated energy
level, then we can reset these states to remove the emulated
energy so that the emulated energy is not returned to the plant.
In this paper, we present a general framework for such energy-
based hybrid control for lossless systems and implement it in
real time on the rotational/translational proof-mass actuator
(RTAC) system. The obtained experimental results agree with
the theory and show the efficacy of the presented theoretical
framework.

I. INTRODUCTION

Energy-based control for Euler-Lagrange dynamical sys-
tems and Hamiltonian dynamical systems based on passivity
notions has received considerable attention in the literature
[1], [2], [3], [4], [5], [6]. This controller design technique
achieves system stabilization by shaping the energy of the
closed-loop system which involves the physical system en-
ergy and the controller emulated energy. Specifically, energy
shaping is achieved by modifying the system potential energy
in such a way so that the shaped potential energy function for
the closed-loop system possesses a unique global minimum
at a desired equilibrium point. Next, damping is injected
via feedback control modifying the system dissipation to
guarantee asymptotic stability of the closed-loop system. A
central feature of this energy-based stabilization approach is
that the Lagrangian system form is preserved at the closed-
loop system level. Furthermore, the control action has a
clear physical energy interpretation, wherein the total energy
of the closed-loop Euler-Lagrange system corresponds to
the difference between the physical system energy and the
emulated energy supplied by the controller. Furthermore, a
passivity-based control framework for port-controlled Hamil-
tonian systems is established in [7], [8], [9], [10], [11].
Specifically, the authors in [7], [8], [9] develop a controller
design methodology that achieves stabilization via system
passivation.

More recently, a novel energy-dissipating hybrid control
framework for Lagrangian, port-controlled Hamiltonian, and
dissipative dynamical systems has been developed in [12].
These dynamical systems cover a very broad spectrum of
applications including mechanical, electrical, electromechan-
ical, structural, biological, and power systems. The concept
of an energy-based hybrid controller can be viewed as a
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feedback control technique that exploits the coupling be-
tween a physical dynamical system and an energy-based
controller to efficiently remove energy from the physical
system. Specifically, if a dissipative or lossless plant is at
high energy level, and a lossless feedback controller at a
low energy level is attached to it, then energy will generally
tend to flow from the plant into the controller, decreasing
the plant energy and increasing the controller energy [13].
Of course, emulated energy, and not physical energy, is
accumulated by the controller. Conversely, if the attached
controller is at a high energy level and a plant is at a low
energy level, then energy can flow from the controller to the
plant, since a controller can generate real, physical energy
to effect the required energy flow. Hence, if and when the
controller states coincide with a high emulated energy level,
then we can reset these states to remove the emulated energy
so that the emulated energy is not returned to the plant. In
this case, the overall closed-loop system consisting of the
plant and the controller possesses discontinuous flows since
it combines logical switchings with continuous dynamics,
leading to impulsive differential equations [14], [15], [16],
[17]. Within the context of vibration control using resetting
virtual absorbers, these ideas were first explored in [18].

In this paper, on the example of the RTAC system,
we implement in real time a general framework for the
energy-based hybrid control design for lossless dynamical
systems developed in [12]. The RTAC system represents
a translational oscillator and an attached to it rotational
proof-mass. The nonlinear coupling between the rotational
motion of the proof-mass and translational motion of the cart
provide the basis for control. The problem of control design
for the RTAC system received considerable attention in the
literature. Stabilization of the RTAC system as a benchmark
problem for nonlinear control design has been studied in
[19], [20]. Design of backstepping and passive nonlinear
controllers for the RTAC system appears in [19], [21], while
[18] studies resetting virtual absorbers as a means for energy
dissipation. In addition, parameter dependent switching con-
trollers for the RTAC system were developed in [22]. In the
current paper, the energy-based hybrid control framework
is presented for lossless dynamical systems. However, it
was shown in [17] that the same control framework is
applicable in the case of dissipative dynamical systems. The
experimental results obtained for the RTAC system are in
agreement with numerical simulations.

