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Abstract— Fault detection and classification (FDC) has been
recognized in the semiconductor industry as an integral compo-
nent of advanced process control (APC) framework in improv-
ing overall equipment efficiency (OEE). To explicitly account
for the unique characteristics of the semiconductor processes,
such as nonlinearity in most batch processes, multimodal
batch trajectories due to product mix, the fault detection
method based on the k-nearest-neighbor rule (FD-kNN) has
been developed previously for fault detection in semiconductor
manufacturing. However, because FD-kNN does not generate
a classifier offline, it is computational and storage intensive,
which could make it difficult for online process monitoring.
To take the advantages of principal component analysis (PCA)
in dimensionality reduction and FD-kNN in nonlinearity and
multimode handling, a principal component based kNN (PC-
kNN) is proposed. Two simulated examples and an industrial
example are used to demonstrate the performance of the
proposed PC-kNN method in fault detection.

I. INTRODUCTION

Massive amount of trace or machine data is made available

in today’s semiconductor industry and fault detection has

been one focus of recent efforts to reduce wafer scrap,

increase equipment uptime and reduce the usage of test

wafers [1-7] . Among all fault detection methods, multi-

variate statistical fault detection methods such as principal

component analysis (PCA), partial least squares (PLS) have

drawn increasing interest in semiconductor manufacturing

industry recently [8-12] . PCA and PLS based methods have

been tremendously successful in continuous process appli-

cations such as petrochemical processes and its application

to traditional chemical batch processes has been extensively

studied in the last decade [13-17] . However, some unique

characteristics of semiconductor manufacturing processes,

such as multimodal batch trajectories and nonlinearity, have

posed difficulties to these multivariate statistical methods. In

our previous work [18], a fault detection method based on

k-nearest-neighbor (kNN) rule [19] (FD-kNN) was devel-

oped to explicitly account for the above mentioned unique

characteristics of semiconductor processes. However, there is

a drawback associated with the FD-kNN method: it can be

computational and storage intensive for large-scale processes

where the number of features or variables can easily exceed

thousands after batch unfolding. This drawback may prevent

it from being implemented for online process monitoring

where thousands or tens of thousands of such models are

running concurrently. For example, by 2006 there were more
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than 7,000 active FDC models at IBM [20] and over 30,000

models at Intel [21]. To reduce computation complexity

and storage/memory requirements, in this work we propose

principal component based kNN method (PC-kNN). Two

steps are involved in the proposed method. In the first step,

PCA is applied to the original process data set to transform

high dimensional data into few principal components (PC’s).

The few PC’s in general capture key features contained by

the process data. In the second step, the kNN fault detection

method is applied to the scores in the principal subspace to

detect potential faults.

II. METHODS

In this section, we briefly review relevant methods: PCA

and FD-kNN. Throughout this paper, a scalar is denoted by

an italic lower-case character (x), a vector by a bold lower-

case character (x), a matrix by a bold upper-case character

(X) and a three-way array by an underlined bold upper-case

character (X). These notations are consistent with notations

used by others in the statistical process control community

(see e.g., [22]).

A. Principal component analysis (PCA)

Let X ∈ ℜn×m denote the raw data matrix with n samples

(rows) and m variables (columns). X is first scaled to zero

mean for covariance-based PCA and further to unit variance

for correlation-based PCA. By either the NIPALS [23] or

a singular value decomposition (SVD) algorithm, the scaled

matrix X is decomposed as follows

X = TPT + X̃ = TPT + T̃P̃
T

=
[

T T̃
] [

P P̃
]T

(1)

where T ∈ ℜn×l and P ∈ ℜm×l are the score and

loading matrices, respectively. The PCA projection reduces

the original set of m variables to l principal components

(PC’s). For fault detection in a new sample vector x, the

squared prediction error (SPE) and the Hotelling’s T2 are

often used.

