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Abstract— This paper describes a novel state trajectory
control method and its application to Electro-Hydraulic Poppet
Valves (EHPV). The control objective is to find a control
sequence that forces the state of the plant to asymptotically
converge to the desired state trajectory. This is to be accom-
plished without requiring exact information about the state
transition map of the plant. In fact, it is desired to learn the
inverse input-state map of the plant at the same time state
tracking control is enforced. As an application of this novel
controller, the tracking of a desired supply pressure trajectory
is considered. This is achieved by learning the flow conductance
coefficient Kv of the EHPV. The novel state trajectory control
method achieves this objective by learning the inverse input-
state mapping of the valve at the same time that this mapping
is used in the feedforward loop. The mapping learning is
accomplished with the aid of a simple neural network structure
called the Nodal Link Perceptron Network (NLPN). The NLPN
is trained online via a gradient descent method to minimize the
errors in the inverse input-state mapping approximation. The
supply pressure tracking performance subject to the proposed
controller is validated through experimental data.

I. INTRODUCTION
Controlling fluid power components, in particular electro-

hydraulic valves, is not a straight forward task due to their in-
herent nonlinear characteristics [3,12]. For example, electro-
hydraulic valves have a nonlinear pressure/flow relationship
and exhibit hysteresis. Their performance is also affected by
complex flow forces and friction [11].

The Electro-Hydraulic Poppet Valve (EHPV) considered
in this paper is shown in Fig. 1 and described in [15,30,31].
This valve opens proportionally to the amount of current
sent to its solenoid even though this relationship is nonlinear.
Among the distinguishing features, this valve possesses an
internal pressure compensation mechanism. This mechanism
ensures that the minimum amount of current needed to
initially open the valve is always consistent. Moreover, this
valve has virtually ‘zero’ leakage, it is bidirectional, and has
low hysteresis. The EHPV’s are typically used in a Wheat-
stone bridge arrangement for motion control of hydraulic
actuators [26,27].

A simple approach, widely employed in industry to control
complex systems, is to use a static look-up table (in some
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Fig. 1. Electro-Hydraulic Poppet Valve(EHPV) considered in this paper

cases adaptive [28]) with the inverse input-output character-
istics of the plant in the feedforward path. In industry, the
EHPV is currently controlled open-loop using this form of
fixed calibration.

In an effort to present an alternative control approach,
this paper applies a newly developed auto-calibration and
control method to the EHPV. More specifically, the tracking
of a desired supply pressure profile using the EHPV is
considered herein. The control technique applied here is
called NLPN-based Input Matching (NBIM) [13]. This tech-
nique simultaneously learns the inverse input-state mapping
of the plant while forcing its state to follow a prescribed
desired trajectory. The main requirements for the successful
application of the control law presented here are knowledge
of the order of the plant and some generic data to initialize
the inverse mapping. This last requirement can be easily
fulfilled by using steady-state data or equilibrium points of
the plant.

Inverse Mapping Control (IMC), Adaptive Inverse Dynam-
ics Control (AIDC), Input Matching (IM), Inverse Model
Control, and Direct Learning Control are similar techniques
that are useful for auto-calibration and control of complex
systems. The concept of Input Matching was introduced by
Johnson and Tse [6] and further developed by Goodwin et
al. [4]. The AIDC method was developed in the early 80’s by
Widrow and colleagues [29]. In the late 80’s, Psaltis et al. dis-
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cussed the Direct Learning method for tracking control [19].
Malinowski et al. used the term Inverse Mapping Control
to propose the use of static inverse mapping as controllers
for time-invariant or slowly varying dynamic systems [10].
Pham and Oh in [16] used recurrent neural networks with
backpropagation adaptation to approach the inverse dynamic
control problem via input matching. In addition, Pham and
Yildirim compared the performance of a SCARA robot under
standard controllers, the Inverse Model Control, and Internal
Model Control in [17]. It is concluded in this paper that
the robot exhibited superior performance under the last two
control schemes.