II. HYBRID CONTROL DESIGN FOR LOSSLESS

DYNAMICAL SYSTEMS

In this and the next section, we present an energy-based
hybrid control framework for lossless and Euler-Lagrange
systems. Specifically, we consider nonlinear dynamical sys-
tems Gp of the form

ẋp(t) = fp(xp(t), u(t)), xp(0) = xp0, t ≥ 0, (1)

y(t) = hp(xp(t)), (2)

where t ≥ 0, xp(t) ∈ Dp ⊆ R
np , Dp is an open set with 0 ∈

Dp, u(t) ∈ R
m, y(t) ∈ R

l, fp : Dp ×R
m → R

np is smooth
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Fig. 1. Feedback interconnection of Gp and Gc.

on Dp × R
m and satisfies fp(0, 0) = 0, and hp : Dp → R

l

is continuous and satisfies hp(0) = 0. Furthermore, for the
nonlinear dynamical system Gp we assume that the required
properties for the existence and uniqueness of solutions are
satisfied, that is, u(·) satisfies sufficient regularity conditions
such that (1) has a unique solution forward in time.

Next, we consider hybrid resetting dynamic controllers Gc
of the form

ẋc(t) = fcc(xc(t), y(t)), xc(0) = xc0,

(xc(t), y(t)) 6∈ Zc, (3)

∆xc(t) = η(y(t)) − xc(t), (xc(t), y(t)) ∈ Zc, (4)

yc(t) = hcc(xc(t), y(t)), (5)

where xc(t) ∈ Dc ⊆ R
nc , Dc is an open set with 0 ∈ Dc,

y(t) ∈ R
l, yc(t) ∈ R

m, fcc : Dc × R
l → R

nc is smooth
on Dc × R

l and satisfies fcc(0, 0) = 0, η : R
l → Dc is

continuous and satisfies η(0) = 0, and hcc : Dc ×R
l → R

m

is continuous and satisfies hcc(0, 0) = 0.

Recall that for the dynamical system Gp given by (1) and
(2), a function s(u, y), where s : R

m × R
l → R is such

that s(0, 0) = 0, is called a supply rate [23] if it is locally
integrable for all input-output pairs satisfying (1) and (2),
that is, for all input-output pairs u(·) ∈ U and y(·) ∈ Y

satisfying (1) and (2), s(·, ·) satisfies
∫ t̂

t
|s(u(σ), y(σ))|dσ <

∞, t, t̂ ≥ 0. Here, U and Y are input and output spaces,
respectively, that are assumed to be closed under the shift
operator. Furthermore, we assume that Gp is lossless with
respect to the supply rate s(u, y), and hence, there exists a
continuous, nonnegative-definite storage function Vs : Dp →
R+ such that Vs(0) = 0 and

Vs(xp(t)) = Vs(xp(t0)) +

∫ t

t0

s(u(σ), y(σ))dσ, t ≥ t0,

for all t0, t ≥ 0, where xp(t), t ≥ t0, is the solution to
(1) with u ∈ U . In addition, we assume that the nonlinear
dynamical system Gp is completely reachable [23] and zero-

state observable [23], and there exists a function κ : R
l →

R
m such that κ(0) = 0 and s(κ(y), y) < 0, y 6= 0, so that

all storage functions Vs(xp), xp ∈ Dp, of Gp are positive
definite [24]. Finally, we assume that Vs(·) is continuously
differentiable.

Consider the negative feedback interconnection of Gp and
Gc given in Figure 1 such that y = uc and u = −yc. In this
case, the closed-loop system G is given by

ẋ(t) = fc(x(t)), x(0) = x0, x(t) 6∈ Z, t ≥ 0, (6)

∆x(t) = fd(x(t)), x(t) ∈ Z, (7)

where t ≥ 0, x(t) , [xT
p (t), xT

c (t)]T, Z = {x ∈ D :
(xc, hp(xp)) ∈ Zc},

fc(x) =

[

fp(xp,−hcc(xc, hp(xp)))
fcc(xc, hp(xp))

]

, (8)

fd(x) =

[

0
η(hp(xp)) − xc

]

. (9)

Assume that there exists an infinitely differentiable function
Vc : Dc × R

l → R+ such that Vc(xc, y) ≥ 0, xc ∈ Dc,
y ∈ R

l, and Vc(xc, y) = 0 if and only if xc = η(y) and

V̇c(xc(t), y(t)) = sc(uc(t), yc(t)),

(xc(t), y(t)) 6∈ Z, t ≥ 0, (10)

where sc : R
l × R

m → R is such that sc(0, 0) = 0 and is
locally integrable for all input-output pairs satisfying (3)–(5).

