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Abstract— A model free auto tuning algorithm is developed
by using Simultaneous Perturbation Stochastic Approximation
(SPSA). For such a method, plant models are not required.
A set of closed loop experiments are conducted to generate
data for an online optimization procedure. The optimum of the
parameters of the restricted structured controllers will be found
via SPSA algorithm. Compared to the conventional gradient
approximation methods, SPSA only needs the small number
of measurement of the cost function. It will be beneficial to
application with high dimensional parameters. In the paper,
a cost function is formulated to directly reflect the control
performances widely used in industry, like overshoot, settling
time and integral of absolute error. Therefore, the proposed
auto tuning method will naturally lead to the desired closed
loop performance. A case study of auto tuning of spool
position control in a twin spool two stage valve is conducted.
Both simulation and experimental study in TI C2000 target
demonstrate effectiveness of the algorithm.

I. INTRODUCTION

Automatic tuning of PID controllers have been one of

the active research areas for decades. Automatic tuning

makes it possible to automatically generate gain schedules.

The design methods of automatic tuning can be classi-

fied into three categories (1) feature based techniques; (2)

analytical methods; and (3) optimization [1]. The feature

based automatic tuning includes Ziegler-Nichols methods,

and its families with further modification [2]. In time domain,

Ziegler-Nichols methods can directly provide the gains based

on the dominant dead time and the dominant time constant

of the step response. In the frequency domain, the ultimate

gain and ultimate frequency will directly offer the PID

gains through the tuning formula [2]. However, it is well

known that Ziegler-Nichols design criterion gives an under-

damped system performance, which is undesirable for many

cases. When it comes to analytical methods, we have pole-

placement analysis, Internal Model Controller (IMC), and

so on. Analytical method can provide the predictable perfor-

mance if the dynamics of open loop system are known. For

optimization based methods, Modulus Optimum (BO) and

Symmetrical Optimum (SO) are the most often used methods

in frequency domain. They attempt to obtain the optimal

loop transfer function, from which the desired controller is

constructed.

As aforementioned, most of available auto-tuning methods

need plant models. Nevertheless, plant models are sometimes

difficult/expensive to obtain. A first principle based model

usually needs a lot of effort to develop and to validate; while

a detailed empirical model requires a large amount of data

from the process. In addition, variation of dynamics from

Q. Yuan is with Eaton Corp. Innovation Center, Eden Prairie, MN 55344,
USA (email: QinghuiYuan@eaton.com).

one component to another due to manufacturing tolerance

makes it difficult to apply an identical plant model to

different instances. Therefore, an online model free tuning

methods will be of significant interest in industry. For such

a method, plant models will not be required. A set of specific

closed loop experiments, involving both the actual unknown

plant and the proposed controller, are conducted to generate

data for use in an online optimization procedure. A cost

function will be defined in association with the closed loop

performance. The online optimization will locate the optimal

values of the corresponding parameters of the controller. The

model free auto tuning approach is suitable for restricted

structure controller whose structure and parameters have

been predefined. Such a controller could be linear, like

phase-lead, phase-lag or PID controllers [3, Chapter 3], or

nonlinear.

For model free optimization based auto-tuning algorithm,

the critical part is the recursive search algorithm. In industry,

computation capability of embedded electronics is usually

limited due to cost constraints. However, the fast convergence

of the algorithm is preferred in order to improve productivity

and reduce downtime. Some typical optimization algorithms,

like Newton-Raphson and Steepest Descent, will be effective

if good gradient information is available. In many cases, the

gradient is not given and can only be approximated. For those

methods like finite difference equations, the larger number

of gain perturbations and system response generation are

needed. There have been some efforts of generating gradient

with less computation. For example, Controller Parameter

Cycling Tuning [Page. 128] [3] uses trigonometric function

orthogonality to extract gradient and Hessian information.

The gradient can be obtained via sine gain perturbation -

sine extraction, while the Hessian matrix can be calculated

via sine gain perturbation - cosine extraction. However, the

problem is that the number of measurement of the cost

function will dramatically increases as the dimension of

parameters expands.

In this paper, we will adopt Simultaneous Perturbation

Stochastic Approximation (SPSA) into auto-tuning algo-

rithm. SPSA is a unique optimization method that can

efficiently approximate gradient via the cost function mea-

surement. The benefit of SPSA is that the number of mea-

surement of the cost function is independent of the dimension

of the parameters. In other words, this method is especially

efficient in high dimensional problems. A good solution can

be offered by for a small number of measurement of the cost

function.

