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Abstract— Given a general proper interconnected system,
this paper aims to design a LTI decentralized controller to
place the modes of the closed-loop system at pre-determined
locations. To this end, it is first assumed that the structural
graph of the system is strongly connected. Then, it is shown
applying generic static local controllers to any number of
subsystems will not introduce new decentralized fixed modes
(DFM) in the resultant system, although it has fewer input-
output stations compared to the original system. This means
that if there are some subsystems whose control costs are
highly dependent on the complexity of the control law, then
generic static controllers can be applied to such subsystems,
without changing the characteristics of the system in terms of
the fixed modes. As a direct application of this result, in the
case when the system has no DFMs, one can apply generic static
controllers to all but one subsystem, and the resultant system
will be controllable and observable through that subsystem.
Now, a simple observer-based local controller corresponding to
this subsystem can be designed to displace the modes of the
entire system arbitrarily. Similar results can also be attained
for a system whose structural graph is not strongly connected.
It is worth mentioning that similar concepts are deployed in the
literature for the special case of strictly proper systems, but as
noted in the relevant papers, extension of the results to general
proper systems is not trivial. This demonstrates the significance
of the present work.

I. INTRODUCTION

Every interconnected system can be envisaged as a system
consisting of a number of interacting subsystems [1]. For
such systems, it is often desired to impose certain constraints
on structure of the controllers to be designed [2], [3]. These
constraints originate from some practical issues, which can
be broadly categorized as follows:

1. In many interconnected systems, the outputs of certain
subsystems are not easily accessible to some other
subsystems in the sense that such access requires costly
data transmission. This is, for example, the case for
the systems consisting of geographically distributed
subsystems such as power networks.

2. In some situations, certain outputs of a system are
completely inaccessible to some of the subsystems in
specific time intervals. This, for instance, occurs in
flight formation subject to the shadow phenomenon [4].

3. In the case when a large-scale system is composed
of many subsystems, the computational complexity
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associated with a centralized controller (i.e. an uncon-
strained controller) may be remarkably high. For such
a system, it is normally desired to reduce the number
of communication links.

These issues describe the demand for employing structurally
constrained controllers. Note that a structurally constrained
controller throughout this paper refers to a controller com-
prising a set of local controllers, which partially com-
municate with each other. Structurally constrained control
design problem has been studied extensively over the last
few decades, and has found applications in many practical
systems such as power networks, flight formation and com-
munication systems, to name only a few [1-9]. In the special
case when each local controller observes only the output of
its corresponding subsystem to construct the control input
for that subsystem, the control structure is referred to as
decentralized [10], [11], [12].

The primary issue in decentralized control theory is the
stabilizability problem. In this regard, the notion of a decen-
tralized fixed mode (DFM) was introduced in [10] to identify
those modes of a system which are fixed with respect to
every LTI decentralized controller. The work [13] proposed a
method to characterize the DFMs of a strictly proper system
in terms of the transfer function of the system. Later on, it
was shown in [11] that a mode is a DFM if and only if several
matrices satisfy a rank condition. Although this approach
is appealing from the mathematical perspective, it is not
computationally efficient because the number of matrices
whose ranks should be checked grows exponentially by the
number of subsystems. More recently, a simple combinatorial
algorithm was proposed in [14] to identify the unrepeated
DFMs of a system.

Since a system with unstable DFMs might be stabilizable
by means of a non-LTI decentralized controller, the notion of
quotient fixed modes (QFM) was introduced in [15] to find
the modes of a system which are fixed with respect to any
type of decentralized controller (nonlinear or time-varying).
It is shown in [6] that the unrepeated DFMs of a system
which are not QFMs can be eliminated via sampling, for
almost all sampling periods. On the other hand, the work [7]
proposes a simple method to eliminate the unwanted DFMs
via a LTI controller by introducing the minimum number of
information exchanges between the local controllers.

A structurally constrained controller is generally com-
posed of partially interacting local controllers, rather than
isolated local controllers. To address the relevant control
design problems for any class of structurally constrained
controllers, it is proved in [2] and [3] that designing a
structurally constrained controller for a given system to
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achieve some rudimentary objectives (such as performance
improvement or pole placement) is equivalent to designing
a decentralized controller for an alternative system to attain
the same objectives. As a direct consequence of this result,
for investigating various properties of structurally constrained
controllers, it suffices to restrict the attention merely on the
particular class of decentralized controllers.

