
  

  

Abstract—This paper presents a model of a silicon 
microphone with active electronic damping. The microphone 
has low passive damping to minimize thermal noise, and 
employs active damping from electrostatic actuation to improve 
its dynamic performance. To apply the linear robust control 
approach, the nonlinear dynamic system is modeled as a linear 
system with bounded parameters, and a controller is designed 
using the ∞H  method which successfully drives the electrostatic 
actuator to generate the desired active damping. The 
effectiveness of the controller has been verified through 
simulation in both frequency and time domains. 

I. INTRODUCTION 
ILICON microphones have significant potential for 
achieving improved performance over conventional 

microphone designs with smaller size and lower cost.  These 
performance improvements will be possible when 
researchers are able to fully take advantage of the unique 
capabilities of microfabricated devices.  The possibility of 
implementing electronic force-feedback has been utilized in 
many micromachined sensors to provide significant 
performance improvements [1]. This approach has, however, 
not been adequately taken advantage of to achieve 
performance improvements in silicon microphones.  A 
primary aim of the present study is to examine the 
possibility of performance improvement of a novel 
directional microphone concept that is very well-suited to an 
electronic force-feedback scheme. 

A typical transfer function for a silicon microphone takes 

the form
kcsms ++2

1 , where m, c, and k are the 

microphone’s mass, damping coefficient, and stiffness, 
respectively and s is the Laplace transform variable. A 
major trade-off in microphone design comes from the choice 
of the system’s damping coefficient c. According to the 
equipartion theorem and the Nyquist relation, the 
microphone’s thermal noise is determined by its damping 
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coefficient [2]. More damping produces more thermal noise 
relative to the detected input sound pressure. In order to 
improve the system’s noise performance, the microphone 
should be lightly damped, which while reducing the input-
referred thermal noise, unfortunately, would also result in 
poor frequency response and ringing due to transient signals.  

One possible way to avoid the adverse effects of low 
damping on the dynamic response is to introduce active 
damping into the microphone system. The thermal noise of a 
microphone comes from the passive damping, usually due to 
viscous flow of air around the diaphragm By introducing 
active damping through a control feedback loop, the 
microphone can be designed with low passive damping to 
reduce thermal noise and obtain high effective damping to 
improve system dynamic response. Feedback control can 
also help expand the bandwidth of the microphone. An 
analysis of an active damping scheme indicates it can be 
effective in our design of an older generation of directional 
microphones incorporating parallel plate capacitive 
actuation, where digital control using sigma-delta 
modulation principle was utilized [3]. The effectiveness of 
active damping has also been shown in highly sensitive 

gravitational detectors [4], [5]. 
The directional microphone examined in the following 

works like a teeter-totter with interdigitated comb fingers at 
its ends. The diaphragm senses the external acoustic pressure 
gradient, and rotates around a central pivot axis. The rotation 
of the diaphragm is sensed optically by detecting the 
interference of the light that is reflected by the moving and 
fixed fingers [6]. This optical detection scheme has also 
been applied to more conventional nondirectional 
microphones [7].  When a voltage is applied between the 
movable and fixed fingers, a resulting electrostatic moment 
is exerted on the diaphragm, which provides the possibility 
of employing a force-feedback system. In the present study 
of the use of a feedback system, the optical transducer is 
modeled as a constant gain. 
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While the comb finger structure provides the ability to 
apply force feedback, there are significant challenges in 
using it in a control system. First, because the optical sensor 
provides a signal that is proportional to displacement of the 
movable fingers we are required to use an output feedback. 
Moreover, the actuation of the microphone diaphragm is 
through an electrostatic force, and the force is a nonlinear 
function of the diaphragm displacement and of the driving 
voltage. In addition, the unforced displacement of the 
diaphragm varies from device to device due to random 
factors in its fabrication process. 

This paper focuses on formulating and analyzing an active 
damping control system for a directional microphone having 
comb fingers that addresses all the above three challenges. 