We associate with the plant a positive-definite, continu-
ously differentiable function Vp(xp) , Vs(xp), which we
will refer to as the plant energy. Furthermore, we associate
with the controller a nonnegative-definite, infinitely differ-
entiable function Vc(xc, y) called the controller emulated
energy. Finally, we associate with the closed-loop system
the function

V (x) , Vp(xp) + Vc(xc, hp(xp)), (11)

called the total energy.

Next, we construct the resetting set for the closed-loop
system G in the following form

Z = {(xp, xc) ∈ Dp ×Dc : Lfc
Vc(xc, hp(xp)) = 0 (12)

and Vc(xc, hp(xp)) > 0} , (13)

where Lfc
Vc(x) ,

∂Vc(x)
∂x

fc(x) denotes the first-order Lie
derivative. The resetting set Z is thus defined to be the set
of all points in the closed-loop state space that correspond
to decreasing controller emulated energy. By resetting the
controller states, the plant energy can never increase after
the first resetting event. Furthermore, if the continuous-time
dynamics of the closed-loop system are lossless and the
closed-loop system total energy is conserved between reset-
ting events, then a decrease in plant energy is accompanied
by a corresponding increase in emulated energy. Hence, this
approach allows the plant energy to flow to the controller,
where it increases the emulated energy but does not allow
the emulated energy to flow back to the plant after the
first resetting event. This energy-dissipating hybrid controller
effectively enforces a one-way energy transfer between the
plant and the controller after the first resetting event. For
practical implementation, knowledge of xc and y is sufficient
to determine whether or not the closed-loop state vector is
in the set Z .

For the next result, recall that the Lie derivative of
a smooth function X : D → R along the vector
field of the continuous-time dynamics fc(x) is given by

Lfc
X (x) , d

dt
X (ψ(t, x))|t=0 = ∂X (x)

∂x
fc(x), and the zeroth

and higher-order Lie derivatives are, respectively, defined by
L0

fc
X (x) , X (x) and Lk

fc
X (x) , Lfc

(Lk−1
fc

X (x)), where
k ≥ 1.

Definition 2.1: Let M , {x ∈ D : X (x) = 0}, where
X : D → R is an infinitely differentiable function. A point
x ∈ M such that fc(x) 6= 0 is k-transversal to (6) if there
exists k ∈ {1, 2, . . .} such that

Lr
fc
X (x) = 0, r = 0, . . . , 2k − 2, L2k−1

fc
X (x) 6= 0.

(14)
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The next theorem gives sufficient conditions for asymp-
totic stability of the closed-loop system G using state-
dependent hybrid controllers.

Theorem 2.1 ([12]): Consider the closed-loop hybrid dy-
namical system G given by (6) and (7) with the resetting
set Z given by (13). Assume that Dci ⊂ D is a compact

positively invariant set with respect to G such that 0 ∈
◦

Dci,
assume that Gp is lossless with respect to the supply rate
s(u, y) and with a positive definite, continuously differ-
entiable storage function Vp(xp), xp ∈ Dp, and assume
there exists a smooth (i.e., infinitely differentiable) function
Vc : Dc × R

l → R+ such that Vc(xc, y) ≥ 0, xc ∈ Dc,
y ∈ R

l, and Vc(xc, y) = 0 if and only if xc = η(y) and
(10) holds. Furthermore, assume that every x0 ∈ Z is k-
transversal to (6) and

s(u, y) + sc(uc, yc) = 0, x 6∈ Z, (15)

where y = uc = hp(xp), u = −yc = −hcc(xc, hp(xp)), and
Z is given by (13). Then the zero solution x(t) ≡ 0 to the
closed-loop system G is asymptotically stable. In addition,
the total energy function V (x) of G given by (11) is strictly
decreasing across resetting events. Finally, if Dp = R

np ,
Dc = R

nc , and V (·) is radially unbounded, then the above
asymptotic stability results are global.

