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Abstract— Bioinspired design approaches seek to exploit
nature in order to construct robust and optimal solutions.
One useful concept from behavioral ecology is the ideal free
distribution (IFD). Here, we relax the IFD main assumptions
using the standing crop idea to introduce dynamics to the
resources. Using the IFD, the standing crop, and the replicator
dynamics concepts, we make some analogies with a temperature
control in order to get a maximum uniform temperature. We
analytically show that the equilibrium point of the system (i.e.,
the IFD) is a locally asymptotically stable point, and it is a
globally asymptotically stable point for one special case.

I. INTRODUCTION

The concept of ideal free distribution (IFD) was originally
introduced in [1]. For many years, this concept has been used
to analyze how animals distribute themselves across different
habitats. These habitats have different characteristics (e.g.,
one habitat might have more food than another), but animals
tend to reach an equilibrium point where each has the
same correlate of fitness such as consumption rate. The
term “ideal” means that the animals can sense the quality
of all habitats and seek to maximize the suitability of the
habitat they are in, and the term “free” means that the
animals can go to any habitat. In [2], [3] the authors survey
the various extensions to the IFD (e.g., the interference
model [4] and the standing crop idea [5]), and overview the
experimental biological evidence that supports these models.
In the original formulation of the IFD, each habitat has
unlimited resources (i.e., the consumption rate is constant for
all time). However, this assumption is not true. Lessels in [5]
adds dynamics to the resources, modeling each habitat with
standing crop conditions. This model predicts relationships
between resource density, animal density and mortality rate.
She also provides some ideas in order to see the relation-
ships between “continuous-input” models [6], [7] and the
interference model [8]-[9]. In [5] four cases are presented:
i) only exploitation competition, no alternative mortality;
ii) exploitation and interference competition, no alternative
mortality; iii) only exploitation competition, plus alternative
mortality; and iv) exploitation and interference competition,
plus alternative mortality. In this paper, we only consider one
of these cases.

In the other hand, it has been proved that the IFD has
applications to control systems in [10]-[14]. In [11] the
authors show that the IFD is a global optimum point, and
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also it was shown that the IFD is an asymptotically stable
point when the dynamics are modeled using the replicator
dynamics [15]-[17]. In [11], [12], [13] the authors illustrate
their ideas through a multizone temperature control problem.
In this case, we use ideas in [5] to model one temperature
zone.

The paper is organized as follows. In Section II we state
the conditions to model a temperature zone, using Lessels’s
ideas. It is shown that an IFD emerges, and two cases
are analyzed. First, we state the conditions for a “open
loop” system, and we show that the IFD is a globally
asymptotically stable (GAS) equilibrium point. Also, it is
shown that the zones reach a uniform temperature that is
given by the characteristics of the system. However, it is
clear that a system that has some type of feedback behavior
is preferred. For that, in Section III we show how the
temperature zones can be modeled and controlled using a
feedback type of control. In order to prove that the IFD is
an stable equilibrium point for this case, we use the Sum
of Squares (SOS) techniques [18], [19], [20] for a limited
number of zones.

II. BIOLOGICAL MODEL

In order to model a temperature system based on the
standing crop idea [5], first we introduce Lessels’s concepts,
and then we show that the connection with the replicator
dynamics can be seen as a open loop model with a globally
asymptotically stable equilibrium point.

A. Lessels’ Model

Suppose that there is a set H = {1, 2, . . . , N} of N
disjoint habitats in an environment that are indexed by i =
1, 2, . . . , N . Let the continuous variable xi(t) ∈ R+ be the
amount of animals in the ith habitat at time t ≥ 0, where
R+ = [0,∞). Let x = [x1, x2, . . . , xN ]> ∈ R

N
+ . Suppose

that
∑N

i=1 xi = P , where P > 0 is a constant for all time
t, i.e., the amount of animals in the environment is constant.
Let Ri > 0 be the rate at which the resources are input
into the ith habitat. Let qi(t) ∈ R+ be the standing crop for
the ith habitat. Let di(qi) be a function that represents the
resource loss, or an “alternative mortality” [5]. Finally, let
gi(qi, xi) be the consumption rate per predator at habitat i.

