
Model Predictive Controller Tuning via Eigenvalue Placement

Jorge L. Garriga and Masoud Soroush

Abstract— This paper presents an analytical study of the
effect of model predictive control (MPC) tunable parameters
over a wide range, on the closed-loop performance quantified
in terms of the location(s) of closed-loop eigenvalue(s) of a
large set of widely common, single-input single-output, linear
plants whose constraints are inactive. Symbolic manipulation
capabilities of MATHEMATICA are used to obtain analytical
expressions describing the dependence of closed-loop eigenval-
ues on the tunable parameters. This work is first to investigate
how MPC tuning-parameters affect the location of the eigen-
values of the closed-loop system of a plant in the discrete-
time setting. It is to provide theoretical basis/justification
for many of the existing qualitative MPC tuning rules and
propose new tuning guidelines for MPC. For example, as the
prediction horizon is increased while other tunable parameters
remain constant, a subset of the closed-loop eigenvalues (poles)
move non-monotonically towards the open-loop eigenvalues
(poles) of the plant. If a prediction horizon much longer than
the reference-trajectory time-constant is used, the value of
reference-trajectory time-constant has little effect on the closed-
loop performance. As the weights on the magnitude or the rate
of change of the manipulated input are increased, the closed-
loop eigenvalues move towards the open-loop eigenvalues. As the
control horizon is increased from one, the dominant eigenvalue
of the closed-loop system initially moves towards the origin and
then away from the origin to a location that does not change
with a further increase in the control horizon.

I. INTRODUCTION

Model predictive control (MPC) has been implemented

widely in the process industries since its introduction in the

mid 1970’s. Among factors contributing to the success of

MPC are (i) the ability of MPC to handle constraints on

manipulated, state and controlled variables in a systematic

way during the design and implementation of the controller,

and (ii) its enormous flexibility that allows the use of

models, objective functions and constraint functionalities in

a variety of forms [1], [2]. The theory of MPC has received

increasingly attention for the past decade, especially from

researchers outside process systems engineering.

A typical model predictive controller has a great number

of tunable parameters. These parameters include the predic-

tion horizon(s), control horizon(s), model horizon, output

penalties, input magnitude and rate of change penalties,

and reference trajectory time constant(s). For the past three

decades, a qualitative understanding of the effect of these

controller tunable parameters on the stability and perfor-

mance of the closed-loop system has been gained. This

understanding together with closed-loop simulation studies
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has made possible the wide-spread implementation of MPC.

It is known that the effect of these parameters on the closed-

loop performance is sometimes non-monotonic.

There have been several studies on MPC tuning, includ-

ing [3], [4], [5], [6], [7], [8]. Lee and Yu [3] derived expres-

sions for sensitivity equations for state-space models. Using

an optimal Kalman filter and a long horizon control law, they

studied MPC tuning for robust stability and performance.

Shridhar and Cooper [4] derived an analytical expression

that calculates move suppression coefficients as a function of

plant model parameters, other MPC design parameters, and

partitioned block condition numbers of the system matrix.

Their tuning method is applicable to unconstrained mul-

tivariable plants, including non-square systems. They also

proposed an expression for optimal move suppression coef-

ficients using a first-order-plus-dead-time approximation of

process model, and tuning heuristics for prediction horizon,

model horizon, and control horizon [5]. Al-Ghazzawi et

al. [6] presented an approach to tuning MPC on-line based

on sensitivity equations derived from a step response model

with linear constraints. The sensitivity equations were based

on finding optimal move suppression and controlled variable

damping coefficients from process parameters. Wojsznis et

al. [7] developed a heuristic approach to MPC tuning. They

proposed setting penalties on control moves as a function of

plant dead time as the primary factor, with some correction

from plant gain. Trierweiler and Farinab [8] also presented a

tuning strategy for MPC based on the attainable performance

of a system and its degree of directionality.

The dynamics of a plant in closed-loop is described mainly

by eigenvalues of the Jacobian of the closed-loop system, if

the plant is linear, and by the eigenvalues and nonlinearity

of the closed-loop system, if the plant is nonlinear. In

MPC, there has been very little or no attempt to study

how a controller places closed-loop eigenvalues, while in

other control methods, closed-loop performance, stability,

and robust stability have been studies in terms of the location

of closed-loop eigenvalues.

