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Abstract— In the current work we present an integrated actu-
ator placement and fault tolerant controller design based on the
concept of spatial H2 norm and combined with a fault tolerant
controller design concepts for DPS presented in earlier work by
the authors. Specifically, a nonlinear optimization problem is
formulated to identify and rank spatially independent actuator
groups that may control a distributed process with minimal
actuator power. The optimization problem is based on the
concept of the spatial H2 norm and guarantees a minimum
amount of controllability for each group. The augmented fault
monitoring scheme employs a time varying threshold in order to
minimize detection time, and the fault accommodating scheme
simply switches off the faulty actuator and activates a healthy
group without reconfiguring the control signal, as the latter
by design is the same for all possible actuator groups. The
simplicity of the proposed methodology lies in the unique
property of transport reaction processes that properly chosen
actuators at physically different locations have an identical
effect on the system long term behavior.

I. INTRODUCTION

The issue of control and optimization of transport-reaction

processes has received considerable attention in the last two

decades [12], [5]. One research direction has focused on the

design of nonlinear controllers and robust controllers that are

specifically tailored to circumvent the computational require-

ments associated to the infinite dimensional nature of the

mathematical description based on the property of parabolic

PDEs that the eigenspectrum of the spatial operator can be

partitioned into a finite size set of eigenvalues that are close

to the imaginary axis and an infinite size set of eigenvalues

that are far in the left half plane, implying that the dominant

behavior of the system can be accurately captured by a finite

number of eigenmodes [33]. Controllers are subsequently

designed based on the reduced-order models [2], [3], [4],

[11], [12], [17]. Another approach for controller design is

based on the notions of passivity [38] and on the definitions

of spatial H2 norms [21].

An important issue for the controller design methodology

for distributed processes, is the actuator placement such

that the system exhibits desired system theoretic properties

such as enhanced controllability. A complexity in this en-

deavor lies in the spatial dependence of the concepts of

controllability and observability which prompted a number

of researchers to address the important topic of actuator

and sensor placement, [1], [6]. The conventional approach

to actuator placement is to select the locations based on
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open-loop considerations to ensure that the necessary con-

trollability, reachability or power factor requirements are

satisfied [36], [28], [31], [10]. For further work on different

aspects of actuator and sensor placement based on controlla-

bility/observability, the reader is directed to the survey papers

[35] and [23].

At the same time, actuator, sensor and component failures

have too often plagued chemical processes, often leading

to deteriorating product quality and potentially dangerous

process operation, such as runaway conditions. Motivated by

the importance of the aforementioned failures, the issue of

fault tolerant and fault accommodating controller design has

been an active research topic in the chemical engineering

community for open-loop stable and open-loop unstable

processes [7], [8], [25], [26], [37]. However, while there

has been extensive research from the control community on

fault detection and diagnosis of finite dimensional systems

using model-based robust and adaptive control techniques,

see for example the books [30], [32] and references therein,

little work can be found for similar treatment of infinite

dimensional systems.

To address the issue of fault tolerance within the prism of

an integrated design of actuator selection, we embark on a

completely new direction, whereby the actuator optimization

metric is not defined in terms of enhanced controllability,

improved performance or enhanced robustness with respect

to disturbances or unmodeled dynamics, but with respect

to fault tolerability. By taking advantage of the spatial

variability that transport-reaction processes naturally enjoy,

we endeavor on an entirely new concept of optimizing

actuator locations, being physically apart, and yet requiring

the same feedback gain! This artifact is only applicable to

distributed parameter systems wherein two or more different

locations within the spatial domain of definition can provide

the same level of controllability and at the same time the

same feedback gain can be applicable to all such locations.

We capitalize on this property of spatially distributed pa-

rameter systems to find locations for different groups of

actuators, each of which resulting in a similar controllability

level, and when a given actuator group fails, then simply

deactivating the faulty actuator group and activating another

actuator group constitutes the fault accommodation policy.

The control signal in this case is not changed, a situation

that cannot be implemented in lumped parameter systems.