The rest of the paper will be organized as follows: In

section II, the diagram of auto-tuning algorithm is intro-

duced. The details of cost function formulation and the
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Fig. 1. The diagram of the auto-tuning algorithm, in which Gcl(s) is the
desired closed loop system transfer function, P (s) is the actual (nonlinear)
plant, C(θ) is the parametric controller where θ is the control parameters,
ym is the measured output, and ymod is the output from the reference
model Gcl(s).

SPSA algorithm is presented, and auto tuning procedure is

developed. In Section III, the case study of automatic tuning

of spool position controller of an Electro-Hydraulic valve

is conducted, both in simulation and experimentally. The

concluding remarks are included in Section IV.

II. AUTOMATIC TUNING ALGORITHM FOR A RESTRICTED

STRUCTURED CONTROLLER

The diagram of the auto-tuning algorithm is illustrated in

Fig. 1, where P (s) is the plant, C(θ) is a restricted structured

controller that consists of the time invariant parameters θ ∈
Rp where p is the dimension of the parameters, and Gcl(s)
is a reference model Gcl(s) representing a desired transfer

function from the set point to the output. For simplicity, it

will usually a low order approximation.

Auto-Tuning Algorithm is located in the upper part of the

diagram. It continuously takes the outputs from the actual

plants and the reference models. The search algorithm is

used to recursively update the parameters in order to reduce

the cost function. The cost function can be selected to reflect

the error between the reference model output and the actual

output.

The time domain based method is adopted due to its easier

use and less complexity compared to the frequency domain

based method [4]. Among available time based methods,

step response is very effective. Note that the closed loop

step response method described here is different from the

conventional ones. In [1], for example, step response of the

plant is introduced, system ID is used to estimate the model,

and then the gains of the controller can be set based on the

obtained plant model. By contrast, what to be addressed is

the closed loop step response. In Fig. 1, it is the set point yd,

instead of control command u, that will be step trajectory.

The ultimate goal is to find the optimal gain θ such that ym

approaches to ymod. Such a method may even be applied to

the plant that is open loop unstable.

In this section, the cost function of the auto tuning problem

is formulated to directly reflect the control performance specs

widely used in industry. Then, the conventional SPSA, as

well as its modified version in order to enhance convergence,
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Fig. 2. Step response profile and Discrete Distributed (DD) cost function.

is presented. Finally, SPSA based automatic tuning procedure

is introduced.

A. Discrete Distributed (DD) Cost Function

In any control system design, the performances like set-

tling time, overshoot, and integral of the absolute error, are

of prime importance. It would be very useful if auto tuning

process can directly help to achieve the performance goals. A

cost function needs to be formulated to capture the associated

performance.

These specs are related to the full cycle of the step profile.

Therefore, should a cost function be constructed to reflect

these specs, it can only be evaluated after all the information

for a period have been collected. In other words, for a

periodic step response, cost functions will be evaluated in the

end of each period, as illustrated in Fig. 2. A cost function

is defined as

L(θ, n) = w1

∫ (n+1)T

nT

‖ym(θ) − ymod‖dt

+w2‖OS(ym(θ), n) − OSd‖ + w3‖ST (ym(θ), n) − STd‖
(1)

in which L(θ, n) is a cost function for a given parameter θ in

the time span t ∈ [nT, (n+1)T ) where n = 1, 2, · · · and T is

the period of the step profile. ym is the measurement, ymod is

the output of the reference model, OS(x, n) : {Rz, R} → R
is the mapping of the trajectory x ∈ Rz to the overshoot in

the time span t ∈ [nT, (n + 1)T ), OSd ∈ R is the desired

overshoot, ST (x, n) : {Rz, R} → R is the mapping of the

trajectory x ∈ Rz to the settling time in the time span t ∈
[nT, (n + 1)T ), and STd ∈ R is the desired settling time,

wi > 0 for i = 1, 2, 3 are the weighting functions for integral

of the absolute error, overshoot and setting time.

The cost function in Eq. (1) is unique due to its dis-

creteness and distributiveness. Firstly, the cost function is

evaluated in the end of each step response cycle. Such

a process is a discrete event with the frequency of 1/T .

Secondly, given a set of parameters, one cycle is needed to

evaluate a cost function. For more than one cost function,

they have to be distributed and evaluated in multiple cycles.