The paper is organized as follows. Section II provides a 
mathematical description of a real silicon microphone as an 
example, and a feedback configuration for active damping. 
Section III derives a linear design model of the microphone, 
where both the nonlinearity of the electrostatic force 
transducer and the uncertainty in the unforced initial 
diaphragm deflection are captured in conic sectors in the 
system parameter space. Section IV presents the formulation 
and the solution of an active damping controller through 
the ∞H  method, where the focus of discussion is on the 
selection of weighting functions. Section V verifies the 
controller design by analyzing the performance of the 
closed-loop system with both the linearized model and a 
nonlinear Simulink model where the nonlinearity of the 
actuator described in  Section II is implemented. Section VI 
concludes the paper  

II. ACTIVELY DAMPED MICROPHONE MODEL  
This section describes a model of the directional 

microphone having comb fingers as shown Fig.1, and 
explores the possibility of applying active damping to 
suppress the resonance of the diaphragm dynamics. A 
possible scheme for active damping is shown in Fig.2.  

The microphone dynamics may be modeled as  

er MMkcI +=−++ )( 0θθθθ &&&    (1) 
where I, c, and k are the moment inertia, torsional damping 
coefficient and torsional stiffness respectively; rM is the 
moment generated by the external sound pressure gradient, 

eM is the electrostatic moment generated by the comb 
fingers, and 0θ  is the initial unforced diaphragm rotation, 
formed during the device fabrication.  

Since we have at our disposal a high bandwidth optical 
sensor that produces angular displacement measurement of 
the movable fingers, an active damping can be implemented 
by designing a feedback controller )(sH  with sensor gain 
(Volts/rad) included. 

The electrostatic force F  generated by each pair of comb 
fingers is the gradient of the electrical energyφ  stored. 
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where x  is the vertical displacement between fixed and 
movable fingers. C is the capacitance between each pair of 
fingers, V is the voltage applied, which is comprised of DC 
bias voltage 0V , and control voltage 1V at the output of 
active damping controller.  

 

0V

2

2
VCn

θ∂
∂

)(sH

θ)(sG
rM

eM

1V

 
Fig. 2  A proposed active damping configuration 

The total electrostatic moment generated by all the fingers 
is 
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where L is the half length of the diaphragm, θ  is diaphragm 
angle of rotation, and n  is the total number of pairs of 
fingers. 

The function 
θ∂

∂C is determined by the electric flux 

density distribution between the finger pairs. The conformal 
mapping method [8] is used to obtain its relationship toθ , as 
shown in Fig. 3. 

Given the expression for the electrostatic moment in 

equation (4), the nonlinear dynamic governing equation for 
the system can be expressed as, 

( ) rMVVCnkcI ++
∂
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The parameters for a specific microphone are listed in 
Table 1. 
Table 1. Nominal parameters of the microphone 

Moment Inertia I  6.2663e-15 Kg.m2 

Damping Coefficient c  6.5909e-12 Kg.m2/s 

Stiffness k  1.7331e-5 Kg.m2/s2 

Half length of 
Diaphragm L  

1e-3 m 

Width of diaphragm 1e-3 m 
Number of comb finger 
pairs n  

600  
 

 
 

III. LINEAR DESIGN MODEL WITH CONIC UNCERTAINTIES 
Referring to Fig.2, equation (5) describes the control 

design model consisting of microphone dynamics preceded 
by a nonlinear actuator. This section derives a linearized 
design model with uncertain parameters that capture both 
nonlinearities and inexact knowledge of the initial angular 
displacement. 

The electrostatic moment presents two problems: 
uncertainty and nonlinearity. Suppose eθ is the equilibrium 
point of the system. It is determined by 

 2
00 2

)( VCnk
e

e
θθ

θθ
∂
∂

=− . (7) 

A graphical solution for eθ  is shown in Fig.4. It is seen 
that eθ  depends on 0θ , which varies from device to device.  

Let de θθθ += , where dθ is a small dynamic rotation 
about the equilibrium position. Expanding (5) around the 
equilibrium yields 
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Substituting (7) into (8), the system governing equation 
becomes 
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Applying Taylor’s Theorem, 
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whereξ  is between eθ  and .de θθ +  
. 

