
 
 

 

 

  

Abstract—The problem of minimax robust control for 
structured uncertain time-delay systems is dealt with. The 
existence conditions of minimax robust controller in the form of 
LMI are derived in the sense of Lyapunov theory and by the 
definite equivalent transform for static structured uncertain 
time-delay systems with multiplicative time quadratic perfor- 
mance cost. The convex optimization algorithm is introduced to 
get the minima upper bound of performance cost and the optimal 
parameter of minimax controller. The existence conditions of 
minimax robust controller are presented for time-delay systems 
of which structured uncertainties satisfy dynamical integral 
quadratic constraints (IQC). Simulation results show that the 
designed controller can shorten the state attenuation time 
effectively. 

I. INTRODUCTION 
HE minimax control of uncertain systems is presented in 
the 1970’s for the controller design to ensure quadratic 

stability of closed-loop uncertain systems based on parameter 
uncertain systems and a given performance cost. And the 
system performance cost are ensured to remain bounded in a 
certain minima bound under the condition of the worst distur- 
bance and uncertainty. The minimax control comes in for a 
great deal of attention because of the exceptional application 
prospect. The existence conditions of minimax controller in 
the form of LMI are presented for the generalized linear 
continuous systems by Russian scholar Kogan [1], [2]. The 
optimal minimax controller is designed for linear stochastic 
systems in [3]. 

So far, concerning with the study of the robust control for 
uncertain time-delay systems, the system uncertainties are 
usually characterized by means of satisfying the generalized 
marching condition or norm-bounded condition. However, 
when modeling for some industry systems, some links can not 
be made linear and the nonlinear characters can not be 
described accurately besides the description of the inequalities 
function set. This kind of systems can be characterized by 
means of integral quadratic constraints (IQC) uniformly. The 
IQC can characterize not only the system gain information and 
phase information but also the structure information of system 
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input-output [4], [5]. So IQC is the method to characterize a 
wide-ranging kind of nonlinear links. The problems of 
guaranteed performance control and stability analysis are 
studied for static IQC uncertain systems in [6]-[8]. The 
concept of dynamic IQC is presented [9] in 2001. But the 
mathematical expression of functional operator is adopted and 
the state-space expression is not supplied in [9]. The outside 
disturbance form characterized by dynamic IQC is presented 
in [10]. Based on that, the state-space expression of structured 
dynamic IQC uncertainties is presented completely in [11]. So 
the expression of uncertainties in uncertain systems is further 
expensed. But the research on the minimax control for 
structured uncertain time-delay systems is not much yet now. 
The minimax optimal control for discrete structured uncertain 
systems is studied in [12], and the key point in [12] is the 
system parameter optimization. The controller is designed for 
structured uncertain systems and the minimax dynamic game 
problem is discussed in [13]. The minimax optimal controller 
is designed for static structured uncertain systems in [14], but 
the time-delay factors are not considered and the existence 
conditions of the mentioned controller are in the Riccati form 
in [14]. 

In order to avoid difficulties of resolving, the existence 
conditions of the minimax robust controller in the form of 
LMI are presented for static structured uncertain time-delay 
systems with multiplicative time quadratic performance cost. 
The convex optimization algorithm is introduced to get the 
minima upper bound of performance cost and the controller 
optimal parameter. At the same time, based on the uncer- 
tainties satisfying dynamical IQC, the existence conditions of 
the minimax controller are presented. 

II. DESIGN OF MINIMAX CONTROLLER FOR STATIC   
STRUCTURED UNCERTAIN TIME-DELAY SYSTEMS 

In this section, we will discuss the existence condition of 
minimax controller. The following theorem addresses the 
optimal minimax control problem, which can be solved 
efficiently by convex optimization algorithms. 

Consider the structured uncertain time-delay system 
described as follows. 

1( ) ( ) ( ) ( )x Ax t A x t d Bu t Hp t= + − + +  
( ) ( ) ( )q t Cx t Du t= +  
( ) ( )p t q t= Δ , 1Δ ≤                              (1) 

The initial conditions are as follows. 
( ) ( )x t tφ= , 2( ) [ ,0]L dφ ⋅ ∈ − , [ ,0]t d∈ −  

( ) 0u t = , 0t ≤  
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where, ( ) nx t R∈  is the system state, ( ) mu t R∈  is the system con- 
trol input, ( )p t  is the system uncertain input, ( )q t is the system 
uncertain output; A , 1A , B , H , C and D are proper dimensional 
constant matrices. 0d >  is the state time-delay. Δ  is the un- 
certain matrix operator and its norm is less than 1.  