Advanced control techniques have also found their appli-
cation in the field of fluid power technology. One finds the
inclusion of feedforward learning compensation in addition
to standard feedback control in [2,5,18,32]. Furthermore, a
coordinated motion controller with learning capabilities was
presented by Johnson et al. [5]. The learned inverse orifice
characteristics were combined with PD control and a mod-
erate improvement in performance was reported. Moreover,
Song and Koivo in [25] used a feedforward multilayered
neural network with backpropagation adaptation to model the
inverse dynamics of an excavator. The offline training of the
network utilized the input matching approach. While these
researchers reported that the performance of the learning
controller was superior to that of independent joint PID
control, they acknowledged the slow convergence of this
adaptation technique.

Recently, Liu and Yao in [9] proposed the online modeling
of the flow mappings for unidirectional cartridge valves
using neural networks. In this research, the valve flow
mappings were considered static and the valve dynamics
were neglected. The authors claim that the method has the
advantage of calibrating the valves without removing them
from the system. Similarly, Opdenbosch and Sadegh applied
an adaptive NLPN-based control approach to the EHPV [14].
It was shown that the tracking performance of this valve was
improved by using the adaptive NLPN-based controller.

It should be noted that most of the works found in the
literature deal with output tracking error instead of state
tracking error. In addition, it is seen in the literature that
auto-calibration schemes can add value to the use of fluid
power components. The contribution of this paper is the use
of the NLPN1 in the input matching technique, instead of
using recurrent neural networks with backpropagation, and
its application to control the EHPV by learning its input-state
mapping.

The rest of the paper is organized as follows: the problem
statement is presented in Section II along with relevant def-
initions and assumptions. The functional approximator that
is used to accomplish the learning portion of the proposed
methodology is introduced in Section III. After this, the
control law is given in Section IV followed by its application
to the EHPV in Section V. This section is followed by the

1The Nodal Link Perceptron Network (NLPN) is in simple words an
adaptive lookup table (see Section III).

conclusions of the paper.
The following notations are freely used in this paper:

The n-dimensional euclidean space is denoted by Rn and
the space of real m × n matrices is denoted by Rm×n. A
matrix is represented in bold while scalars and vectors are
represented in normal fonts. For a given matrix B, the ijth

entry is represented by Bij and the ith column is denoted by
[B]i. For a given vector x, [x]i denotes the ith component. If
x ∈ R, then |x| denotes the absolute value of x, whereas if
x ∈ Rn, then |x| denotes the euclidean norm. The expression
x = O(y) implies that x→ 0 as y → 0 while the expression
x = o(y) implies that x/y → 0 as y → 0. The notation Dk

i fj
will be used to denote the kth partial derivative of the jth

component of function f with respect to its ith argument.

II. PROBLEM STATEMENT

The system or plant to be controlled is assumed to have a
discrete-time state space representation. As such, consider a
general discrete-time nonlinear dynamic plant governed by
the difference equation

xk+1 = F (xk, uk)
xk0 = x0 (1)

where the plant state is xk ∈ Rn, the input is uk ∈ Rn,
and F : Rn × Rn → Rn is the state transition map.
Let the sampling time be fixed. The objective is to find a
control sequence {uk}∞k=k0

that forces the state of the plant
xk to asymptotically converge to xdk, a given desired state
trajectory. This is to be accomplished without requiring exact
information about the state transition map F of the plant. In
fact, it is desired to learn the inverse input-state map of the
plant at the same time state tracking control is enforced.

Remark 1 When the plant is not in the form of (1), the Block
Input-State approach [1,21] can be used to lift the dimension
of the input vector to that of the state resulting in a square
system.

The following definitions are presented to formalize and
clarify the understanding of some of the conventions em-
ployed herein. Note that in this paper, X̄ and Ū denote the
closure of the sets X and U respectively.

Definition 1 The set of admissible states, in which desired
states are included, is denoted by X . This set is a bounded
and convex open subset of Rn.