B. Fault detection using k-nearest-neighbor rule (FD-kNN)

The FD-kNN method [4], [18] is based on the idea

that the trajectory of a normal sample is similar to the

trajectories of normal samples in the training data; while

the trajectory of a fault sample must exhibit some deviation

from the trajectories of normal training samples. In other

words, a fault sample’s distance to the nearest neighboring

training samples must be greater than a normal sample’s

distance to the nearest neighboring training samples. If the

distribution of normal training samples’ distances to their
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nearest neighboring training samples can be determined, a

threshold can be defined with certain confidence level and

the unclassified sample is considered normal if the distance

to its nearest neighboring training samples is below the

threshold. Otherwise the sample is detected as a fault. The

FD-kNN method consists of two parts: model building and

fault detection.

• Part I: model building

This part consists of three steps:

1) Finding k nearest neighbors for each sample in the

training data set1.

2) Calculation of the kNN squared distance for each

sample. The kNN squared distance of sample i

(D2

i ) is defined as

D2

i =
k

∑

j=1

d2

ij (2)

where d2

ij denotes squared Euclidean distance

from sample i to its j-th nearest neighbor.

3) Determination of a threshold for fault detection.

Because the distribution of D2

i can be approxi-

mated by a noncentral chi-square distribution [18],

the threshold
(

D2

α

)

with a significance level α can

be determined. Another common way to set the

threshold is based on the calibration or testing data

under normal operation conditions [8], [24]. For

example, a 95% confidence limit can be estimated

as the value for which 95% of the calibration

samples are below the limit.

• Part II: fault detection

For an incoming unclassified sample x, the fault detec-

tion part also consists of three steps:

1) Finding x’s k nearest neighbors from the training

data set.

2) Calculation of x’s kNN squared distance D2

x

(Eqn. (2)).

3) Comparison of D2

x against the threshold D2

α.

If D2

x ≤ D2

α, it is classified as a normal sample.

Otherwise, it is detected as a fault.

Because FD-kNN is based on the kNN rule which is a

nonlinear classifier, it naturally handles process nonlinearity.

Also, because the FD-kNN method detects faults based on

local neighborhoods of similar batches, it is well suited

for multimodal data set in which batches can be grouped

into subsects with different characteristics. More detailed

discussion on the FD-kNN method can be found in [4], [18].

III. PRINCIPAL COMPONENT BASED

K-NEAREST-NEIGHBOR RULE (PC-KNN)

A disadvantage of the FD-kNN method is that it requires

considerable memory resources for large systems as all of

the training data must be retained to compute D2

x for each

incoming sample x. Also, the computational complexity is

1The determination of an appropriate k value is discussed later in this
work.

directly proportional to the dimensionality of the data. Con-

sequently, there is a practical upper limit to both the number

of records and the data dimensionality that may be processed

if the algorithm is implemented online with thousands or tens

of thousands of models running concurrently. Although there

are algorithmic techniques that can reduce the computational

burden, the implementation of these techniques is nontriv-

ial [19]. To reduce memory requirement and computation

time of the FD-kNN method while still keeping its advantage

of handling nonlinear and multimodal data, we propose an

improved FD-kNN algorithm based on principal component

analysis, denoted as PC-kNN. In PC-kNN, we first make use

of the dimensionality reduction and information preserving

property of PCA to extract principal components (PCs) that

contain key information of the data set. For a training dataset

X ∈ ℜn×m with n samples and m variables, PCs are

extracted by Eqn. (1). In the model building phase, instead

of applying FD-kNN algorithm directly to the raw training

data that usually has high dimensionality, we apply FD-

kNN algorithm to the score matrix T corresponding to the

extracted PCs. PC-kNN squared distance of sample i (D2

i )

is defined as

D
2

i =
k

∑

j=1

δ2

ij (3)

where δ2

ij denotes squared Euclidean distance from sample

i to its j-th nearest neighbors in the PC subspace, i.e., from

T(i, :) to its j-th nearest neighbor in T. Similar to [18],

the distribution of PC-kNN distances can be approximated

by a noncentral χ2 distribution and a threshold D
2

α can be

determined theoretically or practically. For a test sample

x ∈ ℜ1×m, its scores are obtained by projecting onto the

loading matrix P: t = xP. The k-nearest neighbors in the PC

subspace can be found by computing distances between t and

T and its PC-kNN squared distance D
2

x is calculated using

Eqn. (3). D
2

x is then compared with D
2

α to determine whether

x is a fault. By doing so, the proposed PC-kNN method

can significantly reduce the computation time and memory

requirement without sacrificing fault detection capability.