A very important problem associated with the decentral-
ized control theory is pole assignability. Broadly speaking,
decentralized pole placement is studied in the literature from
two different perspectives to address the following problems:

i) How can a LTI decentralized controller be designed to
place the modes of the control system at prescribed
locations?

ii) What degrees should be considered for the local con-
trollers in order for the decentralized pole-placement
problem to be solvable?

Regarding problem (i), the work [16] supposes (with no
loss of generality) that the structural graph of the system is
strongly connected. Assuming the system has no DFMs, it
recommends that generic static local controllers be applied to
all the subsystems, except the last one. This work asserts that
the resultant system is controllable and observable through
its last subsystem. Now, an observer-based local controller
(corresponding to the last subsystem) can be designed in
order to displace the modes as desired. The main deficiency
of this work is that it solely deals with strictly proper
systems. However, the paper [11] argues that non-strictly
proper systems play a key role in decentralized control. The
paper [17] has further developed the idea presented in [16].

Problem (ii), on the other hand, has nothing to do with the
controller design and mainly seeks the minimum degrees of
the local controllers. Recently, this problem has become a fo-
cal point in the decentralized controller design. The objective
of this problem is to present some bound on the degrees of
the decentralized controllers by which the modes of a generic
system can be arbitrarily assigned [18], [19], [20]. It is worth
mentioning that since the method given in [16] exerts the
entire control effort on only a single subsystem, it is often
not feasible for large-scale interconnected systems, and in
this case, employing a low-order decentralized controller to
achieve the desired pole placement turns out to be vital.

This paper tackles the decentralized pole-placement prob-
lem for general proper systems. The system is first parti-
tioned into a number of modified systems, such that each
modified system encompasses some subsystems of the orig-
inal system. Since these modified systems are in the hierar-
chical form [21], decentralized stabilizability of the overall
system is equivalent to the decentralized stabilizability of all
the modified systems separately. It is shown for a modified
system that generic static local controllers can be applied
to as many subsystems as desired with the property that
the resultant modified system will have no new DFMs
through the remaining open subsystems. This result can be
simply exploited to straightforwardly design a decentralized
controller to place the modes of the system at any pre-
determined locations. It is interesting to note that the results

presented here are the generalization of those given in [17]
for strictly proper systems. However, as it can be observed
from the developments in the present work (and as it is
pointed out in [11] for a similar problem), this generalization
is not straightforward.

II. MAIN RESULTS

Consider a linear time-invariant (LTI) interconnected sys-
tem S consisting of ν subsystems S1, S2, ..., Sν , represented
by:

ẋ(t) = Ax(t) +
ν∑

j=1

Bjuj(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν := {1, 2, ..., ν}

where x(t) ∈ <n is the state, and ui(t) ∈ <mi and yi(t) ∈
<ri , i ∈ ν, are the input and the output of the ith subsystem,
respectively. Define the following matrices:

B :=
[

B1 · · · Bν

]
,

C :=
[

CT
1 · · · CT

ν

]T
,

D :=




D11 · · · D1ν

...
. . .

...
Dν1 · · · Dνν




Define also:

m :=
ν∑

i=1

mi, r :=
ν∑

i=1

ri,

u(t) :=
[

u1(t)T u2(t)T · · · uν(t)T
]T

y(t) :=
[

y1(t)T y2(t)T · · · yν(t)T
]T

Throughout the paper, decentralized controller for the
system S refers to the union of ν local controllers, where
the ith local controller, i ∈ ν, constructs the input ui(t)
only in terms of the local output yi(t). It is desired now to
design a decentralized controller for the system S so that
all the modes of the closed-loop system are located at pre-
determined locations, if possible. The following definitions
and notations will prove to be essential in presenting the
main results of the paper.

Notation 1: For any i ∈ ν:
• let biα denote the αth column of the matrix Bi, for any

α ∈ {1, 2, ..., mi};
• denote the βth row of the matrix Ci with ciβ , for any

β ∈ {1, 2, ..., ri}.
Notation 2: Denote with K the space of all block-

diagonal matrices whose ith block entries, i ∈ ν, are of
dimension mi × ri.

