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Abstract

The identification of the parameters in a three
degree of freedom nonlinear dynamic surface ves-
sel model using drag test data in each of the axes
of motion is presented in this work. Parame-
ter estimates based on the use of terminal ve-
locity measurements and on the use of dynamic
position measurements are determined and com-
pared. The identification procedure is carried
out on an experimental model boat which is used
as the basis for comparison.

1. Introduction

The design of trajectory tracking and guidance
control systems for unmanned surface vehicles
(USV) depends on an accurate control oriented
model of the vessel dynamics. Models of varying
complexity have been proposed to describe the
kinematics and hydrodynamics of surface vessel
motion [1]. A uniform requirement for the appli-
cation of these models is the identification of the
model parameters which are typically vessel de-
pendent. Various techniques to obtain model pa-
rameter estimates from experimental or sea trial
data, such as the extended Kalman filter [2],[3],
simulated annealing [4], maximum likelihood [5],
and adaptive estimation [6], have been proposed.

The motivation for this work is the supervisory
control and coordination of a USV fleet to per-
form surveillance, search and rescue, and similar
functions. The dynamic USV models are used
to both design the local autopilot controls for
each USV and to describe the dynamics for tra-
jectory planning and optimization by the super-
visory controller. Because the proposed applica-

tion must address a USV fleet with the potential
for a large number of different vessels, model pa-
rameter identification can represent a significant
experimental effort. The advantage of this appli-
cation, however, is that the USV fleet will typ-
ically consist of small vessels that can be easily
towed using standard shore-based towing equip-
ment. The use of towing tests and maneuvering
experiments for small vessels is discussed in [7].
Designing drag tests in which the vessel dynam-
ics, and the associated model parameters, are iso-
lated to a single axis of motion greatly simplifies
parameter identification. This work presents an
experimental demonstration of this approach.

2. Experimental USV System

All experiments are performed using a 0.51m
long 1.614kg radio-controlled, battery-powered
model boat in a 6ft x 8ft indoor pool. Two DC
electric motors, each mounted to a separate pro-
peller shaft, provide the propulsion power. The
propellers are located 0.07m apart to also pro-
vide steering torque. There is no rudder on the
model boat. A joystick controls the boat using
a wireless receiver. It has been modified so that
control signals can be transmitted from a dSpace
board connected to a control computer. A dig-
ital black and white camera mounted 6ft above
the center of the pool is used to provide feedback
measurements of the boat position in real time.
The camera captures an image of the entire pool
area at a rate of 30 frames/sec. Two infrared
LED’s of different intensities are installed at the
front and rear of the centerline of the boat. The
two resulting infrared images are detected in the
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image captured by the camera and used to de-
termine the position and the orientation of the
boat. Navigational GPS and compass systems
provide these measurements on the actual USV.

Because the camera image is distorted, cali-
bration is necessary to translate pixel location
in the camera frame to physical location in the
pool. Calibration is carried out by placing a
board with a series of LED’s installed at reg-
ular intervals on the top of the pool at known
locations and recording the camera image pixel
matrix. The camera image pixel matrix locations
of all LED’s and their corresponding physical po-
sitions are shown in Figure 1. Two dimensional
cubic interpolation functions are used to fit the
physical location to the image matrix. The posi-
tion estimate for the image matrix in Figure 1 us-
ing these interpolation functions is shown in Fig-
ure 2. These interpolation functions are used to
determine the location of the two infrared LED’s
attached to the model boat.
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Figure 1: Camera calibration points and image.

3. Planar USV Dynamic Model

The three degree of freedom surface vessel model
presented in [1] is used to describe the motion
of the USV. This planar model neglects heave,
pitch, and roll dynamics. The resulting equa-
tions of motion in body-fixed coordinates are

m11v̇x − m22vyωz + d1v
α1

x = fp (1)

m22v̇y + m11vxωz + d2v
α2

y = 0 (2)

m33ω̇z + m22−11vxvy + d3sgn(ωz) |ωz|
α3 = Ts(3)

where vi are the linear velocities of the vessel,
ωz is the rotational velocity, mii are the mass
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Figure 2: Calibrated camera image vs. position.

parameters, di, αi are the nonlinear damping co-
efficients, and only forward motion is considered
in this model. The mass and damping terms are
assumed to be constant and a power law veloc-
ity relationship is used to describe the hydraulic
drag forces and torque. The propulsion force fp

and steering torque Ts are functions of the two
surge control forces from each propeller

fp = f1 + f2 (4)

Ts = B(f1 − f2)/2 (5)

where f1 is produced by the first motor and
f2 is produced by the second motor. The mii

mass parameters include added mass contribu-
tions that represent hydraulic pressure forces and
torque due to forced harmonic motion of the ves-
sel which are proportional to acceleration. Using
the estimate of the added mass terms presented
in [1] for the experimental model boat results in

m11 ≈ m + 0.05m = 1.695 kg (6)

m22 ≈ m + 0.5(ρπD2L) = 1.865 kg (7)

m33 ≈
m(L2 + W 2) + 1

2
(0.1mB2 + ρπD2L3)