Notice that when PCA is applied to a nonlinear data set,

PCA will not be able to extract the nonlinear relations.

However, PCA will still find the directions that correspond

to the largest variations of the data set. In other words, PCA

may not be able to capture all nonlinear features, but the

dominant nonlinear features will be captured because of the

associated large variations.

IV. ILLUSTRATIVE EXAMPLES

In this section, two simple examples with 12 variables are

given to illustrate how the proposed PC-kNN fault detection

method works in the presence of nonlinearity and multimodal

distribution. In both cases, it is assumed that the first two

variables (y1 and y2) are dominant modes while others are

essentially white noise after subtracting setpoints.
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A. Nonlinear case

The first simulation example is a nonlinear case with the

following dominant process mode:

y1 = y2

2
+ noise (4)

500 normal runs are used for training, 100 normal runs are

used for validation, and 5 faults are introduced. Fig. 1 shows

the scatter plot of the training, validation and fault samples

in the dominant mode.
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Fig. 1. Scatter plot - nonlinear case: first two characteristic variables

PCA is first applied to detect the faults in the data set. At

the confidence level of 99%, the detection results with 2 PC’s

are shown in Fig. 2. From Fig. 2, we see that PCA does not

perform well and the majority of the faults are not detected

by PCA. The result is expected because of the nonlinearity

in the process data.
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Fig. 2. Fault detection - nonlinear case: (a) SPE chart, (b) T2 chart

Next, FD-kNN is applied to the nonlinear case data set.

The number of nearest neighbors k is set to be 3. The

detection result is shown in Fig. 3 (a) where all 5 faults

are successfully detected. If we apply PC-kNN to the scores

obtained earlier based on 2 PC’s and set k as 3, the result

is shown in Fig. 3 (b). Notice that because PCA effectively

removes noise by extracting principal components, PC-kNN

performs better than FD-kNN.

This example illustrates that both FD-kNN and PC-kNN

extract nonlinear features through selecting nearest neighbors

and therefore handles process nonlinearity well.
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Fig. 3. Fault detection - nonlinear case: (a) the FD-kNN method, (b) the
proposed PC-kNN method

B. Multimodal case

The second simulation example is a multimodal case

where the process is performed on two tools with different

process gains and an offset between the tools. Again, the

process is mainly characterized by two variables (y1 and y2)

out of 12 variables:

Tool A: y1 = 2y2 + noise

Tool B: y1 = 1.5y2 + 6 + noise (5)

300 normal runs are conducted on each tool so that

totally 600 normal data points are collected. 500 normal runs

are randomly selected from the two tools for training, the

remaining 100 normal runs are used for validation, and 5

faults are introduced. The data set, including the training,

validation and fault samples, is visualized in Fig. 4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

10

1

2

3

4

5

y
1

y
2

Training

Validation

Fault

Fig. 4. Scatter plot - multimodal case: first two characteristic variables

Fault detection results using PCA SPE and T2 charts with

2 PC’s are shown in Fig. 5 (a) and Fig. 5 (b). We see that

not all faults can be detected by PCA because of the bimodal

distribution.

Next, FD-kNN is applied to the multimodal data set. The

number of nearest neighbors k is set to be 3 as in the previous

example. The result is shown in Fig. 6 (a). If we apply PC-

kNN to the scores obtained based on 2 PC’s with k = 3, the

result is shown in Fig. 6 (b). Notice that both FD-kNN and

PC-kNN successfully detect all 5 faults.

Again, because PCA can only extract linear structure from

the data, multimodal environment imposes limitations on
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Fig. 5. Fault detection - multimodal case: (a) SPE chart, (b) T2 chart
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Fig. 6. Fault detection - multimodal case: (a) the FD-kNN method, (b) the
proposed PC-kNN method

PCA and makes it less effective. Because FD-kNN and PC-

kNN methods focus on local neighborhoods, they do not

suffer degradation from multimodal distribution.