Using these variables, Lessels introduces in [5] the model

q̇i = Ri − xigi(qi, xi) − di(qi) (1)

It is assumed that the animals are “free” to move to any
habitat, and that they know all parameters described before.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC13.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3390



The resources are depleted because the “competition” be-
tween animals. In this case “competition” can be: “exploita-
tion competition,” “interference competition,” or both. “Ex-
ploitation competition” results when the individuals in any
given habitat decrease the resources due to the consumption
(indirect effect). In other words, if qi(t) increases, then the
consumption rate per animal increases too. Mathematically
we say that there exists a function gi(qi, xi) that is mono-
tonically increasing in qi, i.e.,

∂gi(qi, xi)

∂qi
> 0, ∀xi ≥ 0 (2)

“Interference competition” is caused by the presence of other
animals in a given habitat (direct effect). It is assumed either
that there is no interference, represented by

∂gi(qi, xi)

∂xi

= 0, ∀xi, qi

or that there is interference, which implies that if the number
of animal increases, then the consumption rate per animal
decreases, i.e.,

∂gi(qi, xi)

∂xi

< 0, ∀xi, qi (3)

If we let Equation (1) equal to zero, we obtain that the
consumption rate per animal in the ith habitat (when there
is no “alternate mortality”) is given by

Ri

xi

= gi(q
∗

i , xi) (4)

where q∗i is an equilibrium standing crop. For the case when
there is resource loss, we have that the equilibrium is

Ri = x∗i gi(q
∗

i , x
∗

i ) + di(q
∗

i ) (5)

B. Open Loop System Analogy

Let us choose gi(qi, xi) in such a way that Equations (2)
and (3) are satisfied, whenever di(qi) = 0. By the previous
assumptions, if we take for all i = 1, 2, . . . , N ,

gi(qi, xi) =
qi

xi

(6)

the dynamics of the standing crop are given by

q̇i = Ri − qi

where there is not influence of xi, that could be seen as the
input to the system.

We can see that Equations (2) and (3) are satisfied, because
∂gi(qi,xi)

∂qi
= 1

xi
> 0, and ∂gi(qi,xi)

∂xi
= − qi

x2
i

< 0. These
assumptions are valid for the case when xi, qi > 0.

At the equilibrium, we have from Equation (1) that

0 = Ri − x∗i
q∗i
x∗i

q∗i = Ri (7)

This equation means that the standing crops for different
habitats will be different if the rates at which the resources
are input into the ith habitat are different (i.e., qi = qj for

all i, j only if Ri = Rj). For this case, it is assumed that
gi(q

∗

i , x
∗

i ) is constant across patches, i.e.,

gi(q
∗

i , x
∗

i ) = gj(q
∗

j , x
∗

j ) = C

where C is a positive constant value. Using gi(qi, xi) in
Equation (6), we obtain

q∗i
x∗i

=
q∗j

x∗j
= C

In the literature [21], [9], when q∗i and q∗j are constants,
the previous equation is known as the habitat matching rule.
This habitat matching rule is equivalent to the input matching
rule [2], [11], and hence we can predict the distribution of
predators across the N habitats. This distribution is given by,

x∗i =
q∗i P

∑N
j=1 q

∗

j

=
PRi

∑N
j=1Rj

(8)

where
∑N

j=1 xj = P .
In the next section we introduce the replicator dynamics,

we show that the animals distribute according to Equation
(8), and that this equilibrium point is globally asymptotically
stable.

1) Replicator Dynamics: The replicator dynamics are a
simple model of how selection via differential fitness affects
the proportions of animals using different strategies [16],
[17]. Here, we show how equilibria of one class of replicator
dynamics are related to the IFD. These are not the standard
replicator dynamics that are developed based on random
pairings of two individuals in what is called a “linear game.”
Here, we extend such standard formulations in [15], [16] to
represent a nonlinear game.

