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Abstract— Recurrent neural networks are known to have 

better multi-step predictive capability compared to 

feedforward neural networks, with the disadvantage that 

they are more difficult to train.   This paper develops a 

novel recurrent neural network architecture, the structure of 

which allows formulation as a time varying linear model.   

Based on a quadruple tank challenge problem, the proposed 

recurrent neural network is shown to have superior 

performance compared to a similarly designed feedforward 

neural network. 
 

1.  Introduction 

For complex nonlinear systems, analytical and empirical 

models are two common techniques available for 

quantifying underlying physical responses and behavior.  

Analytical, or first principle, models are based on known 

physical relationships and equations, which allows 

modeling results to have physical meaning.  The benefit in 

basing models on these physical relationships is often 

outweighed by the time required to accurately determine all 

equations and associated parameters. The alternative is 

empirical modeling, which uses equations whose 

coefficients and parameters have no physical meaning.  

Because of this, the complexity and time required to 

generate the model is often significantly reduced.   

 Among empirical modeling, several primary 

approaches have emerged.  Fuzzy models attempt to codify 

heuristic rule and “if-then-else” based systems.  Fuzzy 

models have been used to model robotic systems (Vachkov 

and Fukuda, 2001), with a key limitation being the detailed 

amount of hierarchical knowledge required to build the 

model.  If only the structure of the modeling equations is 

known, there are several approaches that can be used to 

determine the parameters.  Genetic algorithms use a 

stochastic approach to parameter estimation (Yeh and Jang, 

2006) and partial least squares regression uses an 

optimization driven approach (Qin, 1993). 

This research focuses on the use of neural networks as 

the empirical model.  No knowledge of model structure is 

needed, only input–output data is required.  A series of 

interconnecting nodes and activation functions are used to  

model the system from the input–output data.  Nodes and  
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activation functions combine to form layers or neurons, 

which mimic the connectivity of the human brain.  By 

connecting larger numbers of layers in series, neural 

networks have the ability to model any nonlinear system to 

an arbitrary degree of accuracy (Cotter, 1990).  It is this 

“universal approximation” capability that makes neural 

networks such an appealing for technique modeling 

complex nonlinear systems. 

Neural network architectures are classified by the 

direction of flow of information between layers.  Neural 

networks where information flows in only in the forward 

direction, from inputs through layers to outputs are known 

as feedforward neural networks.  The output of one layer 

becomes the input to the next layer.  Neural networks 

where information flows both forward from input through 

layers to output and backwards between layers are called 

recurrent neural networks.  The purpose of the backward, 

or recurrent, connection between layers is to introduce 

internal dynamics to the model, allowing the recurrent 

neural network to model dynamic input–output 

relationships (Chao-Chee and Lee, 1995).  In contrast, 

feedforward neural networks have no internal dynamics, 

resulting in an overall static input–output relationship. 

Model predictive control is an advanced control strategy 

that uses a model, such as a neural network, to predict 

future system behavior when calculating control actions.  

Both recurrent and feedforward neural networks have been 

used in a model predictive control framework. Medinelli 

and Rojas (2007) use a feedforward neural network to 

model and control a solar energy water heater. Pappa et al. 

(2005) use a recurrent neural network based strategy to 

control a double-pipe heat exchanger, with improved 

performance compared to an existing PID control strategy. 

There are two primary contributions in this paper.  A 

novel recurrent neural network architecture is developed 

that yields an analytical solution under unconstrained 

model predictive control.  This recurrent neural network 

model is used with a similar feedforward model to 

determine the effect of multi step ahead predictive ability 

on model predictive control performance.  The paper is 

structured as follows: section 2 discusses the neural 

network architectures and training styles, section 3 details 

the model predictive control strategy, section 4 details the 

example system studied with training and validation results, 

section 5 compares the accuracy of multi step ahead 
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predictions for the neural network architectures and section 

6 compares control performance. 

 

2.  Neural Network Architecture and Training 

Feedforward and recurrent neural networks belong to a 

class of neural networks known as multi layer perceptrons 

(MLP’s), which consist of input, hidden and output layers.   

 

2.1  Feedforward Architecture 

To use neural networks in control applications, it is critical 

that the architecture is capable of representing the dynamic 

models found in complex nonlinear systems.  Feedforward 

neural networks, which are inherently static in nature, 

require the addition of external feedback to model dynamic 

behavior.  Kuure-Kinsey et al. (2006) develop a 

feedforward neural network capable of representing 

dynamic behavior, with the network architecture shown in 

figure 1. 
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Figure 1:  Feedforward neural network architecture capable 

of representing dynamic behavior. 