Define the multiplicative time performance cost as 
T T T T

0
( , ) ( ( ) ( ) ( ) ( ) ( ) ( ))tJ u p e t Q t u t Ru t p t H Hp t dtα ξ ξ

∞
= + −∫        (2) 

where, ( ) ( )[ , ]T T Tx t x t dξ = − , 0TQ Q= > , 0R > , 0 (0)ξ ξ= . 
The key point of this section is to design the minimax state 

feedback robust controller ( ) ( )u t Kx t=  for structured uncertain 
time-delay systems. The design of the controller is under the 
condition that the system uncertain input destroys the system 
stability and performance mostly. The controller is designed 
to make sure the asymptotic stability of the closed-loop system 
and to get the minima upper bound of performance cost. 

By introducing the variables T T( ) ( )tt e tαξ ξ= , T( ) ( )tu t e u tα=  and 
T( ) ( )tp t e p tα= , the performance cost becomes 

T T T T

0
( , ) ( ( ) ( ) ( ) ( ) ( ) ( ))J u p t Q t u t Ru t p t H Hp t dtξ ξ

∞
= + −∫        (3) 

Introducing the transforms T( ) ( )tx t e x tα= , T( ) ( )tq t e q tα=  yields 
the equivalent equations of system (1) as follows. 

1( ) ( ) ( ) ( ) ( )dx A I x t A e x t d Bu t Hp tαα= + + − + +  
( ) ( ) ( )q t Cx t Du t= +  
( ) ( )p t q t= Δ , 1Δ ≤                            (4) 

The initial conditions are as follow. 
( ) ( )tx t e tα φ= , 2( ) [ ,0]L dφ ⋅ ∈ − , [ ,0]t d∈ −  

Theorem 1: If there exist positive definitive symmetrical 
matrices P and S such that the linear matrix inequalities as 
follows are satisfied, 

T T T
1

T T

T T T

T
1

( ) 0 0
0

0 ( ) 0
0 0

d

d

A P PA P S C C PH PB C D e PA
H P I H H

B P D C R D D
e A P S

α

α

α⎡ ⎤+ + + + +
⎢ ⎥− +⎢ ⎥<⎢ ⎥+ − +
⎢ ⎥

−⎢ ⎥⎣ ⎦

   (5) 

T T T

T T

T T

T
1

1 ( ) 0 0 02
0 0
0 0

d

d

A P PA P S C C PH PB C D e PA

H P I H H

B P D C
e A P S

α

α

α⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥− +
⎢ ⎥ <
⎢ ⎥+ −Γ⎢ ⎥
⎢ ⎥−⎣ ⎦

   (6) 

then there exists the minimax state feedback control law 
* T 1 T T( ) ( ) ( )u R D D CD B P x t−= − + +  

such that the closed-loop system of system (4) is asymptoti- 
cally stable and the performance cost satisfies 

* *

0T 2 Tmin max ( , ) (0) (0) ( ) ( )t

du p
J u p x Px e S dα φ θ φ θ θ

−
≤ + ∫ , 

where, T T 1 T( )( ) ( )R D D D D R D D−Γ = + + . 

Proof: Firstly, choose the Lyapunov function as follows. 
T T( ( )) ( ) ( ) ( ) ( )

t

d
V x t x t Px t x Sx dθ θ θ

−
= + ∫                   (7) 

and define the quadratic function 
T T T T

0
( ( )) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))

t t

d
W x t x t Px t x Sx d q t q t p t p t dθ θ θ θ

−
= + + −∫ ∫   (8) 

and the local check function 

 T T T( ) ( ) ( ) ( )W u t Ru t p t H Hp tψ = + −                     (9) 
Substituting (8) into (9) and considering ( )dx x t d= − , we 

obtain 
T T T T

T T T T T T T

T T T T T T T T
1 1

T T T

( )[ ] ( ) ( ) ( )
            ( )( ) ( )
            