Definition 1: [11] A mode λ ∈ sp(A) is said to be a
decentralized fixed mode (DFM) of the system S , if it
remains a mode of the closed-loop system under any arbitrary
decentralized static output feedback. In other words, the
mode λ ∈ sp(A) is a DFM of the system S if:

λ ∈ sp
(
A + BK(I −DK)−1C

)
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for any matrix K belonging to the set K.
Definition 2: [8] Define the structural graph of the system

S as a digraph with ν vertices which has a directed edge
from the ith vertex to the jth vertex if and only if Cj(sI −
A)−1Bi + Dji 6= 0, for any i, j ∈ ν. The structural graph
of the system S is denoted by G.

Definition 3: A digraph is called strongly connected if and
only if there exists a directed path from any vertex to all other
vertices of the graph.

Partition G into the minimum number of strongly con-
nected subgraphs denoted by G1,G2, ...,Gl. It can be easily
substantiated that if the system S has a single input such that
the transfer function from that input to the entire output of the
system is equal to zero, then that input does not contribute
to the control of the system, and hence can be eliminated
due to its redundancy in the overall control operation. The
same statement holds true for any single output of the system
with the property that the transfer function from the entire
input to that output is equal to zero. Thus, without loss of
generality, assume that such inputs and outputs do not exist
in the system S .

A. A strongly connected system with no DFMs

Assume for now that the system S has no DFMs, and that
l = 1.

Definition 4: A subset V of <µ is called a hypersurface
if there exists a multivariate polynomial f(ω) such that the
set of its roots is identical to V .

Consider a hypersurface V in the µ-dimensional space.
Since the dimension of V is less than µ, if a point is chosen
in the µ-dimensional space, it almost always does not belong
to V . Moreover, any point in the µ-dimensional space which
does not lie on the hypersurface V , is referred to as a generic
point. Note that generic points can be provided by using a
random number generator.

Theorem 1: Consider an arbitrary matrix K ∈ K, and
apply the static decentralized controller u(t) = Ky(t) to
the system S . For any i, j ∈ ν, α ∈ {1, ..., mi} and β ∈
{1, ..., rj}, the transfer function from the input uiα(t) to the
output yjβ(t) in the resultant system is nonzero, unless the
gain matrix K lies on a specific hypersurface.

Proof: It is shown in [17] that the transfer function matrix
from ui(t) to yj(t) is almost always nonzero (for the case
when D = 0). However, the statement of this theorem is
much stronger than the one in [17], in the sense that a matrix
transfer function is proved to be almost always nonzero in
[17], while it will be shown here that all entries of this matrix
are generically nonzero. Using an approach similar to the one
given in [17], this theorem will be proved. Nonetheless, it
is essential first to show that there is a path from the input
uiα(t) to the output yjβ(t) through the interconnections of
the system S and the local controllers of the decentralized
controller u(t) = Ky(t). This will be proved here under the
assumption of D = 0, as the extension of this specific result
to the case of general proper systems is straightforward.

By assumption, there is an output yi′α′(t) and an input
uj′β′(t) such that:

i) The transfer function from uiα(t) to yi′α′(t) in the
system S is nonzero.

ii) The transfer function from uj′β′(t) to yjβ(t) in the
system S is nonzero.

Now, consider the subsystems Si′ and Sj′ . Since the struc-
tural graph of the system is assumed to be strongly connected
(i.e. l = 1), one can conclude that there exist subsystems
Sξ1 , Sξ2 , ..., Sξµ , where Sξ1 = Si′ and Sξµ = Sj′ , with the
following property:

Cξρ+1(sI −A)−1Bξρ
6= 0, ρ ∈ {1, 2, ..., µ− 1}

On the other hand, the above inequality implies that at least
one of the scalar entries of the matrix Cξρ+1(sI −A)−1Bξρ

must be nonzero. As a result, there exist positive integers
ζ1, ζ2, ..., ζµ and ζ ′1, ζ

′
2, ..., ζ

′
µ such that:

cξρ+1ζ′ρ+1
(sI −A)−1bξρζρ

6= 0, ρ ∈ {1, 2, ..., µ− 1} (1)

where ζ ′1 = α′ and ζµ = β′. The inequalities given in
(1) along with the above-mentioned assumptions (i) and (ii)
result in the following path from the input uiα(t) to the
output yjβ(t) (via the interconnections of the system S and
the static controller u(t) = Ky(t)):

uiα(t) T.F.−−−→ yξ1ζ′1(t)
L.C.−−−→ uξ1ζ1(t)