V. INDUSTRIAL EXAMPLES

In this section, an industrial example is used to compare

different fault detection methods. The data set is collected

from an Al stack etch process performed on a commercial

scale Lam 9600 plasma etch tool at Texas Instrument Inc. [8],

[25]. The data consists of 108 normal wafers taken during 3

experiments and 21 wafers with intentionally induced faults

taken during the same experiments. Due to large amount of

missing data in two batches, only 107 normal wafers and

20 wafers with faults are used in this study. More detailed

description on the faults can be found in [8]. Since steps 4

and 5 are the main etch steps, as in [8], only the data points

from steps 4 and 5 are used in this work, and 19 non-setpoint

process variables used in [8] are included for fault detection.

The physics of the problem suggests that these variables

should be relevant to process and final product state [8].

As pointed out earlier, there are unique characteristics as-

sociated with semiconductor processes. These characteristics

are also noted in this data set:

• Unequal batch duration: Like many other batch

processes, in the etch data set, different batches have

different durations. Among the 107 normal batches, for

example, the batch durations range from 95 seconds to

112 seconds.

• Unequal step duration: In addition to unequal batch

duration, for a specific step, the step duration may vary

from batch to batch and time stamps of the step onset

are not synchronized. In the etch data set, the duration of

step 4, which is one of the main etch steps, varies from

44 seconds to 52 seconds. In other words, even batches

of equal length may not follow exactly the same time

trajectory.

• Process drift and shift: For the etch process, drift and

shift in the data are primarily due to the following

sources [8]: aging of the etcher over a clean cycle; dif-

ferences in the incoming materials; drift in the process

monitoring sensors; preventive and corrective mainte-

nances. Because the three experiments were carried

out several weeks apart, due to the process drift and

shift, data from different experiments have different

means and somewhat different covariance structures.

Two examples (variables EndPt A and and TCP Load)

illustrating this characteristic are shown in Fig. 7.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Time (second)

E
n

d
P

t 
A

0 20 40 60 80 100
2.65

2.7

2.75

2.8

2.85

2.9
x 10

4

Time (second)

T
C

P
 L

o
a
d

(a) (b)

Fig. 7. Mean and covariance change in the data set: (a) EndPt A and (b)
TCP Load

A. Data Preprocessing

Data preprocessing is an important aspect of multivariate

statistical analysis and can have a significant impact on

the overall sensitivity and robustness of the method [8]. In

order to get meaningful results, before applying PCA or

MPCA, data is usually scaled to zero mean and unit variance.

For batch process monitoring, an additional complication

involves stretching of the time axis in the data record as

discussed previously. One way to approach this is to select a

specified number of samples from each step. Another way is

to use speech recognition methods such as dynamic time

warping (DTW) to map the process response back onto

a reference trace [26]. In addition, to discriminate against

process drift, a high-pass filter can be employed to remove

the low frequency drift in the process [27]. Although all these

data preprocessing techniques are powerful in improving the

effectiveness of the fault detection method, they are not

desirable in an automated manufacturing environment. This

is mainly because they are process specific (e.g., DTW and

filtering) which require human interactions and therefore are

difficult to automate. One goal of this work is to maximize

the level of automation in fault detection. Therefore, we com-

pare fault detection methods with minimum data preprocess-

ing in this work. The first step is to obtain equal length batch

records. In this step, the initial 5 sample points are removed

to eliminate the effect of initial fluctuation in sensors and
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totally 85 sample points were kept to accommodate shorter

batches in the data set. This is done for all training, validation

and test data. Once equal length batch records are obtained,

the second step is to scale each variable to zero mean and

unit variance for each wafer in the training data set and scale

the validation and test data accordingly using the mean and

variance values obtained from the training data. Note that

above two-step data preprocessing can be done automatically

in the production environment. For MPCA analysis, the data

is further unfolded batch-wise to obtain a 2D array. Next

we apply MPCA, FD-kNN and PC-kNN to the preprocessed

data sets.

B. Fault Detection

MPCA is first used to analyze the data where the covari-

ance matrix is estimated directly - making no distinction

between data from different experiments. Totally 3 PC’s

are used to build the PCA model so that the SPE and T2

values of the validation data are at the same levels as those

of the training data. Fig. 8 (a) shows the fault detection

result based on the SPE index and (b) shows the fault

detection result based on the T2 index. Note that fault 12

is detected by SPE as a fault but not shown in Fig. 8 (a)

because its SPE value is well above the others. SPE and

T2 charts together detect 13 faults out of 20 total faults,

although there is not complete overlap between the faults

detected. Detailed fault detection results are listed in Table I.