In Fig. 2, for example, two cost functions, L(θn−1, ·) and

L(θn, ·), are evaluated at (n − 1)T and nT , respectively.
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The tuning process can be formulated as an optimization

problem:

θ∗ = arg min
θ

L(θ, n) (2)

where θ∗ is the optimal parameters that minimize the cost

function for all n.

B. Conventional Simultaneous Perturbation Stochastic Ap-

proximation (SPSA)

For such an optimization problem, the search algorithm

is key. Note that many popular algorithms, like Newton-

Raphson and Steepest Descent, cannot be used directly since

the gradient information is unavailable. We have to resort on

the gradient approximation. In [5], the comparative study has

been conducted for various gradient approximation methods.

It has been found that Simultaneous Perturbation Stochas-

tic Approximation (SPSA) is the preferable algorithm than

the standard finite difference SA (FDSA) and the random

direction SA (RDSA).

The generic recursive SA procedure is [6]

θ̂k+1 = θ̂k − akĝ(θ̂k) (3)

where θ̂k ∈ Rp is an approximate of the solution θ∗ at kth

step of recursion, {ak} is a sequence of positive scalars tat

approaches zero gradually, ĝ(·) ∈ Rp is an approximation of

the gradient g(·), and k = 1, 2, 3, · · · counts the iterations of

the algorithm.

In general, the SPSA gradient approximation for g(θ̂k) is

ĝ(θ̂k) =













L(θ̂k+ck∆k,·)−L(θ̂k−ck∆k,·)
2ck∆k1

L(θ̂k+ck∆k,·)−L(θ̂k−ck∆k,·)
2ck∆k2

· · ·
L(θ̂k+ck∆k,·)−L(θ̂k−ck∆k,·)

2ck∆kp













(4)

where {ck} is a sequence of positive scalars, ∆k ∈ Rp is a

vector with Bernoulli distribution at the kth step of iteration

where ∆ki for i = 1, 2, · · · , p is the ith component of ∆k,

L(·, ·) is the cost function (1).

Note that the the gradient approximation from the standard

finite difference approximation is proportional to the number

of the parameters. For high dimensional parameters, the

evaluation of the objective function will be costly. Since

each cost function need one full cycle of step response,

tuning process could be time consuming. By contrast for

the conventional SPSA, only two measurements of the cost

functions, L(θ̂k +ck∆k, ·) and L(θ̂k −ck∆k, ·), are required

[7] [8].

C. Modified SPSA

1) Normalization for Bernoulli distribution: In order to

balance the convergence in all parameter dimensions , we

have to normalize the Bernoulli distribution with respect to

the range of parameters. The probability mass function for

∆ki, each element of ∆k := [∆k1, ∆k2, · · · , ∆kp]
T , is given

by

f∆i
(x) =







0.5 x = 0.5δ(θ̄i − θi)
0.5 x = −0.5δ(θ̄i − θi)
0 otherwise

(5)

where 0 < δ < 1 is a scalar determining the update ratio,

and θi and θ̄i are the lower bound and upper bound of each

element of θ, respectively, with θi ≤ θi ≤ θ̄i.

2) Convergence consideration: SPSA has the first order

version and the second order version. For the second order

SPSA, the similar technique used to approximate the gradient

can be extended for evaluation of Hessian Matrix. The

second order SPSA converges faster, and the first order SPSA

will slow down the convergence rate once an optimum is

approached. In our application, we would like to use the

first order SPSA aforementioned due to its simplicity, and

find a way to improve its convergence rate.

The following enhancements has been considered to speed

convergence and to increase algorithm stability.

• Iteration rejection for overaggressive update

θ̂k = IR1(θ̂k−1, θ̂k) :=

{

θ̂k−1 if ‖θ̂k − θ̂k−1‖ > M1

θ̂k otherwise

(6)

where IR1(·) is a function reflecting iteration rejection

for overaggressive update, M1 > 0 is a large scalar.

• Iteration rejection based on cost function comparison

For the typical SPSA algorithm, each iteration k needs

two evaluation of the cost functions L(θ̂k + ck∆k, ·),
L(θ̂k − ck∆k, ·). It has been suggested in [7] that the

third evaluation is added on L(θ̂k, ·). For the extra

cost function evaluation, the benefit would be directly

comparison of the cost function between the adjacent

cost functions on θ̂k and θ̂k−1.