 

The external feedback to the feedforward neural network is 

denoted in figure 1 as yk.  It is important to note that only 

the external feedback passes through a nonlinear activation 

function.  This results in the nonlinear state space model 

given in (1). 
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To train the feedforward architecture, external feedback is 

supplied at each time step.  Because the feedback signal in 

figure 1 is externally supplied at each time step, the 

feedforward neural network is trained to predict dynamic 

behavior only at the next time step in the future.  This is 

known as one step ahead prediction. 

 

2.2  Recurrent Architecture 

Feedforward neural networks require external feedback to 

model dynamic systems.  One benefit of recurrent neural 

networks is that the internal feedback present is inherently 

capable of representing dynamic behavior.  There are a 

number of recurrent neural network architectures in the 

literature, but to make any comparisons to the feedforward 

architecture in section 2.1 as equivalent and accurate as 

possible, it makes sense to develop an architecture similar 

to the feedforward architecture.  The developed recurrent 

architecture is shown in figure 2. 

 

 
Figure 2: Recurrent neural network architecture 

 

There are two recurrent layer connections in figure 2.  The 

recurrent connection in layer 1 from the output yk+1 back to 

the input to layer 2 mimics the external feedback supplied 

to the feedforward neural network in figure 1.  The 

recurrent connection from the output of layer 2 back to the 

input to layer 2 adds a state space characteristic to the 

architecture.  The resulting input-output relationship for the 

recurrent architecture is given in (2). 
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The important thing to note about (2) is that the structure of 

the nonlinear state space equation is the exact same as the 

feedforward architecture in (1).  The only difference 

between the nonlinear state space models in (1) and (2) is 

the feedback signal.  The feedback signal yk in (1) comes 

from an external measurement while kŷ  in (2) comes from 

internal feedback.  Because the feedback signal in figure 2 

is internally supplied at each time step, the recurrent neural 

network is trained to predict dynamic behavior beyond the 

next time step in the future.  This is known as multi step 

ahead prediction. 

 

2.3  Training Styles 

While the dynamic model structure is equivalent between 

the feedforward and recurrent architectures in (1) and (2) 

respectively, that does not mean that the training is the 

same.  Feedforward neural networks require an external 

feedback source to model dynamic systems whereas 

recurrent neural networks use internal feedback.  This 

difference in feedback source is illustrated in figure 3. 
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Figure 3:  Difference in source of feedback required by 

neural networks to model dynamic systems 

 

The reason the difference in figure 3 is important is the 

intended use of the neural network model.  If only used for 

one step ahead predictions, then neither neural network has 

an advantage.  In model predictive control however, the 

neural network is required to predict over a horizon greater 

than one, which results in a multi step ahead prediction 

with no source of external feedback.  With only internal 

feedback available, the nonlinear state space model 

representing the feedforward neural network becomes: 
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It is important to note that under model predictive control, 

the feedforward neural network model in (3) has a model 

predicted feedback source, making the nonlinear state 

space models in (2) and (3) identical in both structure and 

signals. 

Su et al. (1992) study the predictive capabilities of 

feedforward and recurrent neural networks, trained using 

the series-parallel and parallel connections in figure 3, and 

find that recurrent neural networks provide superior 

predictive capabilities for multi step ahead predictions. Su 

et al. (1992) also theorize that the improved multi step 

ahead predictions in recurrent neural networks leads to 

better performance in model predictive control, though no 

results are shown to support the claim.  With feedforward 

and recurrent neural networks developed that have the same 

dynamic model structure, it is now possible to determine if 

the source of feedback during training and subsequent multi 

step ahead predictive abilities have an effect on model 

predictive control performance. 

 

3.  Model Predictive Control 

Model predictive control, or receding horizon control, is an 

advanced control technique that takes advantage of a 

model’s inherent ability to predict system behavior into the 

future.  At each time step, an optimization problem is 

formulated and solved.  The objective function is to 

minimize control action over p time steps, where p is 

known as the prediction horizon.  The decision variables 

are m control moves, where m is the control horizon.  Only 

the first control move is applied to the system, the model is 

updated, and the entire process is repeated at the next time 

step.  The objective function used in this work is a sum of 

squares, given in (4). 
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Where rk+i is the setpoint, ∆uk+i is the control action and 

iky +
ˆ  is the output prediction.  A number of different types 

of models are used in a model predictive control 

framework, with this work using the neural network models 

developed in section 2.  The model structures in (2) and (3) 

are equivalent under model predictive control and known as 

a nonlinear state space model with a feedback path 

nonlinearity.  Having both architectures result in this 

particular nonlinear state space model is important, as 

Kuure-Kinsey et al. (2006) show that a computationally 

efficient model predictive control formulation is possible.  