Therefore the major conceptual contribution of this work

is to search for a set of “optimal” actuator locations that have

the same level of controllability and design a single feedback

controller for the archetypal actuator group. Continuing,
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consider the situation where the currently activated actuator

group fails and built a on-line supervisor that monitors

for possible faults by comparing the plant’s performance

with that of the nominal performance. The instance that

a deviation is noticed, then a fault is declared, and hence

fault detection. The fault accommodation in this special case

does not require a control reconfiguration, but simply the

deactivation of the current actuator group and the activation

of another healthy actuator group. Such a simple fault

accommodation significantly reduces the costs associated

with process supervision with the obvious economic and

performance savings.

The mathematical formulation of the class of PDEs under

consideration is presented in Section II where some ear-

lier concepts of spatial controllability are also presented.

The proposed actuator placement scheme is presented in

Section III which introduces the added feature of spillover

consideration. The fault detection scheme is presented in

Section IV where a time varying threshold in incorporated in

the monitoring scheme in order to minimize the fault detec-

tion time. Utilizing the earlier results on actuator positioning,

the proposed overly simplified fault accommodation scheme

is also given in Section IV. Numerical results depicting the

novel approach of the proposed fault tolerant scheme with

simplified accommodation are given in Section V.

II. MATHEMATICAL FORMULATION

We consider the problem of computationally identifying

the optimal locations of actuators for processes that can

be mathematically described by parabolic partial differential

equation (PDE) systems of the form:

∂

∂t
x(t,ξ) = A(ξ)x(t,ξ)+b(ξ;ξa)u(t), (1)

where x(·,ξ) ∈ R is the state, t ∈ R
+ is the time, ξ ∈ Ω is

the spatial coordinate and Ω is a bounded smooth domain in

R
n (n = 1,2 or 3), and u(t)∈R

K is the manipulated variable

vector. A is a second order (strongly) elliptic operator [14]

of the form:

Aφ =
n

∑
j=1

n

∑
k=1

∂

∂ξ j

(α jk(ξ)
∂φ

∂ξk

)+
n

∑
j=1

α j(ξ)
∂φ

∂ξ j

+α0(ξ)φ,

for ξ ∈ Ω, and b(ξ;ξa) = [b1(ξ;ξa,1) . . . bK(ξ;ξa,K)], where

b j(ξ;ξa, j) denotes the spatial distribution of the jth actu-

ating device (e.g., boundary, distributed and/or pointwise)

placed at location ξa, j, the jth component of the vector

ξa = {ξa,1,ξa,2, . . . ,ξa,K} ∈ Ωα; Ωα ⊆ ∏K Ω denotes the

domain of permissible actuator locations. All three cases

of boundary conditions for the above PDE system may

be considered: mixed (Robin), Neumann or Dirichlet [15],

where the boundary, denoted by ∂Ω, can be decomposed to

∂Ω = Γa ∪ Γb with Γa denoting the part of the boundary

where the actuator(s) may be placed and Γb (= ∂Ω\Γa) the

remainder of the boundary where actuators are not desired or

allowed to be placed. Defining an appropriate Hilbert space

H = L2(Ω) with inner product

〈ψ1,ψ2〉 =
∫

Ω
ψ∗

1(ξ)ψ2(ξ)dξ, (2)

and norm ‖ψ‖L =
√

〈ψ1,ψ2〉, the PDE system can be

equivalently written in the following abstract form [14]:

ẋ(t) = Ax(t)+Bu(t), (3)

where x(t, ·) = x(t) ∈ H is the state and B denotes the

input operator either on the part of the boundary Γa where

actuation is desired or permissible, or on the permissible part

of the interior of the domain Ωα.

The PDE of (1) can be solved independently for each mode

by using the orthogonality properties of the eigenfunctions

of the spatial operator A [13]. In this case∫

Ω
φ∗j(ξ)Aφi(ξ)dξ = λiδ ji,

∫

Ω
φ∗j(ξ)φi(ξ)dξ = δ ji, (4)

where λi denotes the i th eigenvalue, and δ ji denotes the

Kronecker delta. We assume that the eigenvalues are ordered

such that λi+1 ≤ λi,∀i = 1, . . . ,∞. Using the computed eigen-

functions as a basis function set for H , x(t,ξ) can be equiv-

alently expressed via the expansion x(t,ξ) = ∑∞
i=1 φi(ξ)xi(t).