This paper presents an analytical study of the effect of the

MPC tunable parameters over a wide range, on the closed-

loop performance quantified in terms of the location(s) of

closed-loop eigenvalue(s) of a large set of widely common,

single-input single-output, linear plants whose constraints are

inactive. The tunable parameters include control horizon,

prediction horizon, controlled variable weights, time constant

of reference trajectory, and weights on the magnitude and

rate of change of manipulated variable. Symbolic manipu-

lation capabilities of MATHEMATICA are used to obtain

analytical expressions describing the dependence of closed-
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loop eigenvalues on the tunable parameters. This work is

first to investigate how MPC tuning-parameters affect the

location of the eigenvalues of the closed-loop system of a

plant in the discrete-time setting. It is to provide theoretical

basis/justification for many of the existing qualitative MPC

tuning rules and propose new tuning guidelines for MPC.

The organization of this paper is as follows. The scope of

the study and some mathematical preliminaries are given in

Section II. A general moving-horizon optimization problem

is formulated in Section III and is applied to linear plants in

Section IV. Symbolic calculations are described in Section

V. Several widely common plants are considered in Section

VI. Concluding remarks are given in Section VII.

II. SCOPE AND PRELIMINARIES

Consider a single-input single-output (SISO) nonlinear

plant in the form

x̄(k + 1) = Φ[x̄(k), u(k)], x̄(0) = 0
ȳ(k) = h[x̄(k)] + d

}

(1)

where x̄ ∈ X ⊂ ℜn denotes the vector of the plant state

variables, u ∈ U ⊂ ℜ is the plant manipulated variable

(input), ȳ ∈ h(X) ⊂ ℜ is the plant controlled variable

(output), and d ∈ D ⊂ ℜ is an unmeasurable constant

disturbance. Here X and U are open connected sets, and D
is a connected set. It is assumed that the discrete-time plant

description is a result of using a sampling period in order of

one-tenth of the dominant time constant of the plant.

We also make the following assumptions: (a) (xss, uss) =
(0, 0) is the nominal equilibrium pair, (b) the nominal

equilibrium pair (0, 0) ∈ X × U , (c) Φ(x, u) and h(x) are

smooth vector functions on X ×U and X , respectively, and

(d) for a plant of the form of (1), a discrete-time model of

the following form is available:

x(k + 1) = Φ[x(k), u(k)], x(0) = 0
y(k) = h[x(k)]

}

(2)

where x ∈ X ⊂ ℜn denotes the vector of model state

variables and y ∈ h(X) ⊂ ℜ is the model controlled variable

(output). Relative order (degree) of the controlled output y
with respect to the manipulated input u is denoted by r,

where the relative order r is the smallest integer for which

y(k + r) depends explicitly on u(k).
There have been several studies on the connections be-

tween MPC and existing analytical control methods, leading

to a better understanding of the effect of MPC tuning param-

eters on the closed-loop performance [9], [10]. A few special

cases of unconstrained SISO MPC are listed in Table I. M
and P denote control and prediction horizons, respectively.

As the prediction horizon is increased and the control horizon

is decreased, a more robust but less aggressive controller is

obtained. It has been shown [9], [10] that in special cases

shortest-prediction-horizon MPC leads to:

• Input-output linearizing control laws that inherently in-

clude optimal windup and directionality compensators,

• Model state feedback control (MSFC) and modified in-

ternal model control (IMC) laws that inherently include

an optimal directionality compensator,

TABLE I

UNCONSTRAINED SISO MODEL PREDICTIVE CONTROLLERS WITH NO

PENALTY ON MANIPULATED INPUT MAGNITUDE OR RATE OF

CHANGE [9].

P M Reference Model Resulting
Trajectory Controller

r 1 No Deadbeat

r 1 Yes I-O Linearization

r 1 Yes Linear Modified IMC

r 1 Yes Linear MSFC

r = 1 1 Yes Linear PI, PID

>> r >> 1 Yes/No Long Horizon MPC

∞ 1 Yes/No Steady State

• Proportional–integral (PI) and proportional–integral–

derivative (PID) controllers that inherently include op-

timal windup and directionality compensators.