A succinct review of the formulation follows, for a more 

detailed discussion of the formulation and verification 

against nonlinear optimization of the nonlinear state space 

model, the reader is referred to Kuure-Kinsey et al. (2006). 

The primary benefit to the structure of the nonlinear state 

space model in (2) and (3) is that the nonlinearity is static 

and only involves the output term.  This allows for the 

static nonlinearity to be mapped across the prediction 

horizon into a time varying linear term. 
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Where the terms Ak and gk are defined in (6)-(7). 
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The nonlinear state space model in (2) and (3) has now 

been cast into a linear time varying model.  The linear time 

varying model in (5) does not perfectly represent the 

system at all times, as there is always a degree of parameter 

uncertainty and measurement noise.  To account for this 

plant-model mismatch, there are two common state 

estimation approaches employed in model predictive 

control: an additive output disturbance assumption and a 

step input disturbance assumption.  Muske and Badgwell 

(2002) show that the step input disturbance model, which 
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estimates an augmented disturbance state using a Kalman 

filter, provides better rejection of step input disturbances, 

and is therefore the state estimation approach used in this 

formulation. The linear time-varying model in (5) is 

augmented with a step input disturbance in (8). 
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The augmented model in (8) is based on information 

available through timestep k-1.  Once a measurement is 

taken at the current timestep k, the augmented model is 

updated through the predictor and corrector equations in 

(9) and (10). 
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In (10), L is the steady-state Kalman gain, calculated by 

solving the steady-state Ricatti equation. The augmented 

model in (8) is then used as the model in the objective 

function in (4), which results in an analytical solution to the 

unconstrained problem. For constrained systems, the 

objective function (4) and augmented model (8) yield a 

quadratic programming problem, for which efficient 

computational routines exist. 

 

4.  Quadruple Tank Details 

To compare the performance under model predictive 

control of the feedforward and recurrent neural networks, 

the quadruple tank is chosen as an example system for the 

presence of nonminimum phase behavior, a well known 

control challenge.  The quadruple tank is a two input, two 

output system, described by the nonlinear differential 

equations in (11)-(15), with the parameters and nominal 

steady state values given in table 1. 

 

1

1

11
3

1

3
1

1

11 22 v
A

k
gh

A

a
gh

A

a

dt

dh γ
++

−
=            (11) 

2

2

22
4

2

4
2

2

22 22 v
A

k
gh

A

a
gh

A

a

dt

dh γ
++

−
=        (12) 

( )
2

3

22
3

3

33 1
2 v

A

k
gh

A

a

dt

dh γ−
+

−
=                     (13) 

( )
1

4

11
4

4

44 1
2 v

A

k
gh

A

a

dt

dh γ−
+

−
=                        (14) 

















=

2

1

000

000

h

h

k

k
y

c

c
                                      (15) 

 

The manipulated inputs are control voltages to pumps, v1 

and v2, that regulate the flow of liquid to the system.  The 

measured outputs are the heights of tanks 1 and 2.  The γ1 

and γ2 terms represent the fraction of flow from pumps 1 

and 2 that go to the lower tanks versus the upper tanks.  For 

additional information about the quadruple tank system, see 

Johansson (2000). 

 

Table 1:  Parameters and steady state values for the 

quadruple tank 
Parameter Value Parameter Value

A1 28 cm
2 A3 28 cm

2

A2 32 cm
2 A4 32 cm

2

h1,ss 12.6 cm h3,ss 4.8 cm

h2,ss 13.0 cm h4,ss 4.9 cm

kc 0.5 V / cm g 981 cm / s
2

a1 0.071 cm a3 0.071 cm

a2 0.057 cm a4 0.057 cm

v1,ss 3.15 V k1 3.14 cm
3 
/ Vs

v2,ss 3.15 V k2 3.29 cm
3
 / Vs

γ1 0.43 γ2 0.34  
 

To ensure a valid comparison of multi step ahead 

predictions and performance under model predictive 

control, the same quadruple tank data is used to train and 

verify the feedforward and recurrent neural networks.  

Dynamic step test data is generated from the model in (11)-

(15) and parameters in table 1, with training and 

verification results for the feedforward and recurrent neural 

networks given in figures 4 and 5. 
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Figure 4:  Training results for the feedforward and 

recurrent neural network models. 
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Figure 5:  Training results for the feedforward and 

recurrent neural network models. 