            

d d
d d

d d

x t A P PA P S C C x t x t PHp t
p t I H H p t u B Px x PBu u D Cx
x C Du u Ru u D Du e x A Px e x PA x

x Sx p H Px

α α

ψ α= + + + + +
− + + + +
+ + + + +

− +

    (10) 

Then maximizing (10) about p , we have 
* T 1 T( ) ( )p I H H H Px t−= +                          (11) 

Since 
2

2 ( ) 0TI H H
p
ψ∂ = − + <

∂
, p  in (11) makes the local check 

function maximum. Substituting (11) into (10), we have 

*

T T T T

T 1 T T T T T T T T

T T T T T T
1 1

max ( )[ ] ( ) ( ) (

                ) ( )
                ( )

p

d d
d d d d

x t A P PA P S C C x t x t PH I

H H H Px t u B Px x PBu u D Cx x C Du
u R D D u e x A Px e x PA x x Sxα α

ψ α
−

= + + + + +

+ + + + +
+ + + + −

 (12) 

Then minimizing (12) about u , we have 
     * T 1 T T( ) ( ) ( )u R D D CD B P x t−= − + +                    (13) 

It is easy to see 
2

* T
2

max
0p R D D

u

ψ∂
= + >

∂
. So u  in (13) makes 

the local check function minimum. 
Substituting (13) into (12), we have 

* *

T T T T

T 1 T T T T 1 T

T T T T
1 1

T T T T

min max

( )[ ] ( ) ( ) (
        ) ( ) ( )( ) (
        )

( )[ ] ( ) ( ) (
        

u p

d d T
d d d d

x t A P PA P S C C x t x t PH I
H H H Px t x PB C D R D D B P
D C x e x A Px e x PA x x Sx

x t A P PA P S C C x t x t PH I

α α

ψ

α

α

− −

= + + + + +
+ − + +
+ + + −

≤ + + + + +
T 1 T T T T 1 T

T T T T T
1 1

) ( ) ( )( ) (
        ) d d

d d d d

H H H Px t x PB C D R D D B P
D C x e x A Px e x PA x x Sxα α

− −+ + + +
+ + + −

  (14) 

Considering ( ) ( )T T T[ , ]x t x t dξ = − , (14) becomes 
 

* *

Tmin max ( ) ( )
u p

t Q tψ ξ ξ≤ − ,                           (15) 

If the inequality (16) holds, we can ensure 0Q > , 
T T

1
T
1

0
d

d

A P PA P S C C M N e PA
e A P S

α

α

α⎡ ⎤+ + + + + +
<⎢ ⎥−⎣ ⎦

,      (16) 

where, T 1 T( )M PH I H H H P−= + , T T 1 T T( )( ) ( )N PB C D R D D B P D C−= + + + . 
From the Schur complement theorem, it is obvious that the 

following inequality is equivalent to (16).  
T T T

1
T T

T T T

T
1

( ) 0 0
0

0 ( ) 0
0 0

d

d

A P PA P S C C PH PB C D e PA
H P I H H

B P D C R D D
e A P S

α

α

α⎡ ⎤+ + + + +
⎢ ⎥− +⎢ ⎥ <⎢ ⎥+ − +
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Substituting (11) and (13) into the derivative of ( ( ))W x t  
along the state trajectory of system (4), we have 

T T
T 1 1

T
1

2
( ( )) ( ) ( )

d

d

A P PA P S C C M N e PA
W x t t t

e A P S

α

α

αξ ξ
⎡ ⎤+ + + + + +

≤ ⎢ ⎥−⎣ ⎦
 (17) 

where, T T 1 T T 1 T T
1 ( )( ) ( ) ( )N PB C D R D D D D R D D B P D C− −= + + + + . 