III. MODEL PREDICTIVE CONTROL LAW

Consider a moving-horizon minimization problem of the

form

min
U(k)

{

P
∑

ℓ=r

wyℓ
[yd(k + ℓ) − ŷ(k + ℓ)]

2
+

M−1
∑

ℓ=0

wuℓ+1
[u(k + ℓ)]

2
+

M−1
∑

ℓ=0

w∆uℓ+1
[u(k + ℓ) − u(k + ℓ − 1)]

2

}

(3)

subject to

x(k + 1) = Φ[x(k), u(k)]
y(k) = h[x(k)]

u(k + ℓ) = u(k + ℓ − 1), ℓ = M, · · · , P − r

where

• P ≥ r,

• U(k) = [u(k) · · ·u(k + M − 1)]
T

,

• wyr
, · · · , wyP

, wu1
, · · · , wuM

, w∆u1
, · · · , w∆uM

≥ 0,

• yd is a reference trajectory, given by

yd(k + j) = (1 + β)rysp(k + j) −

r−1
∑

ℓ=0

(

r

r − ℓ

)

βr−ℓ

×yd(k + j − r + ℓ), j = r, · · · , P
yd(k + ℓ) = ŷ(k + ℓ), ℓ = 0, · · · , r − 1

• β is a tunable scalar parameter that sets the speed of

the reference trajectory and is chosen such that −1 <
β < 0.

• ysp ∈ Y ⊂ ℜ is the output set-point. Y is the set of

all ysp for which for every d ∈ D there exist a uss ∈

U and an xss ∈ X satisfying xss = Φ(xss, uss) and

ysp = h(xss) + d.

•
(

a

b

)

�
a!

b!(a − b)!
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• ŷ is the predicted future value of the controlled output,

given by

ŷ(k + ℓ)
△
= ȳ(k) + hℓ[x(k)] − h[x(k)], ℓ = 0, · · · , r − 1

ŷ(k + r)
△
= ȳ(k) + hr[x(k), u(k)] − h[x(k)]

ŷ(k + ℓ)
△
= ȳ(k) + hℓ[x(k), u(k), · · · , u(k + ℓ − r)]−

h[x(k)], ℓ = r + 1, · · · , P
(4)

•

h0[x(k)]
△
= h[x(k)]

hℓ[x(k)]
△
= hℓ−1[Φ(x(k), u(k))],

ℓ = 1, · · · , r − 1

hr[x(k), u(k)]
△
= hr−1[Φ(x(k), u(k))]

hr+1[x(k), u(k), u(k + 1)]
△
= hr[Φ(x(k), u(k)), u(k + 1)]
...

hP [x(k), u(k), · · · , u(k+P−r)]
△
=

hP−1[Φ(x(k), u(k)), u(k + 1), · · · , u(k + P − r)]

When measurements of the state variables are available, in

the preceding prediction equations we set x = x̄. Otherwise,

the values of the state variables have to be estimated, for

example, via on-line simulation of the plant model (use of an

open-loop state estimator) or by using an extended Kalman

filter. An estimate of the unmeasured output disturbance,

d̂, is then calculated from d̂ = ȳ − h(x). The use of this

disturbance estimate in the model predictive control method

leads to a model predictive controller with integral action.

For the sake of simplicity, the state estimator dynamics are

not accounted for in the results presented herein.

Solving the moving-horizon minimization problem of (3)

leads to a feedforward/state feedback. It is assumed that

for every x ∈ X , every ysp ∈ Y , and every d ∈ D, the

optimization problem of (3) is feasible; that is, there is a

u ∈ U that minimizes the performance index in (3) globally.

IV. APPLICATION TO LINEAR PLANTS

Consider the class of time-invariant, linear plants with a

model of the form

x(k + 1) = Ax(k) + bu(k), x(0) = 0
y(k) = cx(k)

}

(5)

where A, b and c are n×n, n×1 and 1×n constant matrices

respectively. This class of plants is a special case of (1).

For this class of plants, the predicted future values of the

controlled output are given by:

ŷ(k + 1) = ȳ(k) + [cA − c]x(k) + cbu(k)

ŷ(k + 2) = ȳ(k) + [cA2 − c]x(k) + cAbu(k) + cbu(k + 1)
...