 

Note that the time intervals between step changes in the 

training and validation input  sequences are selected based 

on the dominant time constant of the quadruple tank. The 

results in figures 4 and 5 demonstrate that both the 

feedforward and recurrent neural networks are able to 

successfully model the quadruple tank. 

 

5.   Multi Step Ahead Predictions 

In section 4, feedforward and recurrent neural networks are 

trained and validated for the quadruple tank system.  To 

confirm the multi step ahead predictive ability of recurrent 

neural networks demonstrated in Su et al. (1992), each 

model is propagated through a prediction horizon of 

increasing length.  This is done by propagating each model 

through a prediction horizon of increasing length.  In both 

neural networks, the feedback supplied to the network is 

from the neural network model, not from external 

measurements.  This forces both neural networks to operate 

in series-parallel mode, similar to the prediction horizon 

calculation in model predictive control. 
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Figure 6:  Comparison of mean absolute deviation for 

feedforward and recurrent neural networks as a function of 

prediction horizon for the quadruple tank 

 

The quadruple tank is tested using a step input sequence 

from the validation data set.  For a change in v1 from 3.43 

to 3.47 and a change in v2 from 2.55 to 3.33, the mean 

absolute deviation (MAD) from the underlying differential 

equation based model is calculated for the two neural 

networks.  For a prediction horizon range of 1 to 50, the 

comparisons for the two outputs of the quadruple tank are 

shown in figure 6. 

The results in figure 6 confirm, for non-minimum phase 

operation of the quadruple tank, the observation of Su et al. 

(1992) that recurrent neural networks have better predictive 

ability than feedforward neural networks. For small 

prediction horizons, the one-step-ahead trained feedforward 

neural network gives adequate performance, with 

comparable performance to the multi step ahead trained 

recurrent neural network. Once the prediction horizon 

increases, the recurrent neural network provides 

increasingly better predictions compared to the feedforward 

neural network.  This result illustrates the effect of 

propagating the internal model predictions on the multi step 

ahead performance of the feedforward network and 

motivates the evaluation of model predictive control 

performance for the two neural network architectures. 

 

6.  Control Performance 

The performance under model predictive control of the two 

neural network architectures is tested using the control 

formulation presented in section 3.  To make the 

comparison valid, all control parameters are held constant 

between the two neural networks.  The control performance 

is tested for setpoint regulation of the quadruple tank, with 

figure 7 showing the performance comparison for a specific 

setpoint profile. 
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Figure 7: Setpoint regulation results comparing 

feedforward and recurrent neural networks.  p = 20, m = 3, 

∆t = 1 sec, Q/R = 0.01 

 

The results in figure 7 show that the series-parallel trained 

recurrent neural network has superior performance 

compared to the series trained feedforward neural network.  

4201



 

The mean absolute deviation of 0.0065 V for the recurrent 

neural network is 22% of the 0.0289 V for the feedforward 

neural network.  This result is for a specific set of control 

parameters.  To determine the effect of prediction and 

control horizon, two critical parameters in model predictive 

control, the setpoint regulation problem is run over a range 

of prediction and control horizons.  The effect of different 

prediction and control horizons on the MAD values is 

shown in figure 8. 
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Figure 8:  Comparison of mean absolute deviation between 

recurrent and feedforward neural networks for a range of 

prediction and control horizons.  ∆t = 1 sec, Q/R = 0.01 

 

The MAD values are stronger functions of the prediction 

horizon and the MAD values for the recurrent neural 

network are uniformly lower than for the feedforward 

neural network.  The dependence on prediction horizon 

matches with the training of the respective neural networks.  

The feedforward neural network, trained for one step ahead 

predictions, show progressively worse behavior as 

prediction horizon increases.  This is due to the increasing 

multi step ahead prediction required for the model 

predictive control calculation.  The recurrent neural 

network, trained exactly for the type of multi step ahead 

predictions required for model predictive control, has a 

consistent performance not dependant on prediction 

horizon.  This demonstrates the performance difference 

between the two neural networks when used in model 

predictive control. 

 

7.  Summary 

This research develops a novel recurrent neural network 

trained using a series-parallel approach to output feedback.  

The network has the same dynamic model structure as a 

previously developed feedforward neural network trained 

using a series approach to output feedback.  The recurrent 

neural network represents training for multi step ahead 

predictions and the feedforward neural network represents 

one step ahead predictions.  The neural networks are used 

in model predictive control to compare performance, with 

the series-parallel trained recurrent neural network 

providing superior performance for a nonminimum phase 

multivariable quadruple tank system. 
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