Remark 2.1: It was shown in [17] that Theorem 2.1 can be
generalized to the case where Gp is dissipative with respect
to the supply rate sp(u, y). In this case, a dissipation rate
function does not add any additional complexity to the hybrid
stabilization process. See [17] for details.

III. LAGRANGIAN AND HAMILTONIAN DYNAMICAL

SYSTEMS

Consider the governing equations of motion of an n̂p-
degree-of-freedom dynamical system given by the Euler-
Lagrange equation

d

dt

[

∂L

∂q̇
(q(t), q̇(t))

]T

−

[

∂L

∂q
(q(t), q̇(t))

]T

= u(t),

q(0) = q0, q̇(0) = q̇0, (16)

where t ≥ 0, q ∈ R
n̂p represents the generalized system po-

sitions, q̇ ∈ R
n̂p represents the generalized system velocities,

L : R
n̂p × R

n̂p → R denotes the system Lagrangian given
by L(q, q̇) = T (q, q̇) − U(q), where T : R

n̂p × R
n̂p → R

is the system kinetic energy and U : R
n̂p → R is the

system potential energy, and u ∈ R
n̂p is the vector of

generalized control forces acting on the system. Furthermore,
let H : R

n̂p × R
n̂p → R denote the Legendre transforma-

tion of the Lagrangian function L(q, q̇) with respect to the

generalized velocity q̇ defined by H(q, p) , q̇Tp − L(q, q̇),
where p denotes the vector of generalized momenta given

by p(q, q̇) =
[

∂L
∂q̇

(q, q̇)
]T

, and where the map from the

generalized velocities q̇ to the generalized momenta p is
assumed to be bijective (i.e., one-to-one and onto).

Next, we present a hybrid feedback control framework for
Euler-Lagrange dynamical systems. Specifically, consider the
Lagrangian system (16) with outputs

y =

[

h1(q)
h2(q̇)

]

=

[

h1(q)

h2

(

∂H
∂p

(q, p)
)

]

, (17)

where h1 : R
n̂p → R

l1 and h2 : R
n̂p → R

l−l1 are
continuously differentiable, h1(0) = 0, h2(0) = 0, and

h1(q) 6≡ 0. We assume that the system kinetic energy is
such that T (q, q̇) = 1

2 q̇
T[∂T

∂q̇
(q, q̇)]T, T (q, 0) = 0, and

T (q, q̇) > 0, q̇ 6= 0, q̇ ∈ R
n̂p . We also assume that the

system potential energy U(·) is such that U(0) = 0 and
U(q) > 0, q 6= 0, q ∈ Dq ⊆ R

n̂p , which implies that
H(q, p) = T (q, q̇)+U(q) > 0, (q, q̇) 6= 0, (q, q̇) ∈ Dq×R

n̂p .

Next, consider the energy-based hybrid controller

d

dt

[

∂Lc

∂q̇c
(qc(t), q̇c(t), yq(t))

]T

−

[

∂Lc

∂qc
(qc(t), q̇c(t), yq(t))

]T

= 0,

qc(0) = qc0, q̇c(0) = q̇c0, (qc(t), q̇c(t), y(t)) 6∈ Zc, (18)
[

∆qc(t)
∆q̇c(t)

]

=

[

η(yq(t)) − qc(t)
−q̇c(t)

]

,

(qc(t), q̇c(t), y(t)) ∈ Zc, (19)

u(t) =

[

∂Lc

∂q
(qc(t), q̇c(t), yq(t))