ŷ(k + P )= ȳ(k) + [cAP − c]x(k) + cAP−1bu(k) + · · ·

+cAr−1bu(k + P − r) + · · · + cbu(k + P − 1)

(6)

and the current and future values of the reference trajectory

by

yd(k)= ȳ(k)

yd(k + 1)= ȳ(k) + [cA − c]x(k)
...

yd(k + r − 1)= ȳ(k) + [cAr−1 − c]x(k)

yd(k + r)= (1 + β)rysp(k + r) −

r−1
∑

ℓ=0

(

r

r − ℓ

)

βr−ℓ

×yd(k + ℓ)
...

yd(k + P )= (1 + β)rysp(k + P ) −

r−1
∑

ℓ=0

(

r

r − ℓ

)

βr−ℓ

×yd(k + P − r + ℓ)

V. SYMBOLIC CALCULATIONS

After entering values for A, b, and c matrices (unless the

plant is first order), the following symbolic calculations are

performed:

(a) After setting values of P and M , calculate the perfor-

mance index J(x(k), ysp(k), u(k), · · · , u(k + M − 1)).
(b) Calculate [u(k), · · · , u(k + M − 1)]T =

Q(x(k), ysp(k)) that globally minimizes

J(x(k), ysp(k), u(k), · · · , u(k + M − 1). This

involves taking partial derivatives of J with respect

to u(k), · · · , u(k + M − 1), setting the resulting

partial derivatives to zero, and then solving for

u(k), · · · , u(k + M − 1).
(c) Calculate the Jacobian of the closed-loop system; i.e.,

Jcl = A + bk1, where k1 is the first row of the M × n
matrix ∂Q(x, ysp)/∂x.

(d) Calculate the eigenvalues of Jcl.

This approach can be extended to calculate eigenvalues of the

closed-loop system of an input-constrained plant. For such a

plant, steps (b) and (c) are different; the optimization in step

(b) is constrained, and when an input constraint is active,

k1 = 0; Jcl = A, which is the Jacobian of the plant in open-

loop (Jol). A sufficient condition for asymptotic stability of

an input-constrained plant is that all eigenvalues of (a) J cl

when the same plant is unconstrained and (b) Jol = A lie

inside the unit circle. In the case that the order of the plant is

higher than one and the values of the matrices A, b, and c are

not set, MATHEMATICA calculates symbolic expressions

for the closed-loop Jacobian that may be hundreds of pages

long.

Sample analytical expressions for the closed-loop Jacobian

(eigenvalue), Jcl, of a general first-order plant of the form

(5) for several low values of P and M are given in Table

II. They show how M , P , wy1
, · · · , wyn

, wu1
, · · · , wuM

,

w∆u1
, · · · , w∆uM

, and β affect the location of the closed-

loop eigenvalue. Closed-loop Jacobian expressions for higher

values of P and M are not presented here because of their

larger sizes and the 6-page limit on the length of ACC
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TABLE II

ANALYTICAL EXPRESSIONS FOR THE CLOSED-LOOP EIGENVALUE OF A

GENERAL FIRST-ORDER LINEAR PLANT.
 

P=1, 

M=1 
 

P=2, 

M=1 
 

P=3, 

M=1 

 

P=4, 

M=1 

 

P=5, 

M=1 

 

proceedings papers. For example, the closed-loop Jacobian

(eigenvalue) for P = 5 and M = 3 is more than four

pages long. As can be seen in the sample expressions, for

every combination of P and M values, sum of the 2M

terms A(ω1j
× · · · × ωMj

), j = 1, 2, where ωi1 = wui
and

ωi2 = w∆ui
, i = 1, · · ·M , appear in the numerator of Jcl,

and sum of the 2M terms (ω1j
× · · · × ωMj

), j = 1, 2, in

the denominator. This explains clearly the previously-known

qualitative and intuitive understanding that:

• As wu1
, · · · , wuM

−→ ∞, Jcl −→ A = Jol.

• As w∆u1
, · · · , ww∆uM

−→ ∞, Jcl −→ A = Jol.

VI. ILLUSTRATIVE EXAMPLES

The application of the approach described above to several

specific simple plants is presented in this section.