T.F.−−−→ yξ2ζ′2(t)
L.C.−−−→ uξ2ζ2(t)

T.F.−−−→ · · · L.C.−−−→ uξµζµ(t) T.F.−−−→ yjβ(t)

It is to be noted that T.F. and L.C. over the arrows in
the above relation stand for transfer function and local
controller, respectively, and are used to distinguish the two
means of information transmission: interconnections of the
system S , and the decentralized controller u(t) = Ky(t).
The proof can be completed by using this important result
and an approach analogous to the one given in [17]. The
details are omitted here. ¥

It is shown in [2] that there exist two matrices Φ1 and
Φ2 with binary entries such that for any matrix K ∈ K, the
following relation holds:

K = Φ1K̄Φ2

where K̄ is a purely diagonal matrix obtained from K by
putting its nonzero entries successively on the main diagonal
of K̄. Define now S̄ as a system with the state-space
representation given below:

˙̄x(t) = Āx̄(t) + B̄ū(t)
ȳ(t) = C̄x̄(t) + D̄ū(t)

where

Ā = A, B̄ = BΦ1, C̄ = Φ2C, D̄ = Φ2DΦ1

The following lemma is asserted in [2] for the system S̄ .
Lemma 1: Consider a (dynamic) decentralized controller

for the system S with the transfer function matrix K(s).
Assume that K̄(s) is derived from K(s) in the same way that
K̄ was obtained from K. The modes of the system S under
the decentralized controller K(s) are tantamount to those of
the system S̄ under the decentralized controller K̄(s).
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The advantage of forming the system S̄ is that, unlike
S , all of its control agents are single-input single-output
(SISO), while it preserves the pole-assignability property of
the original system (according to Lemma 1). This facilitates
the handling of the underlaying problem. It is straightforward
to verify that the system S̄ has ν̄ SISO subsystems, where
ν̄ :=

∑ν
i=1 miri.

Notation 3: For any i, j ∈ {1, 2, ..., ν̄}:
• denote the input and the output of the ith SISO subsys-

tem of S̄ with ūi(t) and ȳi(t), respectively;
• denote the ith column and the ith row of the matrices B̄

and C̄ with b̄i and c̄i, respectively;
• denote the (i, j) entry of the matrix D̄ with d̄ij .
Corollary 1: Consider an arbitrary matrix K̄ of proper

dimension, and apply the static decentralized controller
ū(t) = K̄ȳ(t) to the system S̄ . For any ζ1, ζ2 ∈ {1, 2, ..., ν̄},
the transfer function from the input ūζ1(t) to the output
ȳζ2(t) in the resultant system is nonzero, unless the gain
matrix K̄ lies on a specific hypersurface.

Proof: The proof follows immediately from Theorem 1
and on noting the relationship between the inputs and outputs
of the systems S and S̄ [3]. ¥

Corollary 1 states that for almost all matrices K̄, the
system S̄ under the decentralized controller ū(t) = K̄ȳ(t)
has a transfer function matrix whose entries are all nonzero
scalar functions. Therefore, assume that none of the entries
of the transfer function matrix of the system S̄ is identical
to zero (this can be achieved by applying a generic static
decentralized controller to the system, if necessary). Since it
is assumed that the system S has no DFMs, it can be inferred
from Lemma 1 that none of the modes of the system S̄ is a
DFM either.

Consider an arbitrary scalar g. Let S̄(g) denote a system
with the following properties:
• It is formed by applying the static controller ū1(t) =

gȳ1(t) to the system S̄.
• Its outputs and inputs are ȳ2(t), ȳ3(t), ..., ȳν̄(t) and

ū2(t), ū3(t), ..., ūν̄(t), respectively.
Represent the LTI model of the system S̄(g) as:

˙̃x(t) = Ã(g)x̃(t) +
ν̄∑

j=2

b̃j(g)ūj(t)

ȳi(t) = c̃i(g)x̃(t) +
ν̄∑

j=2

d̃ij(g)ūj(t), i ∈ {2, ..., ν̄}

At this point, the objective is to prove that the system S̄(g)
with ν̄ − 1 SISO subsystems has no DFMs for almost all
values of g. This is carried out in the sequel.