Each animal has N pure strategies, which correspond to
choosing which habitat to live in for its entire life, and that
the number of animals is constant and

∑N
i=1 xi = P for

some P > 0 and all t ≥ 0. Let

pi =
xi

∑N
j=1 xj

represent the fraction of individuals in a population of
animals playing pure strategy i, i = 1, 2, . . . , N . Clearly
pi ≥ 0 for i = 1, 2, . . . , N , and

∑N
i=1 pi = 1 for all t ≥ 0.

The vector p = [p1, p2, . . . , pN ]> is the “population state”
which represents the strategy mix of the population [16].
Clearly, p ∈ ∆ for all t ≥ 0, where

∆ =

{

p ∈ R
N
+ :

N
∑

i=1

pi = 1

}

is the “constraint set” (simplex) that defines a subset of the
state space. The vector x = [x1, x2, . . . , xN ]> lies in the
simplex ∆x, where ∆x = {x ∈ R

N
+ :

∑N
i=1 xi = P}.

The replicator dynamics assume continuously mixed gen-
erations and are given by

ṗi

pi

= β [{fitness of animals that play i ∈ H}

. . .− {average fitness in population}]
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where β > 0 is a proportionality constant. The left-hand-
side is the normalized rate of increase in the population
share playing strategy i. The right-hand-side indicates that
if i-strategists are more successful (less successful) than
the average, their population share will increase (decrease,
respectively).

In this specific case, we assume that the fitness of animals
i ∈ H at time t is given by Equation (6) i.e., we choose
fi(qi, xi) = gi(qi, xi). The average fitness is given by

f̄ =

N
∑

j=1

pjfj(qj , xj)

Hence, the replicator dynamics are

ṗi = βpi

(

fi(qi, xi) − f̄
)

(9)

or,

ẋi = βxi





qi

xi

−
1

P

N
∑

j=1

xj

qj

xj



 (10)

Without loss of generality [11], if we assume β = 1, the set
of differential equations for this case is

ẋi = qi −
1
P
xi

∑N
j=1 qj

q̇i = Ri − qi
(11)

Next, we show that the equilibrium point for (11)is GAS.

2) Stability Analysis: The equilibrium point for (11) is
given by,

0 = q∗i −
1

P
x∗i

N
∑

j=1

q∗j

Since q∗i = Ri,

x∗i =
PRi

∑N
j=1Rj

Therefore the system in Equation (11) has (7) and (8) as its
equilibrium points. Let us prove in the next theorem that the
equilibrium point in Equation (8) is globally asymptotically
stable.

Theorem 2.1: The equilibrium point given by Equation
(8) for the replicator dynamics in Equation (11) is globally
asymptotically stable (GAS), which region of asymptotic
stability ∆x − ∂∆x.

Proof: First, let exi
= xi − x∗i , and eqi

= qi − q∗i be the
error coordinates for our system. Therefore,

ėxi
= eqi

−
1

P
exi

PN

j=1
q∗j −

1

P
exi

PN

j=1
eqj

−
1

P
x∗

i

PN

j=1
eqj

ėqi
= −eqi

(12)
We need to prove two things:

1) Stability in the sense of Lyapunov via a linear approx-
imation.

2) Global attractivity.

The system in Equation (12) can be written as

ėxi
= −a∗i exi

− 1
P
exi
φi(t) + ψi(t)

ėqi
= −eqi

(13)

where a∗i = 1
P

∑N
j=1Rj > 0, φi(t) =

∑N
j=1 eqj

, and
ψi(t) = eqi

− Ri
P

N
j=1

Rj

∑N
j=1 eqj

. The system can be seen as
two interconnected systems, one driving the other in a open
loop configuration (i.e., the system exi

is driven by eqi
).

It is clear that if we do not have any kind of interconnec-
tions, both systems are globally exponentially stable (GES).
That is

eqi
(t) = eqi

(0)e−t

And the other system is 0-GES, because when eqi
= 0, it

can be written as
ėxi

= −a∗i exi

Hence, we have an interconnection of one system that is
GES, and another that is 0-GES, which implies that the
whole interconnection is locally asymptotically stable (LAS).
This can be seen from the first method of Lyapunov, i.e., by
linearizing the system evaluated at the origin. For this case,
we will have the Jacobian equal to

J(0, 0) =

[

−a∗i const
0 −1

]

Clearly, the Jacobian has eigenvalues λ = −a∗i , and λ =
−1∗, which implies that the system is stable in the sense of
Lyapunov.