12
(8)

= 0.0275 kgm2

where m = 1.614kg is the actual mass, L = 0.4m
is the effective length, W = 0.14m is the width,
D = 0.02m is the mean submerged depth, B =
0.07m is the distance between the propellers, and
ρ is the density of water. The vessel position in
the inertial reference coordinates z = [x, y, θ]T

which represent the x-y location of the center of
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mass and the orientation angle of the vessel are

ẋ = vx cos θ − vy sin θ (9)

ẏ = vx sin θ + vy cos θ (10)

θ̇ = ω (11)

Figure 3 presents a schematic of the model USV.

4. Parameter Estimation

The USV model in Eqs. 1– 3 contains nine pa-
rameters, three mass parameters and six non-
linear damping coefficients, that must be deter-
mined from experimental vessel data. By re-
stricting the USV motion to a single direction
along the horizontal (x), lateral (y), and rota-
tional (z) axes in these experiments, the cross
terms in Eqs. 1– 3 are eliminated resulting in
the following relationships for each axis

m11v̇x + d1v
α1

x = fx, vy = ωz = 0(12)

m22v̇y + d2v
α2

y = fy, vx = ωz = 0(13)

m33ω̇z + d3sgn(ωz) |ωz|
α3 = Tz, vx = vy = 0(14)

where fx is the horizontal force providing motion
only in the x direction, fy is the lateral force pro-
viding motion only in the y direction, and Tz is
the rotational torque providing only rotational
motion. The mass and damping terms corre-
sponding to each axis can be estimated indepen-
dently using drag experiments conducted along
the individual axes. The result is a simpler esti-
mation problem with fewer parameters.

4.1. Terminal Velocity Experiments

An estimate of the nonlinear damping coeffi-
cients di, αi can be obtained using the terminal
velocity from experimental drag data in each of
the three axes of motion. The steady-state rela-
tionships for the x, y, and z directions are

d1v
α1

x = fx, d2v
α2

y = fy, d3ω
α3

z = Tz (15)

where ωz > 0. A power law curve fit of the con-
stant force and velocity experimental data can
be used to determine the damping coefficients.
Velocity may either be measured directly or esti-
mated from the slope of a plot of position versus
time. The mass parameters, however, can not
be estimated with this approach using only the
terminal velocity. They must be approximated
using the relationships presented in Eqs. 6–8.
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Figure 3: Planar USV model schematic.

4.2. Dynamic Position Experiments

For experimental data in which information con-
cerning the measurement variance for each type
of measurement is available a priori, the max-
imum likelihood model parameter estimate can
be obtained by the solution of a weighted least
squares problem [8]. The least squares problem
in this work is the minimization of the weighted
sum of the squared error between the model pre-
dicted and measured USV position

min
{mii,di,αi}

N
∑

k=1

Jk
∑

j=1

∥

∥

∥
zm

j,k − z
p
j,k

∥

∥

∥

2

Q−1
(16)

where k refers to the experiment number, Jk is
the number of data samples taken for experiment
k, zm

j,k is the measured position vector for the jth

sample of the kth experiment, z
p
j,k is the model

predicted position vector for the jth sample of
the kth experiment, and Q is the measurement
covariance matrix. The measured boat positions
are obtained from dynamic drag experiments in
each axis of motion and the model predicted po-
sitions are determined from the solution of the
corresponding ODE in Eqs. 12– 14.

A linear approximation to the confidence in-
tervals for the model parameters is obtained by
assuming that the model can be represented by
a series of linear functions in a neighborhood of
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the estimated parameter values p̂

zi,j,k(p) ≈ zi,j,k(p̂) + ∆zi,j,k(p − p̂) (17)

∆zi,j,k =
∂zi,j,k

∂p

∣

∣

∣

∣

p=p̂

where p is the vector of model parameters, zi,j,k

is the model predicted position for the ith axis
of the jth sample of the kth experiment, and
∆zi,j,k is the 1 × 3 sensitivity vector. Assuming
normally distributed prediction errors, the region
containing 100(1 − α) percent of the probability
expressed by the linearized parameter posterior
distribution is represented by [9]

χ2

p(α) = (p − p̂)T V −1(p − p̂) (18)

V −1 =
n

∑

i=1

σ−2

i

N
∑

k=1

Jk
∑

j=1

∆zT
i,j,k∆zi,j,k

where χ2
p(α) is the value of the chi-square distri-

bution for p degrees of freedom evaluated at α,
p is the number of estimated parameters, V is
the covariance matrix of the linearized parame-
ter posterior distribution, n = 3 is the dimen-
sion of z, and σ2

i is the measurement variance
for the ith position. The hyperbox in the pa-
rameter space that circumscribes this ellipsoidal
confidence region is determined as follows [10]

pi ≈ p̂i ±
√

V (i, i)χ2
p(α) (19)

in which pi is the ith component of the param-
eter vector, V (i, i) is the ith diagonal element
of the parameter covariance matrix of the lin-
earized distribution, and α = 0.05 is the level of
significance for a 95% confidence interval.