]T

, (20)

where t ≥ 0, qc ∈ R
n̂c represents virtual controller positions,

q̇c ∈ R
n̂c represents virtual controller velocities, yq , h1(q),

Lc : R
n̂c ×R

n̂c×R
l1 → R denotes the controller Lagrangian

given by Lc(qc, q̇c, yq) , Tc(qc, q̇c) − Uc(qc, yq), where
Tc : R

n̂c × R
n̂c → R is the controller kinetic energy

and Uc : R
n̂c × R

l1 → R is the controller potential
energy, η(·) is a continuously differentiable function such
that η(0) = 0, Zc ⊂ R

n̂c × R
n̂c × R

l is the resetting set,

∆qc(t) , qc(t
+) − qc(t), and ∆q̇c(t) , q̇c(t

+) − q̇c(t). We
assume that the controller kinetic energy Tc(qc, q̇c) is such

that Tc(qc, q̇c) = 1
2 q̇

T
c [∂Tc

∂q̇c
(qc, q̇c)]

T, with Tc(qc, 0) = 0 and

Tc(qc, q̇c) > 0, q̇c 6= 0, q̇c ∈ R
n̂c . Furthermore, we assume

that Uc(η(yq), yq) = 0 and Uc(qc, yq) > 0 for qc 6= η(yq),
qc ∈ Dqc

⊆ R
n̂c .

As in Section II, note that Vp(q, q̇) , T (q, q̇) + U(q) is

the plant energy and Vc(qc, q̇c, yq) , Tc(qc, q̇c) + Uc(qc, yq)
is the controller emulated energy. Finally,

V (q, q̇, qc, q̇c) , Vp(q, q̇) + Vc(qc, q̇c, yq) (21)

is the total energy of the closed-loop system. For the
closed-loop system, we define our resetting set as Z ,
{(q, q̇, qc, q̇c) : (qc, q̇c, y) ∈ Zc}. It was shown in [12] that
along the closed-loop system trajectories

d

dt
V (q(t), q̇(t), qc(t), q̇c(t)) = 0,

(q(t), q̇(t), qc(t), q̇c(t)) 6∈ Z, tk < t ≤ tk+1, (22)

∆V (q(tk), q̇(tk), qc(tk), q̇c(tk))

= −Vc(qc(tk), q̇c(tk), yq(tk)),

< 0,

(q(tk), q̇(tk), qc(tk), q̇c(tk)) ∈ Z, k ∈ Z+, (23)

which implies that the total energy of the closed-loop system
between resetting events is conserved and that the resetting
law (19) ensures the total energy decrease across resetting
events by an amount equal to the accumulated emulated
energy.

Here, we consider an energy-dissipating state-dependent
resetting controller that affects a one-way energy transfer
between the plant and the controller. Specifically, consider
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Fig. 2. Rotational/translational proof-mass actuator.

the closed-loop system (16), (17)–(20), where Z is defined
by

Z ,

{

(q, q̇, qc, q̇c) :
d

dt
Vc(qc, q̇c, yq) = 0

and Vc(qc, q̇c, yq) > 0

}

. (24)

Once again, for practical implementation, knowledge of qc,
q̇c, and yq is sufficient to determine whether or not the
closed-loop state vector is in the set Z .

The next theorem gives sufficient conditions for stabi-
lization of Euler-Lagrange dynamical systems using state-
dependent hybrid controllers. For this result define the
closed-loop system states x , [qT, q̇T, qTc , q̇

T
c ]T.

Theorem 3.1 ([12]): Consider the closed-loop dynamical
system G given by (16), (17)–(20), with the resetting set Z
given by (24). Assume that Dci ⊂ Dq × R

n̂p × Dqc
× R

n̂c

is a compact positively invariant set with respect to G such

that 0 ∈
◦

Dci. Furthermore, assume that the k-transversality
condition (14) holds with X (x) = d

dt
Vc(qc, q̇c, yq). Then the

zero solution x(t) ≡ 0 to G is asymptotically stable. Finally,
if Dq = R

n̂p , Dqc
= R

n̂c , and the total energy function V (x)
is radially unbounded, then the above asymptotic stability
results are global.