Now, we need to prove global attractivity. First of all, it
is clear that the equation that has the interconnection is

ėxi
= −a∗i exi

−
1

P
exi
φi(t) + ψi(t) (14)

However, since φi(t) is a function of eqi
(t), and this function

is bounded, we clearly have that

||φi(t)|| ≤ αe−t ≤M

where α and M are positive numbers. Therefore, we can see
that the vector field described by Equation (14) is globally
Lipschitz, i.e., for any x, y, we have that

∣

∣

∣

∣

−a∗i x−
1

P
xφi(t) + ψi(t) + a∗i y +

1

P
yφi(t) − ψi(t)

∣

∣

∣

∣

=

. . .

∣

∣

∣

∣

−(x− y)

(

a∗i +
1

P
φi(t)

)∣

∣

∣

∣

≤ L|x− y|

where L is the Lipschitz constant. Therefore, the vector field
in Equation (14) is globally Lipschitz and uniformly with
respect to time. This implies that the vector field is complete,
which in turn implies that exi

(t) is defined for all time t.
If we take the following Lyapunov candidate

V (exi
) =

1

2
e2xi

Then, we obtain that the derivative across trajectories is given
by

V̇ = exi
ėxi

V̇ = −a∗i e
2
xi

−
1

P
e2xi
φi(t) + exi

ψi(t) (15)

What we want to prove is that for a finite time, we have that
for every ε > 0, there exists δ such that there is a level set
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Ωδ = {exi
: V (exi

) ≤ δ} ⊂ Bε, where Bε is a ball of radius
ε. We know that there exists a time t∗ such that for every
ε > 0,

||eq(t)|| ≤ ε

for all t ≥ t∗. Hence, we need to prove that there exists a
time T such that the trajectories exi

are inside the level set
Ωc, for all time t ≥ T .

Recall that by Young’s inequality we have,

xy ≤ ε̄x2 +
1

4ε̄
y2

for all ε̄, x, y > 0. If we let ε̄ = 1
2 , we will have that Equation

(15) can be bounded as

V̇ ≤ −a∗i e
2
xi

−
1

P
e2xi

|φi(t)| + |exi
||ψi(t)|

V̇ ≤ −a∗i e
2
xi

−
1

P
e2xi

|φi(t)| +
1

2
|exi

|2 +
1

2
|ψi(t)|

2

V̇ ≤ −(a∗i − ε)e
2
xi
−

(

ε−
1

P
|φi(t)| −

1

2

)

|exi
|2 +

1

2
|ψi(t)|

2

where ε < a∗i . It is clear that since φi(t) is exponentially
decreasing (this term depends only on eqi

), then, there exists
a time t1 such that the term ε − 1

P
|φi(t)| −

1
2 is positive.

Therefore, for all time t ≥ t1 we have

V̇ ≤ −(a∗i − ε)e2xi
+

1

2
|ψi(t)|

2

V̇ ≤ −(a∗i − ε)2V +
1

2
|ψi(t)|

2 (16)

From Equation (16) is clear that if V > 1
2 |ψi(t)|

2 1
(a∗

i
−ε) ,

then V̇ < 0. If we let δ(t) = 1
2 |ψi(t)|

2 1
(a∗

i
−ε) , it is clear that

it exists a time t2 such that δ(t) ≥ δ, then the trajectories
are globally attracted to the level set Ωδ , which combined
with the fact that the system is LAS, we can conclude that
the whole interconnection is GAS.