From the Schur complement theorem, (17) is equivalent to 
the following inequality. 
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T T T

T T

T T

T
1

1 ( ) 0 0 02
0 0
0 0

d

d

A P PA P S C C PH PB C D e PA

H P I H H

B P D C
e A P S

α

α

α⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥− +
⎢ ⎥ <
⎢ ⎥+ −Γ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

where, T T 1 T( )( ) ( )R D D D D R D D−Γ = + + . 
If (6) is satisfied, then ( ( )) 0W x t < . We have 0V <  obviously, 

so the asymptotically stability of system (4) is realized. 
Rearranging (15) and calculating the integral, as well as 
considering the initial conditions of the system, yields 

* *

T T T T

0

0T 2 T

min max ( , ) ( ( ) ( ) ( ) ( ) ( ) ( ))

(0) (0) ( ) ( )

u p

t

d

J u p t Q t u t Ru t p t H Hp t dt

x Px e S dα

ξ ξ

φ θ φ θ θ

∞

−

= + −

≤ +

∫

∫
   (18) 

Remark:  If the above existence condition is satisfied, then 
there exists a minimax control law for system (4). From (18), 
we get to know that the upper bound of performance cost 
depends on the selection of the minimax control law. So in 
order to minimize the upper bound of performance of system, 
it is crucial that how to choose an appropriate minimax control 
law. By constructing and resolving the convex optimization 
problem, the optimal parameter of feedback controller and the 
minimum upper bound of performance cost will reach. 

Theorem 2: For the system (3) and the performance cost 
(4), if the convex optimization problem 

2 T

,
min Trace( ) Trace( )t

P S
P e NSNα+  

s.t.  (5) and (6) 

has the solution ( , )P S , then the parameter expression of the 
optimal minimax robust controller for system (3) can be as in 
(11) and 

2 T *Trace( ) Trace( )tJ P e NSN Jα≤ + = . 

where, 0 T T( ) ( )
d

d NNφ θ φ θ θ
−

=∫ . 
Note that the initial state of system is hard to be accurately 

measured in fact. So by considering the expected value of 
performance cost, we obtain. 

{ } 2 T *Trace( ) Trace( )dJ E J P e NSN Jα= ≤ + = . 

III. DESIGN OF MINIMAX CONTROLLER FOR DYNAMICAL     
IQC UNCERTAIN TIME-DELAY SYSTEMS 

Consider the uncertain time-delay system 

1
1

( ) ( ) ( ) ( )
l

i i
i

x Ax t A x t d Bu t H p t
=

= + − + +∑  

( ) ( ) ( )z t Cx t Du t= +  
( ) ( ) ( )i i iq t E x t Fu t= + , 1, ,i l=                   (19) 

The initial conditions are as follows. 
( ) ( )x t tφ= , 2( ) [ ,0]L dφ ⋅ ∈ − , [ ,0]t d∈ −  

( ) 0u t = , 0t ≤  
where, ( ) nx t R∈  is the system state, ( ) mu t R∈  is the system 
control input, 1( ) nz t R∈  is the system evaluation output, A , 1A , 
B , H , C , D , iE and iF  are proper-dimensional constant mat- 
rices ( 1, ,i l= ). 0d >  is the state time-delay. ( ) pin

ip t R∈  is the 
system uncertain input, ( ) qin

iq t R∈  is the system output. 
( ( ), ( ))i ip t q t  constitutes the input-output of structured uncer- 

tainties and satisfies the dynamic IQC relation [11] as follows.  
( ) ( ) ( )i i i i ix t A x t B q t= +  

( ) ( )i i iy t C x t= , 1, ,i l=  
*

T T 11 12

0
21 22

( )
( ) ( ) 0

( )

i it i
i i i i

i

y t
y t p t dt

p t
⎡ ⎤Π Π ⎡ ⎤

⎡ ⎤ ≥⎢ ⎥ ⎢ ⎥⎣ ⎦ Π Π ⎣ ⎦⎣ ⎦
∫ , * (0, )t ∈ ∞     (20) 

where, iA , iB  and iC  are given proper-dimensional constant 
matrices, and the given multiplier matrix satisfies 

T
11 11
i iΠ = Π , T

12 21
i iΠ = Π , T

22 22
i iΠ = Π  

Define the performance cost as 
T T T T

10
1

( , ) ( ( ) ( ) ( ) ( ) ( ) ( ))
l

i i i i
i

J u p t Q t u t Ru t p t H H p t dtζ ζ
∞

=

= + −∑∫   (21) 

where, ( ) ( )T T T T[ , , ]dx t x t d xζ = − , ( )dx x t d= − , T T
1 , , lx x x⎡ ⎤= ⎣ ⎦ , 1 0Q > , 

0R > , 0 (0)ζ ζ= . 