IV. RTAC SYSTEM

In this section, we describe the rotational/translational
proof-mass actuator (RTAC) nonlinear system studied in
[19]. The system (see Figure 2) involves an eccentric rota-
tional inertia, which acts as a proof-mass actuator mounted
on a translational oscillator cart. Rotational motion of the
proof-mass is nonlinearly coupled with translational motion
of the cart which provides the mechanism for control action.
The oscillator cart of mass M is connected to a fixed support
via a linear spring of stiffness k. The cart is constrained
to one-dimensional motion and the rotational proof-mass
actuator consists of a mass m and mass moment of inertia I
located a distance e from the center of mass of the cart. In
Figure 2, N denotes the control torque applied to the proof
mass.

Letting q, q̇, θ, and θ̇ denote the translational position and
velocity of the cart and the angular position and velocity of
the rotational proof mass, respectively, and using the energy
function

Vs(q, q̇, θ, θ̇) =
1

2
[kq2 + (M +m)q̇2 + (I +me2)θ̇2

+2meq̇θ̇ cos θ] +mge(1 − cos θ), (25)

the nonlinear dynamic equations of motion are given by

(M +m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ), (26)

(I +me2)θ̈ = −meq̈ cos θ −mge sin θ +N, (27)

Description Parameter Value Units

Cart mass M 1.7428 kg
Eccentric mass m 0.2739 kg

Arm eccentricity e 0.0537 m

Arm inertia I 0.000884 kg m2

Spring stiffness k 339.4 N/m
Controller parameter mc 0.0004 —
Controller parameter kc 0.2317 —

TABLE I

PROBLEM DATA FOR THE RTAC SYSTEM.

with problem data given in Table I, control input u = N ,
and output y = θ.

To design a state-dependent hybrid controller for (26) and
(26), let nc = 1, Vc(qc, q̇c, θ) = 1

2mcq̇
2
c + 1

2kc(qc − θ)2,

Lc(qc, q̇c, θ) = 1
2mcq̇

2
c −

1
2kc(qc − θ)2, yq = θ, and η(yq) =

yq, where mc > 0 and kc > 0. Then the state-dependent
hybrid controller has the form

mcq̈c + kc(qc − θ) = 0, (qc, q̇c, θ, θ̇) 6∈ Z, (28)
[

∆qc
∆q̇c

]

=

[

θ − qc
−q̇c

]

, (qc, q̇c, θ, θ̇) ∈ Z, (29)

u = kc(qc − θ), (30)

with the resetting set (24) taking the form

Z =

{

(qc, q̇c, θ, θ̇) ∈ R
4 : kcθ̇(qc − θ) = 0

and

[

θ − qc
−q̇c

]

6= 0

}

. (31)

It was shown in [17] that the closed-loop system (26),
(27), and (28)–(31) satisfies k-transversality condition given
in Definition 2.1, and hence, by Theorem 3.1, is globally
asymptotically stable. In the next section, we implement
the developed energy-based hybrid control framework to the
RTAC testbed and present the experimental results.

V. HARDWARE DESCRIPTION AND EXPERIMENTAL

RESULTS

The experimental testbed constructed to implement the
energy-based hybrid control system is shown in Figure 3. It
consists of an aluminum base with two rails that air bushings
float on providing translational motion for the cart with very
low friction. A rotary actuator with an eccentric arm and a
mass are fixed to the cart providing the control torque. The
actuation is provided by a DC motor driven by a linear motor
controller, and the measurements of the eccentric arm angle
and cart position are performed with a quadrature encoder
and laser displacement sensor, respectively. The controller is
implemented with the MathWorks MATLAB R©, Simulink R©,
and xPC Target software using National Instruments PCI
cards for I/O. The hardware used for the testbed is listed
in Table II. Next, we provide a more detailed description of
the experimental testbed.

Translational motion of the cart is provided by four air
bushings mounted into aluminum blocks. These blocks are
mounted to an aluminum plate to form the platform of the
cart. This platform is also constructed to deliver air to the
bushings through internal passageways to eliminate excessive
air fittings. The air bushings float on two stainless steel
precision shafts of 0.5 in in diameter that are affixed to
the aluminum base. This configuration leads to a very low
friction coefficient resulting in a damping ratio of 0.23% with
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Fig. 3. RTAC testbed.