Definition 2 The set of admissible inputs is denoted by U :=
{u ∈ Rn : z = F (x, u) , for some x, z ∈ X}.

Definition 3 The inverse input-state map of the plant in (1),
when it exists, is denoted by uk = Ψ (xk+1, xk).

Definition 4 The equilibrium or steady state inverse input-
state map of the plant in (1) is denoted by uss = Ψ (xss, xss)
if it exists.
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Definition 5 The NLPN input space is denoted by A. When
approximating the function Ψ, then A = X̄ × X̄ .

The control formulation presented herein is developed un-
der the following set of assumptions. It is worth mentioning
that other authors have used equivalent versions of these
assumptions in the literature (see for example [7,8,24]).

Assumption 1 The complete state vector x ∈ Rn is feed-
back available.

Assumption 2 The state transition map F : Rn×Rn → Rn
belongs to Class C2 (twice continuously differentiable) in the
entire space X̄ × Ū .

Assumption 3 The partial derivative of the state transition
map D2F (x, u) is nonsingular ∀ x ∈ X̄ and ∀ u ∈ Ū .

Assumption 4 For all x, z ∈ X , there exists a unique vector
u ∈ Rn such that z = F (x, u).

Assumption 3 ensures that the input-state map is locally
invertible [24]. The last of these is often referred to as the
strong controllability assumption in the literature [7,24]. In
simple words, this assumption guarantees that any initial state
in X can be transferred to any final state in X by means of
a control sequence of length n.

It is important to mention that fulfillment of assumptions
2 through 4 implies the existence of a differentiable control
function for the plant.

Proposition 1 Consider the plant in (1) and suppose as-
sumptions 2 through 4 are satisfied. Then, there exists a
unique differentiable function Ψ : X × X → U with
the following properties: a) The admissible input set U is
nonempty, open, and bounded. b) For all x, z ∈ X and
u ∈ U , then u = Ψ (z, x) ⇐⇒ z = F (x, u). Moreover,
D1Ψ = [D2F ]−1 and D2Ψ = − [D2F ]−1

D1F .

The proof of this proposition is a straightforward applica-
tion of the Implicit Function Theorem and can be found in
[13]. See [7,8,24] for similar results.

Another important assumption is that the mapping learning
can be accomplished with the aid of an NLPN.

Assumption 5 The inverse input-state map of the plant in
(1) is in the functional space of the NLPN. In other words,
∃ W ∈ RN×n and |εΨ| ≤ ε for some ε > 0 such that
Ψ = WTΦ + εΨ.

III. FUNCTIONAL APPROXIMATOR

The learning part of the controller developed in this paper
uses the Nodal Link Perceptron Network (NLPN). This
perceptron-type neural network architecture is very similar
to the Cerebellar Model Articulation Controller (CMAC)
network and it was developed by Sadegh in [20,23]. The
NLPN gives an attractive solution to the control problem
since it is simple and compatible with existing look-up

tables found in many industrial control systems. The formal
definition of the NLPN is given next.

Definition 6 Let BN = {φi}Ni=1 be a finite set of basis
functions. A BN based NLPN is referred to as a three-
layered perceptron network whose hidden layer consists of N
activation functions φ1, φ2, . . . , φN ∈ BN with the following
input-output relationship:

fw (x) =
N∑
i=1

[
WT

]
i
φi (x) = WTΦ (x)

where x ∈ A and fw ∈ Rm are the input and output vectors
of the network, and [W]i ∈ RN (i.e. W ∈ RN×m) is the
vector of nodal weights. Φ (x) is the basis function vector
whose ith entry is [Φ (x)]i = φi (x).