Theorem 3: If there exist positive definitive symmetrical 
matrices X , S  and 1P  such that the following matrix inequa- 
lities are satisfied, 

T 1 T T
1 1

T
1

T
1 33

0 0
0

XA AX BR B H V A X V
XA V
V

−⎡ ⎤+ − − +
⎢ ⎥− <⎢ ⎥
⎢ ⎥Θ⎣ ⎦

          (22) 

T 1 T T
1 1

T
1

T
1 33

2
0 0

0

XA AX BR B H V A X V
XA V
V

−⎡ ⎤+ − + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥Θ⎣ ⎦

         (23) 

then there exists the minimax state feedback control law 
* 1 T T T

1
( )

l

i i i i
i

u R B Px F B S x−

=

= − +∑  

such that the closed-loop system (19) is asymptotically stable 
and the performance cost satisfies 

* *

0T T T
1

1 1
min max ( , ) (0) (0) (0) (0) ( ) ( )

i

l l

i i i i du p i i
J u p x Px x S x P dφ θ φ θ θ

−
= =

≤ + +∑ ∑ ∫ . 

where, 1V XP X= , 1 13V X Sφ= , 1 13V X Sφ= , 1S S −= , T
33 33S SφΘ = , 

1
13 1 2 3PZ PBR Z S Z Sφ −= − − + , 1

13 1 2 32PZ PBR Z S Z Sφ −= − + . 

Proof: Firstly, choose the Lyapunov function as follows. 
T T T

1
1

( ( )) ( ) ( ) ( ) ( ) ( ) ( )
l t

i i i d
i

V x t x t Px t x S x x Px dθ θ θ θ θ
−

=

= + +∑ ∫       (24) 

and define the quadratic function 

T T 11 12

0
1 21 22

( )
( ( )) ( ( )) ( ) ( )

( )

i il t i
i i i i i

i i

y t
W x t V x t y t p t ds

p t
ε

=

⎡ ⎤Π Π ⎡ ⎤
⎡ ⎤= + ⎢ ⎥ ⎢ ⎥⎣ ⎦ Π Π ⎣ ⎦⎣ ⎦

∑ ∫   (25) 

and the local check function 
T T T

1
( ) ( ) ( ) ( )

l

i i i i
i

W u t Ru t p t H H p tψ
=

= + −∑               (26) 

Substituting (25) into (26), we obtain 

 

T T T T T T T

1 1

T T T T T T T T T T T

1 1 1 1

T T T T T

1

( )( ) ( ) ( )( ) ( )

        ( )

        

l l

i i i i
i i

l l l l
T

i i i i i i i i i i i i i i i i i i
i i i i

l

i i i i i i i
i

x t A P PA x t u t B P PB u t p H Px x PH p

x A S S A x x E B S x x S B E x u F B S x

x S B Fu x C

ψ

ε

= =

= = = =

=

= + + + + +

+ + + + +

+ + Π

∑ ∑

∑ ∑ ∑ ∑

∑ T T T
11 21 12

1 1 1

T T T T T T T T
22 1 1 1 1

1

        ( )

l l l
i i i

i i i i i i i i i i
i i i

l
i

i i i i i d d d d
i

C x p C x x C p

p H H p x A Px x PAx x Px x Px u Ru

ε ε

ε

= = =

=

+ Π + Π

+ Π − + + + − +

∑ ∑ ∑

∑

(27) 

Then maximizing (27) about p , we have 
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* T T
22 12( )( ( ) ( ))i i

i i i i i i i ip H H C x t H Px tε ε= − Π − Π +            (28) 

Since 
2

T
222 0i

i i i
i

H H
p
ψ ε∂ = Π − <

∂
, *

ip  in (26) makes the local 

check function (27) maximum. Substituting (28) into (27), we 
have 

*

T T T T

T T T T T T T T T

1 1 1

T T T T T T T
1 1

1 1

max ( )( ) ( ) ( )( ) ( )

               ( )

               