Theorem 2: Assume that there exists a diagonal matrix
K̄∗ ∈ <ν̄×ν̄ such that the modes of the system S̄ under the
decentralized controller ū(t) = K̄∗ȳ(t) are all distinct. Then,
for almost all diagonal matrices K̄ ∈ <ν̄×ν̄ , the modes of the
system S̄ are also distinct under the decentralized controller
ū(t) = K̄ȳ(t).

Proof: The proof is omitted here due to space restric-
tions. ¥

Corollary 2: For almost all diagonal matrices K̄ ∈ <ν̄×ν̄ ,
the modes of the system S̄ are distinct under the decentral-
ized controller ū(t) = K̄ȳ(t).

Proof: As a result of Theorem 2, it suffices to show that
there exists a diagonal matrix K̄∗ ∈ <ν̄×ν̄ such that the
modes of the system S̄ under the decentralized controller
ū(t) = K̄∗ȳ(t) are all distinct.

To prove the above-mentioned statement, assume that σ
is a mode of the system S̄ with a multiplicity of greater
than one. For any j ∈ {1, 2, ..., ν̄}, let λj be constructed as
follows:
Freeze the inputs and outputs of SISO subsystems
j + 1, j + 2, ..., ν̄ of the system S̄. The resultant system has
only j subsystems. Denote the set of the DFMs of this new
system with λj .
Since the system S̄ has no DFMs, λν̄ is an empty set. Due to
a manifest property of DFM, λj is a subset of λj−1, for any
j ∈ {2, 3, ..., ν̄}. Denote with βi the number of times that σ
appears in λi, for any i ∈ {1, ..., ν̄}. It is evident that β1 ≥
β2 ≥ · · · ≥ βν̄ = 0. Let i be the smallest positive integer
such that βi is strictly less than βi−1. It can be concluded
from [11] that for almost all scalars g1, g2, ..., gi−1, the mode
σ is observable and controllable βi−1−βi times through the
ith subsystem of the system obtained from S̄ on applying the
local controllers ūj(t) = gj ȳj(t), ∀j ∈ {1, 2, ..., i−1}. Note
that a generic choice of g1, g2, ..., gi−1 would shift some
modes of the system S̄ to disjoint locations, which are also
distinct from σ (this can be shown in line with the proof
of Theorem 2). Now, consider the system S̄ under the local
controllers ūj(t) = gj ȳj(t), ∀j ∈ {1, 2, ..., i − 1}. Find the
root locus trajectory corresponding to the single input and
the single output of the ith SISO subsystem of the resultant
system. It is straightforward to shown that βi−1−βi branches
originate from the point σ and diverge at different angles.
This means that a proper static controller for this subsystem
will decrease the multiplicity of the repeated mode σ by
βi−1− βi. Now, one can consider the second smallest value
of i for which βi is strictly less than βi−1 and make the same
argument for the new partially-closed-loop system. This will
eventually lead to a static decentralized controller K̄∗ which
provides distinct closed-loop modes. ¥

Theorem 3: Assume that σ is a mode of the system S̄(g).
Then, σ is not a DFM of the system S̄(g), unless the scalar
g pertains to a specific finite set.

Proof: There are two possibilities for the mode σ as
follows:

i) It is a mode of the system S̄ as well.
ii) It is distinct from all modes of the system S̄.

First, consider case (i). It is straightforward to show that σ
is not a DFM of the system S̄(g) if and only if there exists
a diagonal matrix K̃ ∈ <(ν̄−1)×(ν̄−1) such that:

σ 6∈ sp

(
Ā + B̄

[
g 0
0 K̃

](
I − D̄

[
g 0
0 K̃

])−1

C̄

)

(2)
On the other hand, since the system S̄ is assumed to have
no DFMs and σ is a mode of this system, it can be deduced
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from [11] that:

σ 6∈ sp

(
Ā + B̄

[
e 0
0 K̃

](
I − D̄

[
e 0
0 K̃

])−1

C̄

)

(3)
for almost all scalar values e and diagonal matrices K̃ ∈
<(ν̄−1)×(ν̄−1). This result can be equivalently stated as for
almost all values of e, there exists at least one diagonal
matrix K̃ ∈ <(ν̄−1)×(ν̄−1) for which the relation (3) holds.
The proof of case (i) follows now from this statement and
the relation between (3) and (2).