Even though other choices are available, piece-wise linear
basis functions are used in this paper because of their
simplicity. As such, consider the case in which x ∈ Rn.
Without loss of generality, it is assumed that the input space
is reshaped so that A = [α1, β1] × · · · × [αn, βn] and each
interval is divided into Nj subintervals [λi,j , λi+1,j ] with
αj = λ1,j < λ2,j < · · · < λNj ,j < λNj+1,j = βj .This
way, the input space A is partitioned into Nc =

∏n
j=1Nj

rectangular cubes. The corners of these cubes are referred to
as the nodal points of A. The total number of nodal points
is NA =

∏n
j=1 (Nj + 1). Now, the output of a piece-wise

linear basis function is computed from

φi∈I (x) =
n∏
j=1

ϕij ,j (xj) (2)

ϕm,j (xj) =


(xj−λm−1,j)

(λm,j−λm−1,j) if xj ∈ [λm−1,j , λm,j)
(xj−λm+1,j)

(λm,j−λm+1,j) if xj ∈ [λm,j , λm+1,j ]
0 else

where I is a countable index set.

Example 1 Consider the case for x ∈ R2 and assume that the
two dimensional input space is given by A = [0, 1]× [−5, 5].
The first interval for this space is divided into a single (N1 =
1) subinterval. The second interval is divided into N2 = 2
subintervals. In other words,[

λ1,1 λ2,1

]
=

[
0 1

][
λ1,2 λ2,2 λ3,2

]
=

[
−5 0 5

]
It can be seen from Figure 2 that there are two rectangular
cubes and six nodal points. Now, consider the index set

I = {(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)}

Then, for example, the output of the basis functions for the
index (1, 2) is given by

φ(1,2) (x) = ϕ1,1 (x1)ϕ2,2 (x2)

Now, the vector of basis functions is formed as

Φ (x) =
[
φ(1,1) φ(2,1) · · · φ(1,3) φ(2,3)

]T
This vector is then combined with a set of weights to produce
the output of the NLPN.
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Fig. 2. Two dimensional input space for the NLPN example

IV. CONTROL LAW FORMULATION

To achieve the control objective, the control action is
partitioned into two parts. The first part accomplishes the
learning of the inverse input-state mapping while the second
part uses the learned map for feedforward control.

The learning part is accomplished via the direct learning
approach. From Proposition 1, one knows that there exists
a unique and differentiable inverse input-state mapping for
the plant. Also, by assumption, the state of the system
is available at the kth sampling instant. Consequently, the
inverse input-state dynamic map can be obtained by using a
one-step delay in both the input uk and the state xk. In other
words,

uk−1 = Ψ (xk, xk−1) = WTΦ (xk, xk−1) + εΨ

With this in mind, one uses an NLPN to approximate this
relationship as shown in (3), where Ŵ ∈ RN×n represents
the weights of the NLPN and Φ ∈ RN represents the basis
function vector with piece-wise linear activation functions.

ûk−1 = Ψ̂ (xk, xk−1)
= ŴT

k Φ (xk, xk−1) (3)

The weights of the NLPN are adapted to minimize the cost
function2

J
(
Ŵ
)

:=
1
2

∣∣∣uk−1 − ŴT
k Φ (xk, xk−1)

∣∣∣2
via the steepest descent method:

Ŵk+1 = Ŵk + γkΦ (xk, xk−1)µTk
µk = uk−1 − ŴT

k Φ (xk, xk−1) (4)

where γk is the learning rate. This parameter must be chosen
appropriately to ensure closed loop stability. As such 0 ≤
γk |Φ (xk, xk−1)|2 < 2 must be imposed (see [13,22]).

The second part, the feedforward control law, can be
implemented with

uk = Ψ̂
(
xdk+1, xk

)
This is motivated by Proposition 1 (by substituting z =
xdk+1). However, this results in a deadbeat controller. The

2This is the reason for calling this method input matching.

problem with a deadbeat controller is that one can easily
saturate the input for a given desired trajectory if the sam-
pling time is small enough. An alternative approach is then
considered from realizing that

Ψ̂
(
xdk+1, xk

)
= Ψ̂

(
xdk+1, x

d
k

)
−
[
D2Ψ̂

(
xdk+1, x

d
k

)]
ek

+o (|ek|)

where ek = xdk − xk is the state tracking error. This result
motivates the use of the following non-deadbeat feedforward
control law

uk = Ψ̂
(
xdk+1, x

d
k

)
−KpD2Ψ̂

(
xdk+1, x

d
k

)
ek

= ŴT
k Φ
(
xdk+1, x

d
k

)
(5)

−KpŴT
kD2Φ

(
xdk+1, x

d
k

)
ek

which uses a constant Kp ≥ 0 chosen by the user.