A. Examples

Example 1. A minimum-phase, asymptotically stable,

first-order, linear plant:

A = [0.905] , b = [1.903] , c = [1]

which has the transfer function

G(z) =
1.903

z − 0.905

Example 2. A non-minimum phase, asymptotically stable,

second-order, linear plant:

A =

[

0 1
−0.125 0.75

]

, b =

[

0
1

]

, c =
[

2 −1
]

;

G(z) =
2 − z

(z − 0.5)(z − 0.25)

Example 3. A non-minimum phase, asymptotically stable,

second-order, linear plant:

A =

[

0 1
0 0.5

]

, b =

[

0
1

]

, c =
[

2 1
]

;

G(z) =
2 + z

z(z − 0.5)

Example 4. A minimum phase, unstable, second-order,

linear plant:

A =

[

0 1
−1.6 2.8

]

, b =

[

0
1

]

, c =
[

−0.5 1
]

;

G(z) =
z − 0.5

(z − 2)(z − 0.8)

Example 5. A non-minimum phase, unstable, second-

order, linear plant:

A =

[

0 1
−1.6 2.8

]

, b =

[

0
1

]

, c =
[

−1.5 1
]

;

G(z) =
z − 1.5

(z − 2)(z − 0.8)

Example 6. A minimum phase, asymptotically stable,

fourth-order, linear plant:

A =









0.9 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0









, b =









1.9
0
0
0









, c =
[

0 0 0 1
]

;

G(z) =
1.9

z3(z − 0.9)

B. Results

Results of the application of the approach to the plant

examples are presented in Figure 1 and Tables III-VIII.

C. Discussions

Figure shows how the closed-loop eigenvalue(s) of Exam-

ples 1-5 and the dominant closed-loop eigenvalue of Example

6 change(s) with P . When wu1
= w∆u1

= 0 and M = 1, as

P increases, the closed-loop eigenvalue(s) move towards the

open-loop eigenvalue(s), irrespective of the value of β that

sets the speed of the reference trajectory. Furthermore, if a

prediction horizon much longer than the reference-trajectory

time-constant is used, the value of the reference-trajectory

time constant has little effect on the closed-loop performance

(locations of the closed-loop eigenvalues). When P = 1,

r closed-loop eigenvalues are placed at z = −β, and the

remaining (n − r) eigenvalues at the plant zeros. For this

432



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0 t=-0.3

t=-0.6 t=-0.9(Ex.1)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

t 0 0 t 0 3

1.0

(Ex.2)

-0.5

0.0

0.5

1.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

-2.0

-1.0

0.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

(Ex.3)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

1.0 1.6

t 0 0 t 0 3

(Ex.4)

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

0.8

1.0

1.2

1.4

0 20 40 60 80 100

E
ig

e
n

v
a

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

(Ex.5)

-3

2

7

12

17

22

0 20 40 60 80 100

Ei
ge

n
va

lu
e

Prediction Horizon (P)

t=0.0 t=-0.3

t=-0.6 t=-0.9

(Ex.6)

Fig. 1. Closed-loop eigenvalue(s) of Examples 1-5 and the dominant
closed-loop eigenvalue of Example 6 for several values of P and β [M = 1,
wu1 = 0, w∆u1

= 0, wyr = · · · = wyP
= 1].

TABLE III

RESULTS FOR EXAMPLE 1.

(A) Closed-loop eigenvalue and the performance index J (with ysp =

0 and x = 5) for several values of M , β = −0.3, and P =

7, wu1 = 0, w∆u1
= 0, wyr = · · · = wyP

= 1.

M 1 2 3 4 5

Eigenvalues 0.75 0.20 0.30 0.30 0.30

J 15.7928 0.59747 0.04267 0.00274 0.00015

M 6 7

Eigenvalues 0.30 0.30

J 0.00005 0.00000

(B) Closed-loop eigenvalue for several values of wu1 and w∆u1
, and β =

0.0, P = 7, M = 3, wyr = · · · = wyP
= 1.

wu1 Eigenvalue w∆u1
Eigenvalue

0 0.00000 0 0.00000
1 0.17015 1 0.20051
2 0.26461 2 0.26825
3 0.32912 3 0.310569
4 0.37778 4 0.342283

TABLE IV

RESULTS FOR EXAMPLE 2.

(A) Closed-loop eigenvalues for several values of M , β = −0.3, and
P = 7, wu1 = 0, w∆u1

= 0, wyr = · · · = wyP
= 1.