 
Fig.  4 Graphical solution of eθ  when the initial unforced 
rotation is 0θ with a DC bias of 0.1 V 
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A linearized incremental design model around equilibrium 
eθ  is obtained, 

( ) 1VkkkcI Mdedd =−++ θθθ &&& .  (12) 

ek becomes the equivalent electrical stiffness generated by 
the electrostatic moment feedback and Mk works as 
equivalent electrostatic gain for actuation.. Both ek  and Mk  
are time varying gains that are also uncertain if 0θ  is not 
known.  

The gains can be regarded as uncertain gains, and their 
boundaries can be estimated for a given set of fabricated 

devices through the range of 0θ , dθ , eθ , and 
ξθ 2

2

∂
∂ C which is 

shown in Fig.5. 

 Some sample values of the boundaries are now provided. 
At 1.00 =V (volt) and [ ]32,61 −−∈ eeeθ  in radians, the 
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[ ] 00195.0,00147.0− 2F/rad . In this case, equivalent active 
stiffness becomes [ ]677.9,636.7 −−−∈ eeke  according to 
(11). 

0
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V
V

+  is bounded by 
0
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2
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1
V

V
−  below and 

0

1

2
max

1
V

V
+  above. Simulations of the closed-loop system 

upon completion of controller design, concludes the actuator 
gain  ]9048.2,7568.5[ −−−∈ eek M  (Nm/Volt). 

The linearization model allows the application of many 
design techniques for the compensator )(sH ; this paper uses 
an elementary loop-shaping and ∞H  control [9]. 

 

IV. ∞H  CONTROLLER DESIGN 

The Matlab routine hinfsyn is called for the design of 
compensator )(sH . The routine requires that the feedback 
interconnection of linear fractional transformation form as 
seen in Fig.6, where the two inputs are scaled reference 
input d and control input V1, the three outputs are controlled 
output e1 representing weighted angular displacement error 
of the diaphragm, controlled output e2, representing 
weighted control voltage, and measured incremental output 

dθ . The generalized plant icG  in Fig. 6 is obtained by 
including all performance weightings in the open-loop 
interconnection shown in Fig.7.    

icG

H1V

1e
2e
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d

 
Fig. 6  Closed-loop interconnection in linear fractional 
transformation form 

  

 
Fig. 7  Open-loop interconnection of a two-input and 
three-output generalized plant with performance 
weightings  

The generalized plant icG  is given by 
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 The idea of the ∞H method is to find a suboptimal 
solution for the controller )(sH that makes the ∞H norm of 
the transfer function from d to (e1, e2) to be acceptably small. 
The key to a successful design is to select weighting 
functions that reflect the designer’s intent, and to consider 
tradeoff among conflicting requirements. 
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Fig. 8 Weighting function θW , microphone dynamics G and 
the designed ∞H  controller H  
The first consideration in compensation is to extend the 

microphone operating bandwidth by pushing the occurrence 
of the resonant peak to outside of the frequency range of 
interest. This is accomplished by weighing the error of 

k
G 1

− around the resonance frequency. Fig. 8 shows how 

the weighting function θW puts more weight around the 
resonance frequency to make error 1e small. 
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2=vW  is chosen in the final design. refW is the reference 
normalization weighting gain. The choice of it has 
tremendous effect on controller synthesis in that it scales the 
reference input against control input to reflect the designer’s 
intent, and to improve the condition number of the design 
model. Its value is often set at the maximum of the reference 
input. Human speech signal is around 80dB (SPL), which 
has an effective moment on microphone diaphragm 
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with 106.2 −= eWref . The detail of the derivation of sound 
pressure moment can be found in Appendix A. 

The closed-loop transfer function of Fig.6 is 
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Controller )(sH  is designed so that  

γ<
∞

T
sH )(

sup  (16) 

for an acceptably small .γ  
The resulting controller is given by  
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Fig.9 shows the closed-loop versus open-loop frequency 
responses for a number of parameter values within the 
defined boundaries. 