Remark 2 Even though there are two NLPN’s, one for the
direct learning part and one for the feedforward part, there
is a single adaptation.

The complete architecture for the control law is displayed
in Fig. 3. In summary, the control law is realized using
the following equations: the inverse input-state map is ap-
proximated via the direct learning method using (3). The
feedforward control action uses the weights Ŵk from this
part and it is implemented using (5). The adaptation of the
weights is accomplished using the steepest descent method
in (4).

The closed-loop stability of the plant subject to the NBIM
control law is addressed in Theorem 1. Before this theorem
is presented, the following definition is needed.

Definition 7 The sequence xk is said to be Persistently
Exciting (PE) with respect to BN if there are λ̄ > 0 and
integer s > 0 such that

λmin

k−1+s∑
j=k

Φ (xj , xj−1) [Φ (xj , xj−1)]T
 > λ̄, ∀ k ≥ 0

where λmin [M] denotes the smallest eigenvalue of M.

Fig. 3. Diagram of the control law
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Theorem 1 Consider the discrete-time system in (1) sub-
ject to the control law (5) using the steepest descent
adaptation (4). Assume that γk is chosen such that 0 ≤
γk |Φ (xk, xk−1)|2 < 2 and that assumptions 1 through 4
are satisfied. If the state sequence xk is Persistently Exciting,
then there exist positive scalars k̄p < 1, ē0, ēΨ̃, and ε such
that if |1−Kp| ≤ k̄p, |e0| ≤ ē0,

∣∣∣Ψ− Ψ̂0

∣∣∣
A
≤ ēΨ̃, and

εΨ ≤ ε, then ek and uk are bounded for all k. Moreover,
limk→∞ supk |ek| = O (ε) and limk→∞

∣∣∣Ψ− Ψ̂
∣∣∣
A
≤ O (ε).

Proof: The proof of this theorem is too long to be
included here. The reader can find it in [13]. A simple
example is given next for illustration purposes.

Example 2 Consider a scalar linear time invariant plant
whose state equation is given by xk+1 = Axk + Buk.
Assume that the plant is controllable. Let the state tracking
error be given by ek := xdk−xk. It is not difficult to see that
the true inverse input-state mapping of this plant is given
by uk = Ψ (v1, v2) = B−1 (v1 −Av2). If this mapping is
known exactly, then substitution of the control law

uk = Ψ
(
xdk+1, x

d
k

)
−Kp

[
D2Ψ

(
xdk+1, x

d
k

)]
ek

into the plant state dynamics yields ek+1 = (1−Kp)Aek.
The resulting error dynamics is stable provided that the
feedback gain is chosen to satisfy |A|−1

|A| < Kp <
|A|+1
|A| .

Remark 3 Theorem 1 asserts that the tracking error and the
inverse mapping approximation error will be in the order of
the capabilities of the NLPN. It is required that the initial
state tracking error be small and that there exists an initial
input-state mapping. This mapping is used to initialize Ŵ.
In practice, this last requirement can be easily fulfilled by
using steady-state data or equilibrium points of the plant.

V. APPLICATION TO HYDRAULICS

As mentioned before, the opening (conductance) of each
EHPV is currently controlled by open-loop means. A fixed
look-up table is populated with the valve’s inverse input-
output relationship3 obtained from steady state data. This
is accomplished by recording the relationship between the
current sent to the solenoid (input) and the valve’s flow
conductance coefficient Kv (output). This calibration is
performed for both flow directions (bidirectionality). Because
of slow time varying characteristics (wear and tear, tem-
perature effects, etc), the EHPV’s would require periodic
recalibrations for optimal performance. At this point, the
valves are not recalibrated online (i.e. while they are in
operation).