Now, consider case (ii). One can easily conclude from
Corollary 2 that the multiplicity of σ as a mode of the system
S̄(g) is equal to 1 for almost all values of g. Suppose that the
value of g is chosen such that σ is an unrepeated mode (i.e.
g is a generic value). It is desired to prove that the mode σ of
the system S̄(g) is almost always controllable and observable
through its first subsystem (i.e. the input ū2(t) and the output
ȳ2(t)). To prove that the mode σ is controllable from the
input ū2(t) of the system S̄(g) for generic values of g, it
suffices to show that the matrix:

(sI − Ã(g))−1 × b̃2(g)

has at least one infinite entry at s = σ (note that σ is an
unrepeated mode of S̄(g)). To this end, one can write:

(sI − Ã(g))−1b̃2(g) = (sI − Ā− b̄1g(1− d̄11g)−1c̄1)−1

× (b̄2 + b̄1g(1− d̄11g)−1d̄12)

= (sI − Ā)−1b̄1g(1− d̄11g)−1

× (
1− c̄1(sI − Ā)−1b̄1g(1− d̄11g)−1

)−1

× (
c̄1(sI − Ā)−1b̄2 + d̄12

)

+ (sI − Ā)−1b̄2

=
g

1− d̄11g − c̄1(sI − Ā)−1b̄1g
h1(s)h2(s)

+ (s− Ā)−1b̄2

(4)
where

h1(s) = (sI − Ā)−1b̄1, h2(s) = c̄1(sI − Ā)−1b̄2 + d̄12

Since σ is not an eigenvalue of the matrix Ā (as stated in
case (ii)), it can be easily verified that:

1− d̄11g − c̄1(σI − Ā)−1b̄1g = 0 (5)

On the other hand, the term (s − Ā)−1b̄2 is finite at s = σ
(from the condition in case (ii)). Assume that σ is uncon-
trollable from the input ū2(t) of the system S̄(g), for some
g. It can be concluded from (4) and (5) that h1(σ)h2(σ)
is a zero vector. It is obvious that h1(s) is not identical
to zero for all values of s. Moreover, h2(s) is the transfer
function from the second input of S̄ to its first output. From
the assumption following Corollary 1, the transfer function
h2(s) is not identical to zero. As a result, h1(s)h2(s) is a
vector with rational entries. Since σ is a zero of this rational
function, it is located on a hypersurface. On the other hand,
the values of g for which the system S̄(g) has a mode σ on
that specific hypersurface lie on another hypersurface. This

asserts that the mode σ is controllable from the input ū2(t)
of the system S̄(g) for almost all values of g. Likewise, it
can be shown that the mode σ is observable from the output
ȳ2(t) of the system S̄(g) for almost all values of g. Since it is
shown that the mode σ of the system S̄(g) is almost always
controllable and observable through its first subsystem, σ is
not a DFM of the system for generic values of g. ¥

Theorem 4: Apply the static controller ui(t) = Kiyi(t)
to the system S , for any i ∈ {1, 2, ..., ν − 1}, where
K1,K2, ...,Kν−1 are arbitrary constant matrices of proper
dimensions. The resultant system is controllable and ob-
servable through the input and from the output of its
last subsystem (i.e. uν(t) and yν(t)), unless the matrices
K1,K2, ...,Kν−1 are located on a certain hypersurface.

Proof: The proof is omitted here due to space restric-
tions. ¥

Remark 1: Theorem 4 proposes static controllers to be
applied to all but one subsystem. Thus, the system is mainly
to be controlled from a single subsystem. This may encumber
the corresponding control function in the case when the
system consists of a large number of subsystems. In order
to alleviate this problem, one can apply generic static con-
trollers to fewer number of subsystems. It can be shown in
line with the proof of Theorem 4 that the resultant system
in this case will still have no fixed modes through the inputs
and the outputs of the remaining subsystems. Now, one of the
existing pole-placement approaches, e.g. the one proposed in
[19], can be deployed to design dynamic local controllers for
the uncontrolled subsystems to place the closed-loop modes
at the desired locations.

B. The general case for the system S
The results presented so far are attained based on the

assumptions that l = 1 and the system S has no DFMs.
It is desired now to obviate these assumptions.