The controller in Equation (17) has a right-hand zero, 
which means a non-minimum phase controller. A non-
minimum phase controller may limit the close-loop 
bandwidth. The upper bound of closed-loop bandwidth can 
be decided by the following equation. [10] 
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where bω is the closed-loop bandwidth; 1=α if loop transfer 
function has no right-half plane poles, which is true in our 
case; z is the right half-plane zero, and sM is peak 
sensitivity, which is much greater than 1 when the damping 
ratio is small. Because the right-hand zero is greater than the 
peak resonance frequency (6.80e4>5.25e4) (rad/s), the 
controller can effectively achieve active damping without 
having to reduce the microphone’s original bandwidth.  
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Fig.9 Open- and closed-loop frequency responses 
Although the controller is designed for a particular 

nominal design model, it does provide certain robustness in 
closed-loop performance. Fig. 9 shows the open-loop and 
closed-loop transfer function based on different sets of 
parameter samples. It clearly demonstrates an effective 
active damping due to feedback. 

V. VERIFICATION THROUGH SIMULATIONS 
 

This section verifies the active damping design by 
simulating the closed-loop system with nonlinearity in the 
actuator included. Fig.10 shows the Simulink model of the 
nonlinear system. 

When the reference input is a 1kHz sine wave, the 
response of the open loop plant continuously oscillates 
around the sinusoidal response due to very light damping, 
whereas the closed-loop response begins to follow the 
reference input after one period wiggling, which verifies the 
effect of active damping as shown in Fig.11. 

The control effort shown in Fig. 12 provides some basis 
for determining the aforementioned range of variation for 
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Fig. 11 Response  dθ  of open loop and closed-loop 
microphone  to a 1kHz sinusoidal reference input 
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Fig.12  Control effort at the controller output and 
electrostatic moment output when reference signal is a 
1kHz sinusoidal wave 
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Fig.13 clearly shows that ringing present in the open-loop 

microphone response is eliminated in the closed-loop 
response when a sound wave is applied at the reference 
input.  

While setting different values of unforced diaphragm 
rotation 0θ , similar results can also be reached. 

VI. DISCUSSION AND CONCLUSIONS 

Through linearization of a nonlinear comb finger 
microphone, a dynamic compensator is designed that 
achieved the active damping of the resonance present in the 
open-loop microphone. The effectiveness of active damping 
is verified through simulations of the nonlinear microphone 
model. The loop-shape of the designed controller suggests a 
differentiation effect at the open-loop resonant peak and 
rolls off at high frequencies to maintain noise rejection. 

This effort represents the first step in our attempt to 
implement a robust digital controller as part of a system-on-
a-chip for the micro-machined comb finger microphone. Our 
immediate plan with regard to control design is to perform a 
thorough robustness analysis of the design, and proceed to 
consider other aspects of system performance, such as 
increased bandwidth, through formulating a robust synthesis 
problem. Design robustness is a necessity in low-cost mass 
production of the acoustic sensor.   

 

APPENDIX A THE MOMENT GENERATED BY SOUND WAVE FOR 
THE DIRECTIONAL MICROPHONE 

Since the microphone control design model involves two 
inputs, it is critical to know the magnitude range of input 
generated by sound pressure due to the nonlinear effect of 
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electrostatic actuation mechanism. The following derivation 
[11] shows the relationship between the pressure gradient 
sensed by the diaphragm of a one-dimensional directional 
microphone, and the moment generated. (See Fig.1). The 
purpose is to justify the scaling or normalization factor for 
the multiple inputs set up of the controller design.  

Considering the plain wave pressure input, 
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with ck /ω=  and c is the sound speed.  
Then, the sound pressure input becomes, 
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Because the common speech level does not generally 

exceed 80dB, ( ) (Pascal)  2.01052 20
80

0 =×−= ep . 
Therefore, the magnitude of moment generated by this signal 
is (N.m) 106.2 −= eM . The value is used for the scaling 

factor refW  for the reference input in ∞H controller design. 
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