There are three major advantages of using a learning
controller for the EHPV: first, there would be no need to
obtain extensive individual calibrations for valves of the
same size. With the learning controller, generic data can
be used and the discrepancies are corrected online. Second,
the EHPV’s performance can be improved by combining

3Referred to as the valve calibration hereafter.

feedback control. Third, by knowing how the EHPV is truly
behaving while in operation, a maintenance schedule can be
implemented from monitoring and detecting the deviations
from the normal pattern of behavior4.

It is the experience of the authors that this valve can
also be controlled by combining nonlearning feedforward
compensation (look-up table based on steady state data) and
standard PID feedback control. However, this type of con-
troller would be more sensitive to errors in the feedforward
compensation. Also, the third advantage introduced by the
learning controller is not matched by the PID-based control
scheme.

As described in Section IV, the order of the EHPV and
some generic or initial data about the inverse input-state
mapping are needed to successfully apply the control law.
This is explored next.

The generic data is extracted from the steady state char-
acteristics of the EHPV, briefly described next. Typical
steady state data for the EHPV are presented in Fig. 4.
This plot shows the relationship between Kv, the pressure
differential across the valve ∆P, and the input current sent
to the solenoid. Note that temperature effects are neglected
herein. It is important to notice that the flow conductance
is nearly independent of the pressure differential for ∆P
values greater than 0.4 MPa. This feature will be exploited
to simplify the control task.

Fig. 4. Steady state data for the forward flow direction of the EHPV

The step response of the EHPV to different input currents
is shown in Fig. 55. The data appears considerably noisy
for higher current values because the pressure differential
decreased as the valve opened more. Consequently, pressure
signals became more noisy. In this paper, the flow conduc-
tance Kv is obtained from

Kv = Q/
√

∆P

by measuring the flow through the valve and the pressure
differential.

4This health monitoring aspect will be explored in a future paper.
5Note that the three different step inputs were not applied at the same

time.
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The step responses from a model of the EHPV are shown
in red in Fig. 5. This model is composed of a linear second
order system with a static input nonlinearity [13]. This static
nonlinearity is realized with the data shown in Fig. 4. It is
important to mention that it is not necessary to have a model
of the EHPV for the successful application of the control
law. This is done to give insight and make the case for the
order of the EHPV. From looking at Fig. 5, one can take a
step further and argue that the valve has first order dynamics
(i.e. a single state). With this consideration, the EHPV is
automatically in the desired form of (1). Consequently, the
flow conductance of the EHPV is approximated herein by

Kvk+1 = F (Kvk, uk)

where uk is the current sent to the solenoid.
To test the control law, the EHPV labeled ’SR’ is used

to control the supply pressure PS in the hydraulic circuit
depicted in Fig. 6. This pressure is labeled as such since it
is the supply pressure for the Wheatstone bridge arrangement
of EHPV’s. In this hydraulic test-bed, all the pressures, the
position, and the velocity of the piston are available via CAN
bus.

A simple pressure control scheme that uses the valve’s
Kv is described next. A desired flow conductance Kvd is
commanded for the ’SR’ valve. The Kvd value is computed
from the desired supply pressure P dS by

Kvd =
Qp
(
P dS
)
− ẋA√

P dS − PR
(6)

where Qp (·) is the supply flow from the pump given in Fig.
7 and A is the appropriate area of the piston. The actual
flow conductance of the valve is computed using (6) with
the actual pressure PS .

The response of the EHPV subject to the control law is
evaluated next. The resulting performance when the learning
is disabled is presented first. This is seen in Fig. 8 and 9.