As pointed out in [16], there exists a coordination under
which the state-space representation of the system comprises
l modified systems which are physically in the hierarchical
form; i.e., no information is transmitted from the modi-
fied system i to the modified system j for any i, j ∈
{1, 2, ..., l}, i > j. This implies that the decentralized pole
placement can be equivalently solved for the modified sys-
tems 1, 2, ..., l separately. In other words, the decentralized
pole-placement problem for the system S can be accom-
plished by solving l decentralized pole-placement problems
such that the ith problem is for the ith modified system with
the strongly-connected graph Gi, for any i ∈ {1, 2, ..., l}.

The following algorithm takes advantage of the above
discussion and Theorem 4, and proposes a systematic method
to place the modes of the system at any pre-determined
locations denoted by the set ρ of size n, by means of a
LTI decentralized controller. It is notable that the set ρ may
have repeated elements.

Algorithm 1:

• Step 1: Obtain the structural graph of the system S
and partition it into the minimum number of strongly
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connected subgraphs. Denote this minimum number
with l.

• Step 2: Decompose the system S into l new systems
S̃1, S̃2, ...., S̃l (with strongly connected subgraphs),
which are in the hierarchical form; i.e., there is
no interconnection from S̃i to S̃j , for any i, j ∈
{1, 2, ..., l}, i > j. This decomposition can be derived
from the structural graph of the system S, by exploiting
the technique given in [16].

• Step 3: For any i ∈ {1, 2, ..., l}, obtain the set of the
DFMs of the system S̃i and denote it with γi.

• Step 4: Check whether the multiplicity of every element
of the set ρ is greater than or equal to the number of
times that the element appears in the sets γ1,γ2, ..., γl

(including its repetition). If yes, proceed to the next
step; otherwise, the decentralized pole placement for
the desired locations is not feasible and the algorithm
should halt here.

• Step 5: Consider ρ1 = ρ. For i = 1 to l, carry out the
following procedure:

1. Apply generic static local controllers to all sub-
systems of S̃i, except the last one. Now, design
a Luenberger observer and a static controller for
the last subsystem of the resultant system to place
the non-DFM modes of the system at any locations
belonging to ρi and disjoint from the elements of
γi+1, γi+2, ..., γl (there may exist several choices
here).

2. Remove all modes of the new closed-loop system
from ρi and denote the resultant set with ρi+1.

• Step 6: All the modes of the system S are now at the
desired locations given by the set ρ.

III. NUMERICAL EXAMPLE

Consider a system S consisting of four SISO subsystems
with the following decoupled state-space matrices:

A =




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


 , B1 =




3
4
0
1


 , B2 =




0
2
0
6


 ,

B3 =




0
7
9
−5


 , B4 =




0
0
8
7


 , C1 =




0
2
4
3




T

C2 =




0
−6
0
8




T

, C3 =




0
4
0
−9




T

, C4 =




5
1
0
7




T

D11 = −5, D12 = 10, D13 = 27, D14 = 23,

D21 = 32, D22 = 60, D23 = −3, D24 = 56/3,

D31 = −25, D32 = −62, D33 = 43, D34 = −21,

D41 = −4.5, D42 = 40, D43 = 16, D44 = 7,

It is desired to place the modes of the system arbitrarily,
say at λ1, λ2, λ3 and λ4. Assume that due to the practi-

cal constraints, using a structurally constrained controller
is preferred. Commence with a decentralized control law
U(s) = K(s)Y (s), where K(s) is the transfer function of
the controller being sought, which is represented as:

K(s) =




K11(s) 0 0 0
0 K22(s) 0 0
0 0 K33(s) 0
0 0 0 K44(s)




As discussed in [7], the system has two DFMs 1 and 3,
and since they are unstable, there is no LTI decentralized
controller to stabilize the system. Moreover, the work [7]
has shown that if a single communication link is added
between any two isolated local controllers, the system will
still have at least one unstable fixed mode. The work [7]
suggests adding two communication links between the local
controllers in order to achieve stability. In this case, the
structurally constrained controller K(s) would have the
following form [7]:

K(s) =




K11(s) 0 0 K14(s)
0 K22(s) 0 0

K31(s) 0 K33(s) 0
0 0 0 K44(s)