   

ip

l l l

i i i i i i i i i i i i i i
i i i
l l

T
i i i i i i i i d d

i i

x t A P PA x t u t B P PB u t

x A S S A x x E B S x x S B E x

u F B S x x S B Fu x A Px x PA x

ψ

= = =

= =

= + + +

+ + + +

+ + + +

∑ ∑ ∑

∑ ∑
T T T T T

1 1 11
1

T T T 1 T T
12 22 12

1

            

               ( )( ) ( )

l
i

d d i i i i i
i

l
i i T i

i i i i i i i i i i i
i

x Px x Px u Ru x C C x

x PH x C H H C x H Px

ε

ε ε ε

=

−

=

+ − + + Π

− + Π Π − Π +

∑

∑

 (29) 

Then minimizing (29) about u , we have 
* 1 T T T

1
( )

l

i i i i
i

u R B Px F B S x−

=

= − +∑                     (30) 

It is easy to see *

2

2

max
0ip R

u

ψ∂
= >

∂
. So *u  in (30) makes the 

local check function (29) minimum. 
Substituting (30) into (29), we have 

* *

T T T T T T T T

1 1

T T T T T T T T T T
1 1 1 1 11

1 1

T T T T
12 22

1

minmax

( )( ) ( ) ( )

  

  ( )(

iu p

l l

i i i i i i i i i i
i i

l l
i

i i i i d d d d i i i i i
i i

l
i i

i i i i i i i
i

x t A P PA x t x A S S A x x E B S x

x S B E x x A Px x PAx x Px x Px x C C x

x PH x C H H

ψ

ε

ε ε

= =

= =

=

= + + + +

+ + + + − + Π

− + Π Π −

∑ ∑

∑ ∑

∑ 1 T T
12

T T T 1 T T T

1 1

) ( )

  ( ( ) ) ( ( ) )

i
i i i i

l l

i i i i i i i i
i i

C x H Px

x t PB x S B F R B Px t F B S x

ε−

−

= =

Π +

− + +∑ ∑

  (31) 

Then from (14), we have 
* *

T
1min max ( ) ( )

iu p
t Q tψ ζ ζ≤ − ,                       (32) 

If the inequality followed holds, we can ensure 1 0Q > , 
T 1 T T

1 1 13
T
1 1

T
13 33

0 0
0

A P PA PBR B P PH P P PA
A P P

φ

φ φ

−⎡ ⎤+ − − +
⎢ ⎥− <⎢ ⎥
⎢ ⎥
⎣ ⎦

,     (33) 

where,  

[ ]
1 T

1

1
T

0 0
0

,
0

0 0

l

l
i

M
H

H H H
H

M

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

⎣ ⎦

, T 1
22( )i

i i i iM H Hε −= Π − , 

1
13 1 2 3PZ PBR Z S Z Sφ −= − − + , [ ]1 , , lS diag S I S I= , 

1 T T
1 1 1 1 12 1 12, , l

l l l lZ diag H M C H M Cε ε⎡ ⎤= Π Π⎣ ⎦ , T T T T
2 1 1 , , l lZ diag F B F B⎡ ⎤= ⎣ ⎦ , 

T T T T
3 1 1 , , l lZ diag E B E B⎡ ⎤= ⎣ ⎦ , [ ]33 1, , ldiagφ = Σ Σ , 

2 T T T 1 T T T T
12 12 11
i i T i

i i i i i i i i i i i i i i i i iC M C S B FR F B S C C A S S Aε ε−Σ = Π Π + + Π + + , 1, ,i l= . 

Pre- and post-multiplying both sides of inequality (33) by 
1 1 1diag[ ]P P S− − − , we have 

T 1 T T
1 1

T
1

T
1 33

0 0
0

XA AX BR B H V A X V
XA V
V

−⎡ ⎤+ − − +
⎢ ⎥− <⎢ ⎥
⎢ ⎥Θ⎣ ⎦

          (34) 

where, 1X P−= , 1V XP X= , 1 13V X Sφ= , 1S S −= , T
33 33S SφΘ = . 