The response of the valve in terms of tracking the desired
flow conductance is given in Fig. 8 when the learning is

Fig. 5. Step response of the EHPV under different input currents

Fig. 6. Hydraulic test-bed used in the pressure control application

disabled. In this figure, ’KSRc’ represents the commanded
or desired Kv while ’KSRm’ denotes the measured one.
The tracking performance of the resulting supply pressure is
depicted in Fig. 9. In this figure, the desired supply pressure
or setpoint pressure, manually commanded, is labeled ’Psp’
while the other signals are measured.

When the adaptation is enabled, the resulting Kv response
is given in Fig. 10. In addition, the resulting performance of
the supply pressure is presented in Fig. 11. The superior
performance of the learning method is clearly identified.
However, some oscillations are observed in the pressure
response shown in Fig. 11. This could be further improved by
taking into account fluid inertance and fluid compressibility,
neglected in the control law of (6).

The settings of the control law are discussed next. The
input space of the NLPN is to be fed with the pair
(Kvk,Kvk−1) according to 3. However, it was anticipated
that most of the data would remain close to the line Kvk =

Fig. 7. Supply flow from the pump as a function of PS
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Fig. 8. Flow conductance response without learning

Fig. 9. Supply pressure response without learning

Kvk−1, the steady state line. Consequently, a coordinate
transformation is used to rotate (a 45o rotation) the input
space to align the Kvk axis with the steady state line. This
way, the node distribution along this axis can be determined
offline from trends seen in the steady state data. The new axes
are labeled z1 and z2, where z1 =

√
2 (Kvk +Kvk−1) /2

and z2 =
√

2 (Kvk−1 −Kvk) /2. The input space is parti-
tioned as A = g1× g2, where the grid vectors are expressed
in LPH/

√
MPa by

g1 = [−100, 15, 310, 330, 500, 1000, 12000]
g2 = [−4000,−500, 0, 500, 4000]

The learning rate γ was set to 0.2 while the proportional
gain Kp was set to 0.1. These values were manually tuned
and could be further changed by compromising adaptation
speed and relative stability if desired. The term D2Φ was
computed by differentiating (2). At the nodal points, where
Φ is not differentiable, the derivative is computed by setting
it to the value it had before coming to the nodal point.

Notice that the pressure across the valve was always main-
tained high enough (above 2 MPa). This was done to take

Fig. 10. Flow conductance response with learning

Fig. 11. Supply pressure response with learning

advantage of the Kv independence from ∆P . Consequently,
the initial inverse input-state mapping can be obtained from
slicing the data shown in Fig. 4 at a constant ∆P and
inverting it. Note that the initial calibration used herein,
shown in Fig. 12, was degraded on purpose from the true
calibration to show the capabilities of the control law. This
figure also shows the learned inverse input-state (labeled as
final) and a typical extensive calibration curve for this valve
size. In addition, notice that the learned curve starts at about
800 mA as opposed to the others. This is because this region
in the input space of the NLPN was seldom visited as seen
in Fig. 10. Hence, it was affected but not correctly learned.
Notice that the desired Kv remained mostly between 1000
and 2000 LPH/

√
MPa, and thus very good agreement is seen

between the learned and the extensively calibrated curve in
this region.

VI. CONCLUSIONS

This paper presented the application of an online auto-
calibration and control method for the EHPV. More specifi-
cally, the tracking of a desired supply pressure profile using
the EHPV was considered. The control law presented herein
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Fig. 12. Inverse input-state mappings for the EHPV at steady state

simultaneously learned the inverse input-state mapping of the
EHPV while forcing its flow conductance to follow a pre-
scribed desired trajectory. This was accomplished by treating
the EHPV as nonlinear plant with first order dynamics and
using an initial input-state mapping obtained from steady
state data. Consequently, the controlled pressure showed
good tracking capabilities as opposed to simply using an
open-loop static look-up table based controller. Although not
shown here, the performance of the EHPV under open-loop
control (based on the extensive calibration mapping) showed
good steady state performance but poor tracking due to the
open-loop dynamics of the valve.
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