Description Manufacturer Model

Air Bushing New Way bearings S301201
Laser sensor Micro-Epsilon ILD1300-200
DC motor MicroMo 3863H012C

Shaft Encoder MicroMo HEDM5500J12
Motor Controller Advanced Motion Controls 12A8

DAQ board National Instruments NI6024E
Encoder/Timer National Instruments NI 6601

TABLE II

MODEL AND MANUFACTURER INFORMATION OF HARDWARE USED.

the pendulum fixed. A support is attached to the platform to
facilitate mounting of the rotational actuator and proof-mass.
The support is designed in such a manner that it could be
mounted either vertically or horizontally. This enables the
experiment to be carried out with and without gravitational
effect on the proof-mass. Two pretensioned extension springs
are attached on opposite sides of the cart and are connected to
fixed supports on the base. The springs are easy to remove so
that springs with different stiffness can be used. The effective
spring stiffness constant for the testbed was measured to be
339.4 N/m and the spring is shown to be linear throughout
the useable range. The natural frequency of the platform
without any motion from the proof-mass was experimentally
determined to be 2.15 Hz, and the carts travel is limited to
±3 in resulting from the maximum permissible extension of
the springs.

The control torque for the system is provided by means
of a proof-mass attached to an actuator by an eccentric arm.
The arm is constructed in such a way that various proof-
masses may be used, and the actuator is a 12 volt DC motor.
The motor generates a continuous torque of 0.110 N·m with
a stall torque of 1.200 N·m, and has a thermally limited
continuous current of 7.6 A. Driving the motor is a PWM
servo amplifier which can supply a peak current of 12 A and
a continuous current of 6 A. The unit is operated in current
mode producing a current which is proportional to the input
voltage. The motor controller has a built-in current limiter
to protect the motor from high torque commands.

Measurement of the systems states was accomplished
with a quadrature encoder and a laser displacement sensor.
The quadrature encoder was used to measure the angular
position and velocity of the proof-mass. The encoder is
attached to the back of the motor and has a 1024 line per
revolution resolution. This gives an angular resolution of
0.09◦ when used in quadrature mode. Position and velocity
of the translational mass is measured with a laser sensor
that uses optical triangulation to measure displacement. The
sensor measures position with an accuracy of 200 µm at a
rate of 500 Hz. A laser sensor was selected over other linear
measurement sensors since it does not influence the motion
of the carriage.

Fig. 4. Diagram of real-time target implementation.

To implement the energy-based hybrid control system
in real time the MathWorks MATLAB R©, Simulink R©, and
xPC Target software was used. The diagram in Figure 4
illustrates the hardware layout. The control law is created
in Simulink R©, compiled into C code, and then downloaded
onto the target PC. The target PC runs a real time operating
system that executes the Simulink R© block diagram. The
Input/Output for the target PC consists of National Instru-
ments PCI-6024E and PCI-6601 PCI cards. The PCI-6024E
is used to acquire the distance measured by the laser sensor,
and to send a voltage to the motor controller to generate the
required control torque, while the PCI-6601 card is used to
read the encoder to obtain the angle and direction of rotation
of the proof-mass.

Next, we show experimental results obtained from im-
plementing the energy-based control framework presented
in Sections II and III on the RTAC testbed. The system
parameters are shown in Table I with initial conditions

q(0) = −0.051 m, q̇(0) = 0, θ(0) = 0, θ̇(0) = 0, qc(0) = 0,
and q̇c(0) = 0. Figure 5 shows cart position and pendulum
angle versus time. Figure 6 shows time history of the con-
troller states. Note that the controller states are discontinuous
according to (29). The control torque versus time is shown in
Figure 7. It is discontinuous at the resetting times as follows
from (30). Figure 8 shows the plant, controller emulated, and
total energies of the RTAC system. Although the sum of the
plant energy and controller emulated energy is supposed to
remain constant between resettings as shown in (22), in the
experimental setup the small increases in total energy are
result of numerical errors due to measurement noise.
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