Substituting (28) and (30) into the derivative of ( ( ))W x t  
along the state trajectory of system (19), we have 
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     (35) 

where,  
2i i iY M M= − + , 22

i
i i i iM M Mε= Π , 

T 1 T T
1 1 13

T
1 1

T
13 33
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A P PA PBR B P PH P P PA
A P P

φ

φ φ

−⎡ ⎤+ − + +
⎢ ⎥Ξ = −⎢ ⎥
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H H H
H

Y

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
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⎣ ⎦

, 

1
13 1 2 32PZ PBR Z S Z Sφ −= − + , 33 1, , ldiagφ ⎡ ⎤= Σ Σ⎣ ⎦ , 

[ ]1 , , lS diag S I S I= , 1 T T
1 1 1 1 12 1 12, , l

l l l lZ diag H Y C H Y Cε ε⎡ ⎤= Π Π⎣ ⎦  
2 T T T 1 T T T T T

12 12 112i i i
i i i i i i i i i i i i i i i i iC Y C S BFR F B S C C A S S Aε ε−Σ = Π Π + + Π + + , 1, ,i l= . 

It is obvious that if 0Ξ < , then ( ( )) 0W x t <  and 0V < , so the 
asymptotical stability of the closed-loop system of system (19) 
is realized. Pre- and post-multiplying both sides of inequality 
(34) by 1 1 1diag[ ]P P S− − − , we have  

T 1 T T
1 1

T
1

T
1 33

2
0 0

0

XA AX BR B H V A X V
XA V
V

−⎡ ⎤+ − + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥Θ⎣ ⎦

 

where, 1V XP X= , 1 13V X Sφ= , 1S S −= , T
33 33S SφΘ = . 

Rearranging (32) and calculating the integral, as well as 
considering the initial conditions of system, yields 

* *

0T T T
1

1 1
min max ( , ) (0) (0) (0) (0) ( ) ( )

i

l l

i i i i du p i i
J u p x Px x S x P dφ θ φ θ θ

−
= =

≤ + +∑ ∑ ∫  

IV. NUMERICAL SIMULATIONS 
Since the existence conditions of optimal controller in the 

form of LMI for static structure time-delay systems are 
presented in section 3, the unknown parameters are easy to 
obtain with LMI tool-box.  

In order to confirm the results in this paper, the simulation 
is given based on Theorem 2. The parameter matrices of the 
considered system are represented by 

1 0
10 1

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0.1 0
1 0.1

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

1
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

[ ]1 1C = , 1 0
0 1

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0.1D = , 0.1R =  

Take 15α = − and 1d = , we can obtain the solutions P and S  
with the LMI tool-box in MATLAB. 

3837



 
 

 

 

2.1021 0.5953
0.5953 0.6680

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  0.1503 0.0074
0.0074 0.1463

S
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

Then we can get the minimax state feedback gain 
[ ]1.0280 1.0136K = − − , 

In comparison with the H∞ control in [15], the state response 
of the closed-loop system is shown in Fig. 1 and Fig. 2, where 

( ) sin( ( ))p t q t= . From the two figures, we can confirm that the 
designed controller can shorten the state attenuation time of 
the closed-loop system effectively. 
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Fig.1. The state response of H∞ control when 15α = −  

0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

time(sec)

x

x1
x2

 
Fig.2. The state response of minimax control when 15α = −  

At the same time, the minima upper bound of performance 
cost can be obtained with mincx tool-box as * 2.7701J = . If 
taking 30α = − , the state response of the closed-loop system is 
shown in Fig. 3.  
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Fig.3. The state response of minimax control when 30α = −  

From Fig. 3, we can see that the state attenuation time of the 
closed-loop system is not shortened with the reduction of α . 

V. CONCLUSION 
The minimax controller is design for time-delay systems of 

which the uncertainties satisfy the static and dynamical IQC 
respectively. The asymptotical stability of the closed-loop 
system and the minima upper bound existence of perfor- 
mance cost can be completed with the designed method. The 
existence conditions in the form of LMI are presented for the 
static condition based on the multiplicative time quadratic 
performance cost. The presented controller simplizes the 
solution process and shortens the state attenuation time of the 
closed-loop system effectively. Based on the dynamical IQC, 
the existence conditions of the matrix inequality controller are 
presented. It will be the further research on the transform- 
ation to the linear matrix inequality. 
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