Employing Laplace transforms [16] with L [xi(t)] = Xi(s), the

system is represented in the s domain

Xi(s;ξa) =
1

(s−λi)

∫

Ω
φ∗i (ξ)b(ξ;ξa)dξ U(s) (5)

with X(s,ξ;ξa) = ∑∞
i=1 φi(ξ)Xi(s;ξa). We define the K-

dimensional row vector

Bi(ξa) ,

∫

Ω
φ∗i (ξ)b(ξ;ξa)dξ

and the transfer function matrix of the i th eigenmode as

Gi(s;ξa) ,
1

(s−λi)
Bi(ξa). (6)

The Laplace transform of the spatial distributed state can

then be represented as the infinite sum

X(s,ξ;ξa) = ∑∞
i=1 φi(ξ)Xi(s;ξa)

= ∑∞
i=1 φi(ξ)Gi(s,ξa)U(s) = ∑∞

i=1 φi(ξ) 1
(s−λi)

Bi(ξa)U(s).
(7)

The resulting K-input/distributed(infinite)-output transfer

function is then given by

G(s,ξ;ξa) =
∞

∑
i=1

φi(ξ)
1

(s−λi)
Bi(ξa) =

∞

∑
i=1

φi(ξ)Gi(s;ξa). (8)

A property of strongly elliptic operators is that their eigen-

spectrum can be decomposed into a finite number of eigen-

values that are close to the imaginary axis and an infinite

one that lies far in the left half complex plane, which

implies that the long term dynamics of the process can be

accurately captured by only a finite number of eigenmodes,

while the infinite complement eigenmodes relax to their

steady-state values fast. This property will be employed in

the next subsection to formulate a computationally tractable

optimization problem.

III. ACTUATOR PLACEMENT

We now pose the computation of the optimal actuator lo-

cations problem as an optimization one, which is constrained

in a set of admissible actuator locations and which ensures

certain open-loop objectives are satisfied. We first introduce

the mathematical background leading to the definition of the

objective function and constraint functions.
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A. Spatial norms and controllability measures

The spatial H2 norm [27] of the transfer function

G(s,ξ;ξa) in (8) is defined as

‖G‖2
H2

,
1

2π

∫ ∞

−∞

∫

Ω
tr{G∗( jω,ξ;ξa)G( jω,ξ;ξa)} dξdω.

Using the orthogonality property of the eigenfunctions, the

above norm simplifies to

‖G‖2
H2

= ∑∞
i=1 ‖Gi(s,ξa)‖

2
2

= ∑∞
i=1

∫ ∞
−∞ tr{G∗

i ( jω;ξa)Gi( jω;ξa)} dξ.
(9)

With the aid of this spatial H2 norm, a number of measures of

actuator placement effectiveness can be proposed. We define

fi(ξa) , ‖Gi(s;ξa)‖2 =

∥∥∥∥
1

(s−λi)
Bi(ξa)

∥∥∥∥
2

. (10)

Capitalizing on the previously mentioned property of

strong elliptic operators that the higher modes become pro-

gressively more stable (λi+1 ≤ λi and λi → ∞ as i → ∞), we

only need consider a finite number of modes to compute an

accurate approximation of the spatial H2 norm:

‖G(s,ξ;ξa)‖
2
H2

=∑∞
i=1 ‖Gi(s;ξa)‖

2
2 = ∑∞

i=1 f 2
i (ξa)

=∑N
i=1 f 2

i (ξa)+∑∞
i=N+1 f 2

i (ξa)

=H2(ξa)+S2(ξa),

(11)

where H2(ξa) , ∑N
i=1 ‖Gi(s;ξa)‖

2
2 = ∑N

i=1 f 2
i (ξa) denotes the

truncation of the H2 spatial norm to the first N modes and

S2(ξa) , ∑∞
i=N+1 ‖Gi(s;ξa)‖

2
2 = ∑∞

i=N+1 f 2
i (ξa) denotes the

“spillover” of the actuator action to the higher modes. We

further assume that this spillover effect on a finite number of

higher modes (medium range modes), i = N +1, . . . ,M need

only be considered, i.e. S2(ξa) ≃ ∑M
i=N+1 f 2

i (ξa).