5. Identification Experimental Results

Experimental drag tests using a series of constant
forces in each of the axes of motion was carried
out on the model boat. Terminal velocities for
each experiment were estimated from the slope of
a position versus time plot after the boat reached
a constant velocity. An estimate of the variance
of the position measurements was obtained by
pooling the variance of the difference between
the linear velocity fit and the measured position
data at constant velocity for each experiment.

σ2

x = 9.21× 10−5, σ2

y = 4.75× 10−4. σ2

θ = 0.501

The differences are largely due to the relative in-
crease in difficulty in keeping the boat straight
during the lateral drag and the center of mass
fixed during the rotational drag experiments.
The nine parameter estimates based on the ter-
minal velocity identification and dynamic posi-
tion identification are presented in Table 1 where
the mass terms for the terminal velocity identifi-
cation were determined using Eqs. 6–8.

Table 1: Estimated model parameters.

Parameter Terminal Dynamic

m11 1.695 1.96 ± 0.019
d1 2.72 2.44 ± 0.023
α1 1.68 1.51 ± 0.0075
m22 1.865 2.40 ± 0.12
d2 13.4 13.0 ± 0.30
α2 1.79 1.75 ± 0.013
m33 0.0275 0.0430 ± 0.0068
d3 0.0566 0.0564 ± 0.00085
α3 1.58 1.59 ± 0.0285

The dynamic position identification results in
a significant increase in the mass terms and a re-
duction in the horizontal and lateral drag force
parameters. The power law fits for the nonlin-
ear damping coefficients from both the terminal
velocity and dynamic position identification are
presented in Figures 4–6 along with the experi-
mental terminal velocity values for the horizon-
tal, lateral, and rotational drag experiments.
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Figure 4: Horizontal drag force velocities.

Figure 7 presents an example horizontal drag
experiment with the terminal velocity linear fit,
terminal velocity parameter identification, and
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Figure 5: Lateral drag force velocities.
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Figure 6: Rotational drag torque velocities.

dynamic position parameter identification model
predictions. The increased mass term from dy-
namic position identification provides a much
better fit to the initial motion while the terminal
velocity predictions are essentially the same.
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Figure 7: Example horizontal drag experiment.

6. Propeller Force Model

Because an accurate model of the motor and
propeller dynamics is not available, an empiri-
cal relationship between the propeller force and
motor input voltage is identified. A series of
constant voltages were applied to both motors
to produce horizontal motion. The correspond-
ing propulsion force was determined by minimiz-
ing the least squares objective in Eq. 16 assum-
ing constant and equal applied propeller forces
f1 = f2 = fp/2. The following quadratic rela-
tionships for applied motor voltages larger than
0.2V in the positive direction and less than -0.3V
in the negative direction are shown in Figure 8.

Vi =

{

5.04f2

i − 1.67fi + 0.344, fi > 0
−49.1f2

i − 1.43fi − 0.299, fi < 0
(20)

The dead band of the motors between -0.3V and
0.2V is indicated by the green box in Figure 8.
Although the motors are not perfectly balanced,
the force-voltage relations are assumed identical.
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Figure 8: Propeller force models.

7. Model Verification

The model parameters were validated against
powered experimental data sets that were not
used in the motor calibration. In these exper-
iments, a constant voltage is initially applied to
both motors with the boat at rest. After a short
time period, a step change is made to the voltage
one of the motors to produce a steering torque on
the boat. Figure 9 presents the experimental and
model predicted x and y coordinate trajectories
for one of these experiments in which a voltage
of 0.6V was applied to both motors for a period
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of 2sec after which a step change to 0.3V was
applied to the second motor producing a turn-
ing moment of approximately 4.2 × 10−3Nm. A
phase plot is presented in Figure 10. As shown in
these figures, the model matches the data reason-
ably well except for a slight over prediction of the
turning radius. It is also unable to account for
the drift in the x coordinate. Because the motors
are not perfectly balanced and there are unmea-
sured disturbances in the system, some drift in
the experimental data is to be expected.
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Figure 9: Model predicted x and y trajectory.
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8. Conclusions

The identification of USV model parameters us-
ing only drag tests that isolate the motion along
the individual axes is presented in this work.
One of the major advantages to this identifica-
tion strategy is that the model parameters corre-
sponding to each axis can be estimated indepen-

dently which requires less data for a reliable esti-
mate. Experimental results using the model boat
indicate that the procedure produces parameter
estimates that are able to predict powered exper-
imental data sets not used in the identification
with reasonable accuracy.
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