 (6)

Therefore, the objective now reduces to designing a dynamic
controller of the form (6) so that the modes of the closed-
loop system are placed at λ1, λ2, λ3 and λ4. To this end, let
this controller be transformed into the conventional form by
means of the technique presented in [2]. Define the matrix
K̂(s) as:



K11(s) K14(s) 0 0 0 0
0 0 K22(s) 0 0 0
0 0 0 K31(s) K33(s) 0
0 0 0 0 0 K44(s)




and also the system Ŝ as:

˙̂x(t) = Âx̂(t) + B̂û(t)

ŷ(t) = Ĉx̂(t) + D̂û(t)

where Â = A, B̂ = B, and

Ĉ =
[

CT
1 CT

4 CT
2 CT

1 CT
3 CT

4

]T
,

D̂ =
[

DT
1 DT

4 DT
2 DT

1 DT
3 DT

4

]T

Note that Di represents the ith row of the matrix D, for
any i ∈ {1, 2, 3, 4}. As stated in [2], the system S under
the structurally constrained controller U(s) = K(s)Y (s)
possesses the same modes as the system Ŝ under the decen-
tralized controller Û(s) = K̂(s)Ŷ (s). Since the matrix K̂(s)
(whose elements are to be designed) is block diagonal, the
method proposed in this paper can be applied to accomplish
the desirable pole placement. It is worth mentioning that
the subsystems of Ŝ are all single input and have 2, 1, 2
and 1 output(s), respectively. It can be easily verified that
the structural graph of Ŝ is strongly connected (i.e. l = 1).
Hence, step 2 of Algorithm 1 can be bypassed here. At this
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point, consider the local controllers of subsystems 2, 3 and
4 of the system Ŝ as generic static controllers; for instance:

K22(s) = K31(s) = K33(s) = K44(s) = 1

Let these static controllers be applied to the system Ŝ . The
resultant system through its first subsystem will have the
following model:

˙̆x(t) =




1.0000 0 0 0
−1.1172 1.0381 −0.1852 −0.6720
2.3553 2.1995 1.9454 0.4655
2.7451 3.3367 −0.3138 3.9694


 x̆(t)

+




3.0000
8.8514
−11.8656
−16.4950


 ŭ(t)

y̆(t) =
[

5.2213 7.8119 1.2065 2.5562
0.4284 0.4177 −0.0932 0.1106

]
x̆(t)

+
[ −36.5234
−2.2028

]
ŭ(t)

(7)
Now, a controller in the from of Ŭ(s) =[

K11(s) K14(s)
]
Y̆ (s) should be designed for the

system given in (7) such that the modes of the closed-loop
system are placed at λ1, λ2, λ3 and λ4. It is straightforward
to check that the controllability and observability matrices
associated with the system (7) are both full-rank. This
is in accordance with the result of Theorem 4 for this
example. Thus, the pole-placement procedure can be
carried out by designing a simple static state feedback
controller and a Luenberger observer. The transfer
function of the obtained observer-based controller can
be equated to

[
K11(s) K14(s)

]
for obtaining the

controller components K11(s) and K14(s). For any given
λ1, λ2, λ3 and λ4, this pole-placement problem can be
straightforwardly treated and the corresponding local
controllers will be derived.

IV. CONCLUSIONS

This paper is concerned with decentralized pole assign-
ment of general proper interconnected systems. The system is
first decomposed into a number of modified systems based on
its structural graph. It is shown that designing a decentralized
controller for the system to achieve arbitrary pole placement
is tantamount to designing a set of decentralized controllers
corresponding to different modified systems such that each
decentralized controller places a portion of the modes at pre-
determined locations. As a result, the problem of designing a
decentralized controller for a modified system to accomplish
pole placement is treated in order to solve the original
problem. It is shown that on applying generic static local
controllers to all the subsystems of this modified system,
except the last one, the resultant system will have no new
decentralized fixed mode (DFM) through its last subsystem.
This means that if the modified system has no DFMs, the
resultant system will be controllable and observable through
its last control agent. An observer-based controller can then

be designed for the last subsystem in order to place the
modes at the desired locations. It is to be noted that in the
special case when the system is strictly proper, similar results
have already been presented in the literature; however, their
extension to the general case is quite challenging as noted
in the relevant papers.
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