Note that H2(ξa) at location ξa is a measure of controller

authority placed at location ξa over the entire spatial domain

in an average sense (averaged over the first N modes).

Following [20], we may now define the i th modal control-

lability at actuator locations ξa as follows.

Definition 1: [i th modal controllability] The i th modal

controllability at actuator locations ξa = {ξa,1,ξa,2, . . . ,ξa,K}
is defined as

Mi(ξa) =
fi(ξa)

maxζ∈Ωα
fi(ζ)

×100%, i = 1,2, . . . ,N, (12)

and describes the total controller authority of all actuators at

locations ξa over the i th mode.

If the modal controllability at specific locations ξa of a given

mode is zero, it means that none of the controllers has any

authority over that mode. This also coincides with the notion

of approximate controllability for the class of PDEs with

Riesz-spectral operators [14]. The requirement for that in

this case is 〈b,φi〉 6= 0, ∀i. When the i th mode has a zero

modal controllability at location ξa, it means that fi(ξa) ≡ 0

and hence Bi(ξa) = 0, or that∫

Ω
φi(ξ)∗b(ξ;ξa)dξ = 0.

Furthermore, we also consider the cumulative spatial con-

trollability [27].

Even though the above definitions allow us to formulate

the optimal actuator placement problem, in order to gain

better control over the placement of each individual actuator,

we also define the i th modal controllability of the j th actuator

at location ξa, j.

Definition 2: [i th modal controllability of the j th actuator

at location ξa, j] The i th modal controllability of the j th

actuator at location ξa, j is defined as

Mi, j(ξa) =
fi, j(ξa)

maxζ∈Ωα
fi, j(ζ)

×100%, i = 1, . . . ,N,

fi, j(ξa) ,

∥∥∥∥
1

(s−λi)

∫

Ω
φ∗i (ξ)b j(ξ;ξa, j)dξ

∥∥∥∥
2

.

(13)

The i th modal controllability of the j th actuator at location

ξa, j describes the controller authority of the j th actuator over

the i th mode. If the modal controllability at a specific actuator

location of a given mode is zero, it means that the specific

controller has no authority over that mode. Note that from

the definition of fi, j(ξa) and fi(ξa) we have

f 2
i (ξa) =

K

∑
j=1

f 2
i, j(ξa).

The component spatial controllability may be defined sim-

ilarly as the j th actuator authority over the entire spatial

domain in an average sense.

Remark 3.1: An issue which often arises during the search

of optimal actuator locations using modal methods is the

weight in the objective function that should be assigned to

each mode. In the current formulation the weight that is

assigned to each mode is dependent upon the eigenvalue of

the specific eigenmode. As a result, modes that are less stable

have a greater contribution to H2(ξa) and as a consequence

the actuator placement search will gravitate towards locations

that assign greater force on the specific modes.

B. Spillover effects

While the notions of spatial and modal controllability

allow one to choose actuator locations that cater to specific

(primarily dominant low) modes, care must be exercised in

order to avoid choosing locations that might excite medium

range modes, that lead to performance deterioration; medium

range modes are modes that are at immediate proximity of

the first N modes. The effect of the actuators on the higher

modes is mathematically described by the term S(ξa) in

(11), which, in general, cannot be computed since it is an

infinite sum of modal controllabilities. Capitalizing again

on the property of strongly elliptic spatial operators, the

spatial controllability for these medium range modes can be

similarly defined as:

Definition 3: [Cumulative spillover spatial controllability]

The cumulative spillover effect of K actuators placed at

locations ξa to higher modes is defined as

S N
M(ξa),

S(ξa)

maxζ∈Ωα
S(ζ)

≈

√
∑M

i=N+1 f 2
i (ξa)

maxζ∈Ωα

√
∑M

i=N+1 f 2
i (ζ)

×100%.

