
 

 

 

  

Abstract—In literature leader – follower strategy has been 

used extensively for formation control of car-like mobile robots 

with the control law being derived from the kinematics.  This 

paper takes it a step further and a nonlinear control law is 

derived using Lyapunov analysis for formation control of car-

like mobile robots using robot dynamics. Controller is split into 

two parts. The first part is the development of a velocity 

controller for the follower from the error kinematics (linear 

and angular). The second part involves the use of the dynamics 

of the robot in the development of a torque controller for both 

the drive and the steering system of the car-like mobile robot. 

Unknown quantities like friction, desired accelerations 

(unmeasured) are computed using an online neural network. 

Simulations results prove the ability of the controller to 

effectively stabilize the formation while maintaining the 

desired relative distance and bearing. 

I. INTRODUCTION 

HE use of dynamics coupled with kinematics for the 

control of autonomous mobile robots has been gaining 

increasing popularity in recent years. The majority of 

control algorithms available in literature for autonomous 

mobile robots use only the kinematic model [2]. The 

kinematic model has its own advantages. It helps in keeping 

the steering and velocity of the vehicle completely 

decoupled but in the process, the dynamics of the vehicle is 

not taken into account and hence remains ignored. The 

autonomous mobile robot considered in this paper is a front 

steer, rear drive car-like mobile robot. The velocity of the 

car-like robot is very dependant upon the dynamics of the 

steering system. Hence, the dynamics of the vehicle as well 

as dynamics of the steering must be taken into account.  

Automating car-like robot has many advantages like 

operating in hazardous environments like mines, data 

collection and reconnaissance etc. These controllers can be 

put to use in autonomous armored vehicles (note not tanks) 

for patrolling the streets to detect improvised explosive 

devices (IED’s). In most of these scenarios, employing a 

team of mobile robots helps in increasing the efficiency 

with which the task is completed. The use of a team helps in 

faster search of the entire search space and the operation 

can be carried out in a very systematic and effective way. It 
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is extremely valuable in time critical operations. Hence the 

focus of research has shifted to the control of a swarm or 

team of mobile robots in the recent years There many 

references available for control of single nonholonomic 

mobile robots [1], [6-11].  

The focus of this paper is on the formation control of a 

team of car-like mobile robots. There are various 

techniques available in literature for formation control of 

mobile robots. A few of the most commonly used 

techniques are: leader-follower [2-4] [15] [18], virtual 

structure based [16] [17] and behavior based approaches 

[11-13]. In [2] Shao et al use the concept of a virtual 

vehicle and the kinematics to derive the error system for 

control of multiple Pioneer 3DX vehicles. Li et al [3] 

present a kinematics model for the leader following based 

formation control of tricycle mobile robots and a back 

stepping based stabilizing controller is derived under the 

conditions of perfect velocity tracking and no disturbances. 

Dierks et al in [4] control a differentially steered robot by 

backstepping kinematics into dynamics. Desai et al in [5] 

use the kinematic model and graph theory to design a 

controller for multiple mobile robot formations. 

Unlike other papers, the dynamics of both the drive and 

the steering system are considered in this study. Single 

leader single follower scenario is considered in this paper 

but the same can easily be extended to multiple follower 

scenarios and is proven. The asymptotic stability of the 

system is also guaranteed and it is proved that the position 

tracking errors and the velocity tracking errors go to zero 

asymptotically. 

In Section II the mathematical model of a car-like mobile 

robot is derived. Both the kinematic as well as the dynamic 

model are derived. They are used in Section III for the 

derivation of velocity and torque control inputs. In Section 

IV weight tuning law for an online neural network is 

derived. Section V the stability of the formation for multiple 

followers is proved. Numerical results are presented in 

Section VI.  

II. MATHEMATICAL MODEL 

A. Kinematic Model 

The kinematic model of the system will be derived taking 

the nonholonomic constraints into account. Nonholonomic 

constraints for mobile robots are non-integrable and are 

related to its velocity [1]. A four wheeled, front-steer, rear 

drive mobile robot can be modeled as a bicycle for very 

small angles of steering. Consider Fig.1. Let ),( yx denote 
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the center of gravity (G) of the robot. The distance from G 

to the rear and front wheels be a and b respectively. Let θ  

denote the heading angle of the robot i.e. the orientation of 

the robot with respect to the x-axis and φ  denotes the 

steering angle between the front wheel and the body axis.   