III. TEMPERATURE FEEDBACK CONTROL ANALOGY

If we have a system that consists of multiple disjoint
temperature zones (where a zone is composed by an actuator,
e.g., a lamp, and a sensor), one simple way to model a zone
with negligible accumulation of potential an kinetic energy
is [22]:

ρViCvṪi = −UA(Ti − Ta) + kixi

where Ti is the temperature in the ith zone; Ta is the ambient
temperature; xi is the control input (i.e., applied voltage to
actuator); ρ is the density of the air; Vi is the volume of the
zone; Cv is the heat capacity of the air; UA is the overall
heat transfer coefficient and ki is the proportionality constant
for the applied voltage and the heating capacity of the lamp.
Let ai = UA

ρViCv
> 0 and bi = ki

ρViCv
> 0, we have

Ṫi = −aiTi + bixi + aiTa (17)

Let Ti(0) = Ta, and assume that we have an upper bound
temperature B such that B >> Ta. Let qi = B − Ti then,

replacing in (17) we get that

q̇i = −aiqi − bixi + ai(B − Ta)

Hence,

q̇i = ai(B − Ta) − xi

(

bi +
aiqi

xi

)

(18)

It can be seen that (18) is equivalent to the resource loss in
(1), where Ri = ai(B − Ta), and gi(xi, qi) = bi + aiqi

xi
.

In this case, the input rate (Ri), will correspond to a
rate of dissipation of thermal energy to ambient, and the
consumption rate (gi(xi, qi)), will correspond to the heating
contribution rate of the actuator to the ith zone. This is due to
the fact that an increment of Ti clearly represents a decrease
in qi. In this case we want to analyze the case of exploitation
and interference competition, with no alternative mortality.

A. Control Dynamics

In Section II-B we assumed that bi = 0, which in turn
implies that there is not a clear influence of the x′is in the
dynamics of the standing crop. Now, if bi 6= 0, and if we
assume that the fitness f(xi, qi) is equal to qi, the controller
dynamics are given by the replicator dynamics equation,

ẋi = xi



qi −
1

P

N
∑

j=1

xjqj





Taking this equation and (18), we obtain the set of equations
given by

ẋi = xi

(

qi −
1
P

∑N
j=1 xjqj

)

q̇i = −aiqi − bixi + ai(B − Ta)
(19)

Let us assume that xi > 0, hence we want to live strictly in-
side the simplex ∆x. Under this assumption, the equilibrium
points of (19) are given by

x∗i =
ai
bi

P
P

N
j=1

aj

bj

q∗i = (B − Ta) − P
P

N
j=1

aj

bj

(20)

Since Ti = B − qi, we have that the final temperature is
given by

T ∗

i = Ta +
P

∑N
j=1

aj

bj

(21)

which clearly is a constant for all i. If we change coordinates,
and we let eqi

= qi − q∗i and exi
= xi − x∗i , Equation (19)

becomes

ėxi
=

“

exi
+ x∗

i

” “

eqi
−

1
P

PN
j=1

exj

“

eqj
+ q∗

j

”

−
1
P

PN
j=1

eqj
x∗

j

”

ėqi
= −aieqi

− biexi
(22)

For the N = 2 case, we obtain the system described by

ėx1
=

“

ex1 + Pa1 b2
a1 b2 +a2 b1

”

(eq2 − eq1 )
“

a1 b2
a1 b2 +a2 b1

+ . . .

. . . +
ex1 −P

P

”

ėq1 = −a1eq1 − b1ex1

ėq2 = −a2eq2 + b2ex1

(23)
where the origin is the unique equilibrium point.
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B. Stability Analysis

Using SOS Techniques, the problem can be solved nu-
merically with the construction of a set of constraints for the
parameters and the application of extensions of Lyapunov’s
stability theorem. Using the ideas shown in [19], [20] first
we define the main concepts for the SOS techniques, and
then we show that the IFD is a locally asymptotically stable
(LAS) equilibrium point for the N = 2 case. Consider the
nonlinear system

ẋ = h(x, u)

with the constraints,

al(x, u) ≤ 0 for l = 1, . . . , N1

where x ∈ R
n is the state of the system, N1 the number

of constraints, and u ∈ R
m the set of uncertain parameters.