(14)

The component spillover effect of the j th actuator can be

similarly defined.
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C. Multiple location issues

A problem commonly encountered during the placement

of multiple actuators is the issue of coupling effects be-

tween actuators. An excellent exposure of the optimization

and computational issues associated with multiple actuators,

including that of actuator clusterization, can be found in the

book by Uciński [34]. While the actuator placement problem

can be formulated as an optimization one for a single actuator

using the definitions of the previous subsection, multiple ac-

tuators pose additional challenges. One such issue is placing

two actuators at or near the same location. Additionally, one

must avoid placing actuators at locations that provide certain

spatial symmetry (i.e., they affect the system modes in a

similar fashion) while placed at different locations. This issue

was exposed and addressed in detail in [6]. For completeness

we present the mathematical foundation; the interested reader

may refer to [6] for further details.

To address this issue, with the aid of (13), we define the

spatial controllability matrix M ∈ R
N×K as:

M (ξa) =





M1,1(ξa) M1,2(ξa) . . . M1,K(ξa)
M2,1(ξa) M2,1(ξa) . . . M2,K(ξa)

...
...

...
...

MN,1(ξa) MN,2(ξa) . . . MN,K(ξa)




. (15)

The proximity, in an L2 sense, of the actuator locations can be

identified through the singular values of M , which are equal

to the number of locations K (assuming that the number

of modes that are of interest are higher than the number of

available actuators N ≥K). Specifically, if the columns of M

are linearly dependent then at least one singular value attains

the value of zero. The proximity of the columns of M to

linear dependence can be identified through the ratio of the

largest singular value to the smallest one, which represents

the condition number of M , [19]. This implies that there

is a direct relationship between the value of the condition

number and the redundancy in the actuator network.

An in depth presentation of the physical interpretation of

the specific measure as well as the Selection of bound c on

the condition number that represents the desired minimum

distance between actuators, δξ, in both a physical and an L2

sense, can be found in [6].

D. Optimization problem formulation

The first objective in the proposed integrated actuator

placement/fault tolerant controller design methodology is to

identify L actuator groups that comprise of K actuators,

ranked in terms of their spatial controllability performance

and spillover controllability detrimental effect. Specifically,

each group should consist of K actuator locations, denoted

in vector form by ξa ∈ Ωα, that maximize the cumulative

spatial controllability and minimize the cumulative spillover

controllability of the system while at the same time maintain

a reasonable level of controller authority over each mode.

However, an issue with the use of the concept of spatial and

spillover controllabilities is that in order to be computed,

one should already know the location of maximum effect

ξa,m in the K-dimensional subspace Ωα, the objective of

the optimization problem. Furthermore, a large spillover

spatial controllability value may not signify an undesirable

location, as the “worst possible” location may still have an

insignificant effect on the intermediate system modes. To

circumvent these issues, in the optimization problem, the

objective function is computed based directly on the spatial

norm.

The constrained optimization problem for actuator group

l is then formulated as:

ξ
opt
l = arg max

ξa∈Ωα

{
H2(ξa)−ωsS

2(ξa)
}

s.t.

cond(M (ξa)) ≤ c,

max
j=1,...,K

Mi, j(ξa) ≥ βi, ∀i = 1,2, . . . ,N,

|ξ
opt
k ⊗ IK − IK ⊗ξa| ≥ δξ IK ⊗ IK , k = 1, . . . , l −1.

(16)

where with ⊗ we denote the Kronecker product, and with

IK we denote the unit matrix of dimensions K ×1 (a matrix

consisting of all 1s) and with | · | the element by element

absolute value. The use of component modal controllabilities

over total modal controllabilities in the optimization problem

is preferred, to account for possible solutions where one

actuator is redundant (i.e., with low modal controllability

values for all the modes) in which case the optimization

problem is infeasible. We address the issue of actuator

spillover that inadvertently affects the closed-loop process

response through the inclusion of term S2(ξa). The relative

importance of minimizing spillover effects compared to ob-

taining locations that maximize the spatial controllability can

be further tuned through the selection of the weight ωs. The

last constraint in the optimization problem of (16) imposes

a minimum physical distance of δξ between all actuators of

all l actuator groups.