 
Fig.1 Bicycle model 

The nonholonomic constraints for the robot given by  
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Let uv and wv be the longitudinal and lateral velocities of 

the vehicle. Using the body coordinates of the vehicle i.e. 

along the u and w axis we can define  
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Substituting (2) in (1) and manipulating we get 

θ�bvw =                                                    (3) 
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From equations (2) through (4) the kinematic model of the 

robot is given by  
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B. Dynamic Model 

The dynamic model is derived with the following 

assumptions: (i) there is no slip at the wheel, (ii) the rear 

wheels cannot be steered and are always in the same 

direction as the orientation of the vehicle, (iii) and the drive 

force and drive torque are assumed to act at the center of 

the rear wheels [1] [6] [7].The forces acting on the robot are 

as shown in Fig. (2). dwu FFF ,, denote the frictional force, 

the force acting perpendicular to each wheel as a result of 

the slippage assumption made and the drive force 

respectively. Also Im, denote the mass of the vehicle and 

the moment of inertia of the vehicle. Balancing the forces 

(Fig.2) acting along the u and w direction we have  

( ) cos sinu w ur dr uf wfm v v F F F Fθ φ φ− = − + − −��        (8)                       

( ) sin cos
w u wr uf wf

m v v F F Fθ φ φ+ = − +��                         (9)  

where
wrworwir FFF =+ ;

uruoruir FFF =+ ;

wfwofwif FFF =+ ;
ufuofuif FFF =+ and

drdordir FFF =+  

 
Fig.2 Free Body Diagram 

Also steering system dynamics of the robot can be 

modeled by a first order linear system [19] represented by 

the differential equation  

1
( )

s

uφ φ
τ

= −�                                               (10) 

where us ,τ denote the time constant and steering control 

respectively.  

III. FORMATION CONTROL 

There are various approaches available for formation 

control. The most common approaches being, the leader 

follower, virtual structure and behavior based approach. In 

this paper the formation control of the robot is achieved 

using the leader follower approach. The separation-bearing 

( ψ−l ) technique is made use of instead of the separation-

separation strategy. The objective is to find a velocity 

control input for the follower that will drive the relative 

distance and relative bearing between the leader and 

follower to the desired value. It is assumed that the leader’s 

motion is known i.e. there exists a control law that drives 

the leader independently to its desired trajectory.   Most 

formation control techniques for car-like robots in the 

literature involve the kinematics and do not incorporate the 

dynamics [2] [3] [5]. This issue has been addressed in this 

paper.  The dynamics of the leader and the follower are 

used to derive specific torque control inputs required to 

achieve the desired velocity profile derived earlier. 

Imperfect velocity tracking condition is considered. 

Consider the single leader single follower scenario as 

shown in Fig. (3). 

The subscripts l and f denote the leader and follower 

respectively. The relative distance 
LFL is the distance 

between the rear of the leader (point B) to the front of the 

follower (point A) and the relative bearing 
LFψ  is the 

defined as the angle measured from the leader (i.e. the 
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direction of orientation of the leader ) to the straight line 

joining the points A and B. The relative distance
LFL can be 

expressed in terms of the x and y coordinates of 
LFL  as 

222

LFyLFxLF LLL +=                                 (11)                                                                                        

where 

))cos()(cos( FLFLLFx dxxL θθ +−−=                (12)                                                                                                                             

))sin()(sin( FLFLLFy dyyL θθ +−−=                     (13)  

 
Fig.3 Formation Structure 

 Also from Fig (3) we can see that the relative bearing can 

be expressed in terms of the leader’s heading angle and the 

x and y coordinates of the relative distance as 
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Differentiating equations (12)  and (13) we have  
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The kinematics of the leader and follower can be obtained 

from equations (5) through (7) . Let,  

L
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Substituting  (5) through (7), (17)in (15), (16) and 

taking dL 2=  we have 
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From Fig (3) we can see that  
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Define 
FLLFF θθψγ −+= .Differentiating(11) and (14) , 

substituting(18), (19) and using trigonometric identities 
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Defining the error system given by  

1 2 3; ;FD F FD F FD Fe x x e y y e θ θ= − = − = −                  (22) 

From the Fig(3), it can be seen that, the actual and desired 

coordinates of point A can be expressed in terms of 

coordinates of point B,
LFL ,

LFDL , 
LFψ and 

LFDψ .Using 

these equations and transforming from inertial to body 

coordinates, for better intuitive sense, results in   
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Differentiating (23) through(25), substituting(20), (21) and 

simplifying  
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To stabilize the kinematic system and maintain the desired 

relative bearing and distance, velocity control inputs for the 

follower robot can be designed using Lyapunov analysis. 