M 1 3 7

Eigenvalues 0.2553, 0.4509 0.2359, 0.2998 0.2373, 0.3000

(B) Closed-loop eigenvalues for several values of wu1 and w∆u1
, and

β = 0.0, P = 7, M = 3, wyr = · · · = wyP
= 1.

wu1 (w∆u1
=0) Eigenvalues w∆u1

(wu1=0) Eigenvalues

0 0.0000, 0.5013 0 0.0000, 0.5013
1 0.0495, 0.5010 1 0.0800, 0.5008
2 0.0821, 0.5009 2 0.1151, 0.5011
3 0.1054, 0.5007 3 0.1362, 0.5016
4 0.1230, 0.5006 4 0.1506, 0.5019

reason, prediction horizons greater than one should be used

for non-minimum-phase plants (Examples 2, 3 and 5; Figure

1) to ensure closed-loop stability. When a plant (such as

Example V) is unstable and non-minimum-phase, prediction

and control horizons much longer that those that are adequate

to stabilize unstable or non-minimum-phase plants, should be

used to ensure that the closed-loop system is asymptotically

stable (e.g., P = 11 and M = 10 for Example V). As

the control horizon is increased from one, as shown in

Table III(A), the dominant eigenvalue of the closed-loop

system initially moves towards the origin and then away

from the origin to a location that does not change with a

further increase in the control horizon. Note that the value

of the performance index, J , evaluated at the minimizing

u, as expected, decreases monotonically as M increases.

In other words, J monotonically decreases with M , while

the eigenvalue first decreases, then increases, and finally

does not change. Tables III(B)-VIII(B) show how closed-

loop eigenvalue(s) vary as wu1
and w∆u1

are increased while

β = 0.0, P = 7, M = 3, and wyr
= · · · = wyP

= 1.

VII. CONCLUDING REMARKS

This paper presented an analytical study of the effect of the

MPC tunable parameters over a wide range, on the closed-

loop performance quantified in terms of the location(s) of

closed-loop eigenvalue(s) of a large set of widely common
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TABLE V

RESULTS FOR EXAMPLE 3.

(A) Closed-loop eigenvalues for several values of M , β = −0.3, and
P = 7, wu1 = 0, w∆u1

= 0, wyr = · · · = wyP
= 1.

M 1 3 7

Eigenvalues -0.0217, 0.4477 0.3012, -0.6495 0.3000, -0.6953

(B) Closed-loop eigenvalues for several values of wu1 and w∆u1
, and

β = 0.0, P = 7, M = 3, wyr = · · · = wyP
= 1.

wu1 (w∆u1
=0) Eigenvalues w∆u (wu1=0) Eigenvalues

0 0.0000, 0.5011 0 0.0000, 0.5011
1 0.0000, 0.5008 1 0.0000, -0.0888
2 0.0000, 0.5006 2 0.0000, 0.0276
3 0.0000, 0.5005 3 0.0000, 0.0919
4 0.0000, 0.5004 4 0.0000, 0.1353

TABLE VI

RESULTS FOR EXAMPLE 4.

(A) Closed-loop eigenvalues for several values of M , β = −0.3, and
P = 7, wu1 = 0, w∆u1

= 0, wyr = · · · = wyP
= 1.

M 1 3 6

Eigenvalues 0.975 ± 0.075i 0.384 ± 0.050 0.300, 0.500

(B) Closed-loop eigenvalues for several values of wu1 and w∆u1
, and

β = 0.0, P = 7, M = 3, wyr = · · · = wyP
= 1.

wu1 (w∆u1
=0) Eigenvalues w∆u1

(wu1=0) Eigenvalues

0 0.0000, 0.4809 0 0.0000, 0.4908
1 0.4976, 0.6130 1 0.667 ± 0.214i
2 0.5660, 0.6468 2 0.737 ± 0.211i
3 0.6151, 0.6584 3 0.782 ± 0.199i
4 0.659 ± 0.011i 4 0.813 ± 0.184i

plants whose constraints are inactive. Symbolic manipula-

tion capabilities of MATHEMATICA were used to obtain

analytical expressions describing the dependence of closed-

loop eigenvalues on the tunable parameters. This work is

first to investigate how MPC tuning-parameters affect the

location of the eigenvalues of the closed-loop system of

a plant in the discrete-time setting. It provides theoretical

basis/justification for many of the existing qualitative MPC

tuning rules and propose new tuning guidelines for MPC.

For example, as the prediction horizon is increased while

other tunable parameters remain constant, a subset of the

closed-loop eigenvalues (poles) move non-monotonically to-

wards the open-loop eigenvalues (poles) of the plant. If a

prediction horizon much longer than the reference-trajectory

time-constant is used, the value of reference-trajectory time-

constant has little effect on the closed-loop performance. As

the weights on the magnitude or the rate of change of the

manipulated input are increased, the closed-loop eigenvalues

move towards the open-loop eigenvalues.
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