We assume that al is a polynomial functions in (x, u), and
h(x, u) is a vector of polynomial or rational functions in
(x, u) with no singularity in D ⊂ R

n×m. D is defined as

D = {(x, u) ∈ R
n×m|al(x, u) ≤ 0 for all l}

Without loss of generality, it is assumed that h(x, u) = 0 for
x = 0, and u ∈ D0

u, where

D0
u = {u ∈ R

m|(0, u) ∈ D}

The following theorem taken from [20], [19] gives us the
conditions for local stability for the equilibrium point of the
system.

Theorem 3.1: Suppose that for the system ẋ = h(x, u)
described above, there exist polynomial functions V (x),
w(x, u) and pl(x, u) such that,

• V (x) is positive definite in a neighborhood of the origin
• w(x, u) > 0 and pl(x, u) ≥ 0 in D

Then,

−
∂V

∂x
h(x, u) +

∑

pl(x, u)al(x, u) ≥ 0 (24)

or
Z(x, u) ≥ 0 (25)

where

Z(x, u) = −w(x, u)
∂V

∂x
h(x, u)+

∑

pl(x, u)al(x, u) (26)

guarantees that the origin of the state space is a stable
equilibrium of the system.
An alternative proposition when we work with polynomial
and rational functions is given next from [20], [19]. In this
case, the positive definite conditions in the theorem above,
can be expressed using the SOS definitions.

Proposition 3.2: For a polynomial function ϕ(x) ≥ 0 (or
SOS), the local stability can be guaranteed if:

• V (x) − ϕ(x) is SOS, i.e., V (x) positive definite.
• Z(x, u) is SOS.
• pl(x, u) is SOS.

For the temperature system (23), the set of constraints of
parameters is defined by the constant values ai and bi.
These values where obtained through system identification

[23] and their variability is estimated to be constrained by a
sufficiently wide ranges

• 0 < ai < 2
• 0 < bi < 0.01

If we analyze (20), it is clear that in order to have always a
positive qi, we need another constraint

P < (B − Ta)
2

∑

j=1

aj

bj

Using SOSTOOLS [24], we construct the SOS functions
ϕ(x) and V (x) and the SOS polynomials pl(x, u) for l =
1, . . . , 4, such that the conditions in Theorem 3.1 are satisfied
for a given P . The result was a fourth order Lyapunov’s
function that prove the local stability of the origin, which
has 31 terms.

Figure 1 shows the response of the system for different
initial conditions. We note that the equilibrium points for
temperature and control signals are achieved at a finite time.
Figure 2 shows the behavior of the numerically obtained
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Fig. 1. Dynamics of system with a1, a2 = 1, b1, b2 = 0.006, and different
IC’s for x1 = (3, 23, 59, 149). In this case, T ∗

i = 20.45 and x∗

i = 75 for
P = 150.

V (x) and Z(x, u) along the trajectories of the system with
different parameter variations. V (x) and Z(x, u) just need to
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Fig. 2. V (x) and Z(x, u) along system trajectories with x1init
=

149 and parameters a1, a2 = (0.1, 0.6, 0.9, 2) and b1, b2 =
(0.009, 0.001, 0.005, 0.01)

be positive in order to satisfy the conditions of Theorem 3.1.
This is shown in Figure 2. In addition, near the fixed limits
of uncertainty, the functions are close to zero showing the
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activation of the constraints, and the need of finding another
Lyapunov function for a wider range of uncertainty in the
parameters.

IV. CONCLUSION

In this paper we analyze a model for a temperature control
using ideas from theoretical ecology. This model is based
on the Ideal Free Distribution (IFD), but without assuming
continuous input. Instead, we use ideas from [5] in order
to add dynamics to the resources. The temperature system
is modeled using two approaches. First, the system can be
seen as a open loop control model, we show that an IFD
is reached, and also that the equilibrium point is globally
asymptotically stable (GAS). Then, we change one of the
parameters so that the system becomes a feedback control. In
order to show stability of the system, we take a special case,
and we use Sum of Squares (SOS) techniques (through the
SOSTOOLS program) for bounded uncertainties in model
parameters and changes in initial conditions. The future
directions are the analysis of stability of the equilibrium point
of feedback model without the dependence of numerical
methods and the implementation of a test bed for the thermal
system for real proves of the proposed control.
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