Choosing the Lyapunov function candidate as                                              
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Differentiating (29)  
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The control inputs 
Fv  and 

Fw  that make 0<V� and the 

system asymptotically stable i.e. 0→Fe as ∞→t are given 

by 
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Substituting (26) through(28),(31),(32) in (30) and 

simplifying , 

d
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Since 0≥Lv ,with KKK == 21
 and 0,, 3 >VkKK , 0<V�  . 

In order to track the velocity and the angular velocity 

derived using Lyapunov analysis, the follower robot 

dynamics needs to be considered. The torque control inputs 

for the drive and steering system which will produce the 

desired velocity profile need to be obtained. Define a 

velocity tracking error given by  

FFDFD ZZe −=                                             (34) 

where  

[ ]
T

FD FD FDv φ=Z  and [ ]
T

F F F
v φ=Z                        (35) 
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In (35) FDv  and 
FDφ  are the desired linear velocity and 

steering angle profiles derived from the Lyapunov analysis, 

while Fv  and Fφ denote the actual values. Substituting 

drF rF=τ  where rF ,τ denote the drive torque and wheel 

radius of the follower and taking Fu vv =   
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From (36) and (10) we have  
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Adding and subtracting 
FDFD AZZ ,�  in (37) and simplifying 

we have  

FD FD FD FD= − + + + − Τe Ae AZ Z B E��                             (42)                   

Define BZAZxf ++= FDFDFnew
�)( . Note that ( )Fnewf x  

involves friction terms and desired acceleration terms that 

cannot be computed in a real life accurately. Hence, neural 

network will be used to estimate ( )Fnewf x .The error 

dynamics can now be written as 
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is designed. Using (44), 
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An appropriate choice of 
1K will result in the system in 

(45) being asymptotically stable and the velocity tracking 

error will go to zero. Now consider a new Lyapunov 

candidate function obtained by appending the one in (29)  
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Differentiating (46)  and substituting (45)  
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with 04,1 >kk results in  
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From (49) it can be inferred that the tracking error system in 

(43) and the error system given by (26) through (28) are 

asymptotically stable. Since the function )( Fnewxf  is 

approximated by a neural network a weight update rule is 

needed for the neural network. 

IV. WEIGHT UPDATE RULE AND PROOF OF BOUNDED-NESS 

OF WEIGHTS 

A single layer functional link neural network (FLNN) is 

used for the approximation of )( Fnewxf . The activation 

function is chosen as a basis set for the universal 

approximation property to hold. There exists a weight 

W such that εφ += )()( Fnew

T

Fnew W xxf with the estimation 

error
Nεε < . The ideal approximating weights are 

unknown and nonunique. So an assumption is made that 

BF
WW < with the bound known. 

F
denotes the 

Forbenius norm. Then, an estimate of )( Fnewxf is given by  
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with Ŵ being neural network weights. Therefore, 
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An online weight update rule is now developed to guarantee 

stable tracking and yet guarantee boundedness of weights. 

The weight estimation error is defined as 
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−=                                        (53) 

Now substituting (51) in (43) and using (53) 
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Lyapunov candidate function as given below is chosen. 
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where F is a user defined tuning matrix. Differentiating (55)

and substituting (54) we have  
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Selecting WkFFW FD

T
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� as the weight tuning law, 

we can show that  
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where 
min(.) denotes the minimum singular value. When, 
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V� is negative outside a compact set. Let the NN function 

approximation property hold for )( Fnewxf with an accuracy 

of 
N

ε for all 
Fnew

x in the compact set 

{ | }
FnewFnew Fnew Fnew xS x x b≡ < with

Fnewx FBb Z> where
FB

Z  

is the bound on the desired trajectory
FDZ . 
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Define 
0 1