The less efficiency of MPCA in this case can be explained

by the characteristic multimodal distribution of the batch

trajectories. As discussed earlier, the data were collected

from the 3 experiments that were run several weeks apart.

Due to tool state shift during that period of time, different

experiments have different means and covariance structures.

Notice that in manufacturing environment, tool state shift

is inevitable due to a variety of reasons such as preventive

maintenance (PM) and part replacement.
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Fig. 8. Fault detection results based on PCA: (a) SPE chart (b) T2 chart

Next, FD-kNN and PC-kNN are applied to detecting fault

in the etch data set. The number of nearest neighbors is set

as 3 for both methods and 3 PC’s are used for PC-kNN. The

results are shown as semi-log plots in Fig. 9 and Fig. 10

(a). To illustrate where each sample’s neighbors are located,

in Fig. 10 (b) we draw the mapping of 3 nearest neighbors

for the training wafers obtained by PC-kNN. Fig. 10 (b)

shows the same multimodal characteristic as in Fig. 7 that

wafers are grouped in 3 clusters. From Fig. 10 (b) we see

that each wafer finds its k nearest neighbors in its own group,

which is consistent with our discussion earlier that the PC-

kNN method handles multimodal distribution naturally by

focusing on local neighborhoods. The detailed fault detection

results from MPCA, FD-kNN and PC-kNN are shown in

Table I.

This example illustrate that both FD-kNN and PC-kNN

are capable of handling multimodal data without additional

data preprocessing. Note that if further data preprocessing

is performed to eliminate the multimodal distribution, PCA

performs similarly to FD-kNN and PC-kNN.
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Fig. 9. Fault detection using FD-kNN
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Fig. 10. PC-kNN: (a) fault detection, (b) mapping of the nearest neighbors
for k = 3

VI. CONCLUSIONS

In this work, a new fault detection method using the prin-

cipal component based k-nearest-neighbor rule (PC-kNN) is

developed to explicitly account for some unique character-

istics of most semiconductor processes, namely nonlinearity

and multimodal trajectories. PC-kNN overcomes the draw-

back of the FD-kNN method on computation complexity

and memory requirement. The FD-kNN algorithm is adapted

such that low dimensional PCA extracted features are used

instead of the high dimensional original variables. This

strategy significantly reduces computation time and memory

consumption. Because the developed FD-kNN method makes

no assumption about the linearity of the scores and it detects

abnormality based on local neighborhoods, PC-kNN method
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TABLE I

FAULT DETECTED BY DIFFERENT METHODS

Fault PCA-SPE PCA-T2 FD-kNN PC-kNN

1
√ √ √

2
√ √ √

3

4
√ √ √ √

5
√

6

7
√ √ √ √

8
√ √ √

9

10
√ √ √

11
√

12
√ √ √ √

13
√ √ √ √

14
√ √ √

15
√ √

16
√ √ √ √

17
√ √

18
√ √ √ √

19
√ √ √ √

20
√ √ √ √

naturally handles process nonlinearity and multimodal distri-

bution. In addition, because noise impact is reduced by PCA,

PC-kNN sometimes outperforms FD-kNN in fault detection.

The choice of k for FD-kNN and PC-kNN is uncritical. In

general, larger values of k reduce the effect of noise on the

fault detection, but make boundaries between normal and

fault batches less distinct. A practical approach is to try

several different values of k on historical data and choose

the one that gives the best cross-validation. It is worth to

note that PC-kNN works in the principal subspace similar to

PCA T 2 index except that PC-kNN handles nonlinearity and

multimodal distribution in the scores. Therefore, PC-kNN

performs essentially the same as T 2 in the linear, unimodal

cases while PC-kNN outperforms T 2 in the presence of

nonlinearity or multimodal distribution in the scores. Because

PC-kNN makes no use of residuals, any fault that occurs in

the residual space only will not be detected by PC-kNN. One

possible solution is to join faults detected by PC-kNN and

faults detected by SPE so that the full space is covered in

fault detection.
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