The formulated optimization problem of (16) can be

solved using standard search algorithms such as Newton-

based, interior-point or direct-search methods [9]. Due to the

nonlinear nature of the objective function and the inequal-

ity constraints, global optimization methods are preferable,

including αBB [18], particle swarm optimization [22] and

simulated annealing. Another issue is the “rugged” topology

of the objective function; algorithms that efficiently handle

such objective functions have been developed, including fun-

neling [24], derivative free and direct search [9] optimization

algorithms. In the event the set Ωa is disjoint, branch and

bound algorithms [9] and genetic algorithms [29] can also

be used to obtain the optimal actuator locations. In the

current work a 2-level optimization scheme was employed,

comprising of an inner sequential quadratic programming

algorithm (guaranteeing local optimality), and a simulated

annealing outer structure, to identify the optimal locations.

The proposed algorithm to identify L actuator groups

consisting of K actuators each, and rank them according to

the group spatial authority over the slow modes of the system

of (3) can now be presented in pseudocode form:

1) Define number of actuator groups L, actuators per

group K.
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2) Define the dimensionality of the slow and intermediate

subsystems, N, M, the minimum distance between the

actuators in an L2 sense, c, and physical sense, δξ,

level of model controllabilities βi.

3) Set l = 1.

4) Solve the optimization problem of (16).

5) If l < L, then l = l +1, repeat step 3.

Remark 3.2: To prevent formulating an optimization prob-

lem that is infeasible due to constraints on the L2 prox-

imity of the actuators we may impose soft constraints

on the minimum distance between the actuators, avoiding

clustering effects, through the augmentation of the term

−ωc cond(M (ξa)) in the objective function, resulting in

max
ξa∈Ωα

{H2(ξa)−ωsS
2(ξa)−ωc cond(M (ξa))}. The relative

importance of clustering to maximizing the spatial con-

trollability is controlled through the appropriate choice of

values for ωc. Note that due to the wide range of values

that the condition number may have and the fact that it is

always larger than one, it is preferable to use the logarithm

of the condition number. Alternatively, the inverse of the

condition number may be used in a minor modification of

the formulated problem.

Remark 3.3: Even though the problem formulation neces-

sitates the computationally intensive step of calculating the

singular values of M (ξa) at each iteration, for the usual

size of the problem under consideration, the computational

requirements of the used search and the numerical algebra

algorithms are well within the capabilities of current proces-

sors.

IV. ROBUST DETECTION USING TIME-VARYING

THRESHOLDS ON RESIDUAL SIGNALS

The process under consideration is written as follows

ẋs(t) = Asxs(t)+Bs∆s(t)u(t) (17)

where Bs =
[

α(t)Bs1 (1−α(t))Bs2

]
,

∆s(t) =
[

β(t)∆s1 (1−β(t))∆s2

]T
,

where α(t)∈ {0,1} is the effectiveness factor for the current

actuator in use and β(t) is the supervisor-chosen actuator

activation function. The former depends on the health of the

actuator group and the latter is chosen by the supervisor.

In fact, the effectiveness factor α(t) coincides with the fault

time profile; when the actuator fault is abrupt, then α(t) =
1−H(t −Ta). The matrix Bs1 corresponds to the projection

onto the slow subsystem of the input operator associated with

the first actuator group and similarly Bs2 corresponds to the

input operator associated with the second actuator group.

Under healthy operating conditions, the system is assumed

to employ the first actuator group and hence α(t) = 1. The

supervisor assumes also that the system starts as healthy

and hence sets β(t) = 1. It should be noted that the product

Bs1∆1 = Bs2∆2 = Bs0 by design. Then the control signal u(t)
is chosen only once and is based on the matrix Bs0. If the first

actuator group is used, then the slow subsystem becomes

ẋs(t) = Asxs(t)+Bs1∆s1u(t) = Asxs(t)+Bs0u(t),

and when the second actuator group is used, the plant

equation is given by

ẋs(t) = Asxs(t)+Bs2∆s2u(t) = Asxs(t)+Bs0u(t).

The above demonstrates that regardless of the actuator group

used, the closed loop system behaves the same.