{ | ( ) /( )}
FD Fnewe FD FD x FB

S e e b Z c c≡ < − + . Selecting the 

gain 
( )

2

0 1

1 min

( )
4

( )
Fnew

B

x FB

kW
c c

b Z

+

+ >
−

A K
 ensures that the compact set 

defined by 
FDFD ee b< is contained in

FDe
S . This guarantees 

that the error 
FDe and the NN weight estimates Ŵ are 

uniformly ultimately bounded (UUB) with bounds given 

by(58). [20] 

V. FORMATION STABILITY  

Consider a formation of 1N +  robots consisting of 

a leader “
i

l ” and N followers. Let there be a smooth 

velocity control input [ ]
T

L Lv w for the leader and let the 

torque control inputs [ ]
T

L Luτ be applied to the leader 

such that the leader tracks a virtual reference robot. The 

smooth velocity control inputs [ ]
T

Fi Fiv w for the 

th
i follower are given by(31), (32)  and torque control 

inputs by(51). Consider the following Lyapunov candidate  

1

1

N

Formation Wi lV V V= +¦                                  (59) 

where 
WiV is given by (55) and 

1 1 2 3

2 2 2 2 2

l l l l vl lV e e e e eφ= + + + +                                         

Differentiating  (59) yields  

1

1

N

Formation Wi l
V V V= +¦� � �                                (60) 

In the previous subsection it has been proved that 
Wi

V for all 

1i toN=  individually is negative outside a compact set and 

that the error 
FD

e and the NN weight estimates Ŵ are 

uniformly ultimately bounded (UUB). Hence, when 0
Wi

V <�  

for all 1i toN= , so it automatically follows that 

1

0
N

WiV <¦ � . 

Also, the leader torque control and velocity control inputs 

are designed such that the errors go to zero asymptotically 

and hence, 
1l

V� is negative. Therefore, 0FormationV <� , and the 

entire formation is asymptotically stable. 

VI. RESULTS  

  A single leader single follower scenario is considered and 

the simulations are carried out using MATLAB for the 

same.  The leader executes a circular trajectory with radius 

= 60 m, linear velocity of 5 m/sec and an angular velocity ~ 

0.08 rad/sec. It is desired for the follower to execute a circle 

of radius = 56 m being parallel to the leader at all times. So 

the desired relative distance to be maintained is 4.0774 m 

and a relative bearing angle of 78.8199 degrees. The gains 

used during simulation are 8=VFk , 01.03 =K , 

057.0=Vk , 100=K . The constants 5.0=k  and 

)20(*30 eyeF = are used in the NN weight update rule 

The NN has 20 hidden neurons. Measurement noise is 

added in the form Gaussian noise with zero mean. The 

noise added is one percent of the states that are inputs to the 

neural network. Also the simulations were carried out with 

different time constants for the steering dynamics and 

increased friction parameters.  The plots obtained are given 

below. From Fig. 4 it can be seen that the follower achieves 

the desired position and orientation, with the position and 

orientation errors going to zero asymptotically as shown in 

Fig. 5.  
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Fig. 4 Leader and follower trajectories 
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              Fig. 5 Position and orientation errors 
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Fig.6 Drive and Steering torques 
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It can be seen that the follower is parallel to the leader at all 

times tracking a circle of radius 56 m. The torque control 

inputs to the drive and steering system, which achieve the 

velocity profile in (31) and(32) are as shown in Fig.6.  

From Fig. 7 it can be inferred that the velocity tracking 

errors also go to zero asymptotically. From Fig. 10 it can 

bee seen that the neural network is able to approximate 

)( Fnewxf accurately. This work is being currently 

implemented on the jeep like mobile robots shown in Fig. 9. 
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Fig.7 efd1 and efd2 plots  
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Fig. 8 Neural Network output  

 

 
Fig. 9 Jeep Robot currently used for real time 

implementation 

VII. CONCLUSION AND FUTURE WORK 

In this paper simplified dynamic equations are used to 

obtain the torque control inputs for the drive and steering 

system of a car-like follower mobile robot to maintain a 

desired relative distance and bearing angle between the 

leader and the follower. Imperfect velocity tracking and 

uncertainties in the friction forces and the steering system 

modeling is taken into account. In future simulations for 

multiple follower scenarios have to be carried out. 
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