The plant equation can be compactly written as

ẋs(t) = Asxs(t)+

(Bs1β(t)∆s1α(t)+Bs2((1−β(t))∆s2(1−α(t)))u(t),
(18)

where α(t)is either one or zero at any time. Since the actuator

effectiveness factor α(t) ∈ {0,1}, then at any time the term

Bs∆s(t) must be either Bs1∆s1 or Bs2∆s2. For simplicity, it

is assumed that the healthy actuator group is the first one

and hence Bs∆s(t) = Bs1∆s1 prior to the fault occurrence

Ta. Hence α(t) = 1 for t < Ta. When the actuator fault

occurs, the value of α(t) becomes α(t) = 0 for t ≥ Ta. The

supervisor should have knowledge of this and reconfigure

the controller by switching to the other actuator group. This

can be done by setting β(t) to zero. However, the supervisor

will not immediately detect the fault in the system, and must

find a way to declare the fault immediately after the fault

occurrence Ta. While α(t) = 0 for t ≥ Ta, the supervisor will

still assume nominal conditions and maintain β(t) = 1. After

the onset of the fault and prior to a possible detection, the

system will be given by

ẋs = Asxs +(Bs11∆s10+Bs2(1−1)∆2(1−0))u = Asxs

A. Fault Detection

In order to monitor the system and estimate the time at

which this fault occurs, a fault detection observer is required.

This takes the form

˙̂xs = Asx̂s(t)+Bs1∆s1u(t)+Ls(xs(t)− x̂s(t)). (19)

Prior to the fault occurrence (i.e. for t < Ta), we have that

the detection error e(t) = xs(t)− x̂s(t) is governed by

ės(t) = (As −Ls)es(t), es(0) = es0. (20)

After the occurrence of the actuator fault, the plant will

have no operational actuator while the monitoring scheme

would (erroneously) assume that the first actuator group is

functional. Thus, the detection error will be governed by

ės(t) = (A−L)es(t)+(0−Bs1∆s1)u(t), t ≥ Ta. (21)

One would like to utilize the residual signal to declare a fault

in the system, and make the reconfiguration by switching to

the other actuator group. The residual signal is chosen as the

norm of the detection error and thus

r(t) = |es(t)|

= |e(As−Ls)te(0)−
∫ t

0 e(As−Ls)(t−τ)Bs1∆s1u(τ)dτ|

≤ |e(As−Ls)te(0)|+ |
∫ t

0 e(As−Ls)(t−τ)Bs1∆s1u(τ)dτ|

≤ e−λst‖es0‖+‖Bs1∆s1‖
∫ t

0 e−λs(t−τ)|u(τ)|dτ

≤ e−λst‖es0‖+‖Bs0‖
∫ t

0 e−λs(t−τ)|u(τ)|dτ

By setting r0(t) , e−λst‖es0‖, then we have

r(t) ≤ r0(t)+‖Bs0‖
∫ t

0
e−λs(t−τ)|u(τ)|dτ.

Prior to the actuator fault, the residual signal should satisfy

r(t) ≤ r0(t), and therefore, a fault is declared when the
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residual signal exceeds the time varying threshold r0(t). The

detection time is defined as the first instance at which the

residual signal exceeds the time varying threshold and is

given via td = inf {t > 0 : r(t) ≥ r0(t)}. Obviously one has

that td ≥ Ta and the detection delay τd is the time it takes to

declare a fault in the system and is τd = td −Ta.

B. Fault accommodation

The fault accommodation takes the form of reconfiguration

of the actuator group. The control parameter in the accommo-

dation is the effectiveness factor associated with the actuator

group that is employed by the supervisor. It is given by

α(t) = H(t)−H(t −Ta) =

{
1 if t < td

0 if t ≥ td
(22)

Utilizing the above, it results in the slow dynamics being

described by

ẋs(t) = Axs(t)+Bs1∆s1u(t), t ≤ Ta

ẋs(t) = Axs(t), Ta < t < td

ẋs(t) = Axs(t)+Bs2∆2u(t), t ≥ td

The above shows that the system remains without any

actuators in the interval Ta < t < td , i.e. no control delivered

to the system. This is because α(t) = 0 due to the fault, but

β(t) is set by the supervisor still at β(t) = 1; thus

Bs1β(t)∆2α(t)+Bs2(1−β(t))∆2(1−α(t)) = 0

After the fault is declared, the system behaves the same

way as before the fault occurrence. This is because Bs1∆s1 =
Bs2∆s2 = Bs0. This is equivalent to having a single actuator

group deactivated at t = Ta and reactivated at t = Ta +τd = td .

V. NUMERICAL RESULTS

We consider the PDE with A(ξ)x(t,ξ) = ∆x(t,ξ) on the

spatial interval [0,2]. For initial conditions, we considered

x(0,ξ) = 10cos( 5.1πξ
2

)+ cos( 6.1πξ
2

)+ cos( 7.1πξ
2

)+ cos( 8.1πξ
2

).

Initially, we focused on identifying optimal actuator lo-

cations for this process. Towards this goal we chose the

slow subsystem to be of dimension N = 2 and the fast

subsystem to be of dimension M = 6, which implies that the

groups would contain up to two actuators, K = 2. Based on

these considerations, we employed the proposed algorithm to

identify six groups of actuators. Specifically, we attempted to

identify six actuator groups, L = 6, and for the optimization

problem of (16) the parameters were set to ωs = 1, δξ =
0.024, c = 10, and β1 = β2 = 60%.

In Figure 1a we present the identified actuator locations

for the six groups, while Figure 1b and Figure 1c present

the objective values and the corresponding H, S and spatial

H2 norms for the respective groups. We observe that the first

and second groups are actually symmetrical to the process

center, which is expected due to the symmetry of the modal

controllabilities with respect to the process center. This

implies that the two groups have exactly the same authority

as shown in Figure 1c (the spatial H2 norms have the same

value) due to the symmetry that the modal controllabilities

with respect to the process center exhibit.
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Fig. 2. Evolution of the residual for the slow subsystem and its time-
varying threshold.
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The effect the spillover, S, has on the ranking of the

actuator groups can be observed in Figure 1c, where the

fourth actuator group has a larger value of H than the third

group,which implies that it has more authority on the slow

system modes,however, it also has a larger value of S which

leads to its lower ranking. We also observe that even though

the algorithm is successful in identifying actuator groups, it

may not properly rank the groups as can be observed in the

objective value of the fourth and fifth groups in Figure 1b.

Based on the identified actuator groups, we employed

the first two groups to design a fault tolerant controller for

the process. The detection observer gain was chosen for

simplicity as Ls = As + Is resulting in λs = 1 and x̂s(t) = 0.

The bound on ‖es(0)‖ was taken to be 8‖es(0)‖ and therefore

the residual signal was r0(t) = 8e−λst‖es(0)‖. The fault time

was set at Ta = 0.10 and the proposed monitoring scheme was

implemented. Figure 2. The detection time was td = 0.162

resulting in a detection delay of τd = 0.062.

The effects of actuator fault accommodation can be ob-

served in Figure 3, where the L2 norm for the healthy case

(no actuator faults), the case with fault accommodation and

the case without accommodation. It can be observed that

when fault accommodation is incorporated in the system,

even with a certain time delay, the closed loop system eventu-

ally recovers and approaches the performance of the healthy

closed loop system. Such an advantage is not observed when

the actuator fault is not accommodated by the supervisor.
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[34] D. UCIŃSKI, Optimal Measurement Methods for Distributed Param-

eter System Identification, CRC Press, Boca Raton, 2004.
[35] M. VAN DE WAL AND B. DE JAGER, A review of methods for

input/output selection, Automatica, 37 (2001), pp. 487–510.
[36] W. WALDRAFF, D. DOCHAIN, S. BOURREL, AND A. MAGNUS, On

the use of observability measures for sensor location in tubular

reactor, J. Process Control, 8 (1998), pp. 497–505.
[37] Y. WANG, D. ZHOU, AND F. GAO, Robust fault-tolerant control of a

class of non-minimum phase nonlinear processes, Journal of Process
Control, 17 (2007), pp. 523 – 537.

[38] B. E. YDSTIE AND A. A. ALONSO, Process systems and passivity via

the clausius-planck inequality, Systems & Control Letters, 30 (1997).

954