θ̂k = IR2[θ̂k−1, L(θ̂k−1, ·), L(θ̂k, ·)]

:=

{

θ̂k−1 if L(θ̂k, ·) − L(θ̂k−1, ·) > M2

θ̂k otherwise
(7)

where IR2(·) is a function reflecting iteration rejection

based on cost function comparison, M2 > 0 is a large

scalar.

D. Automatic Tuning Procedure

Considering discreteness and distributiveness of the cost

function, the overall automatic tuning procedure is proposed

as follows:

1) Initialization at t = 0.

k = 1

θ̂0 = 0.5(θ + θ̄)

θ̂1 = 0.5(θ + θ̄)

LO
0 := L(θ̂0, ·) = M3

θn = θ̂1 + c1∆1 (8)

where M3 > 0, θn is the parameter for the next period.

In other words, the controller will be in the form of

C(θn) for the next period.
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Fig. 3. Auto tuning procedure. The values of the parameters in each step

cycle are shown in the top of the profile. Three cycles are needed for θ̂k

iteration.

2) At t = (3k − 2)T ,

Evaluate the cost function L+
k = L(θn, 3k − 2).

Update the parameter for the next cycle evaluation

θn = θ̂k − ck∆k.

3) At t = (3k − 1)T
Evaluate the cost function L−

k = L(θn, 3k − 1).
Update the parameter for the next cycle evaluation

θn = θ̂k.

4) At t = 3kT

a) Evaluate the cost function LO
k = L(θn, 3k)

b) Check iteration rejections in Eq. (6) (7). Or,

evaluate θ̂k = IR1(θ̂k−1, θ̂k) and θ̂k =
IR2(θ̂k−1, L

O
k−1, L

O
k ).

c) Update ak, ck.

d) Generate ∆k with probability distribution in Eq.

(5).

e) The gradient approximate is rewritten from Eq.

(4)

ĝ(θ̂k) =
[

L
+

k
−L

−

k

2ck∆k1

L
+

k
−L

−

k

2ck∆k2
· · ·

L
+

k
−L

−

k

2ck∆kp

]T

(9)

Note that a variant of gradient approximation

method [7] can be easily integrated for smooth-

ness.

f) Update the parameter vector θ̂k via

θ̂k+1 = θ̂k − akĝ(θ̂k) (10)

g) Update iteration index k = k+1. If k > N where

N > 0 is a scalar, the procedure stops.

h) Check boundary constraints. For θ̂ki, each ele-

ment of θ̂k , constrain the update within the bound

via

θ̂ki =







θi if θ̂ki < θi

θ̄i if θ̂ki > θ̄i

θ̂ki otherwise

(11)

for i = 1, 2, · · · , p.

i) Update parameter for the next cycle evaluation

θn = θ̂k + ck∆k.

j) Go to 2)

Since we add the third evaluation of the cost function to

improve convergence rate and stability, 3T is the minimal

time required for iteration procedure 2) − 4), as illustrated

in Fig. 3.

Fig. 4. The cross section of Ultronics valve (Courtesy of Eaton Corp.) 1-
main stage valve block, 2 - independent spool for metering, 3 - pilot valve,
4 - voice coil actuator, 5 - centering spring, 6 - pilot spool, 7 - LVDT
position sensor, 8 - thin film pressure sensor, 9 - microcontroller [10].

It is worth mentioning that the procedure in 4) is more

computation intensive than 1), 2) or 3). However, the task

can be divided and executed in more than one sampling loop.

The error will be negligible since the sampling rate is much

higher than the step response frequency.

III. CASE STUDY

In this section, an Electrohydraulic system is targeted to

apply the modified SPSA based auto tuning algorithm. In this

case study, we select a twin spool two stage valve (Ultronics,

Eaton Corp., US) as the platform. The Ultronics valve system

is an advanced electro-hydraulic control valve. It has the

unique two-stage twin spool configuration. Unlike its tradi-

tional predecessors, the Ultronics valve system combines the

flexibility of software along with its independent metering

spools technology to give the complete control over the

machines hydraulic equipment. Ultronics are used in mobile

applications in construction, forestry, agriculture, and other

markets [9] [10].

The schematic of an Ultronics flow control valve is

illustrated in Fig. 4. The sensors are embedded inside

the valve so that the valve port pressures and the main

stage spool position can be measured. Therefore, the closed

loop control algorithm can be loaded into the embedded

electronics to achieve a variety of control objectives, like

pressure/flow/position regulation. Many extra advanced fea-

tures in the vehicle level application can even be possible.

However, ability to control the main stage spool position

is key for all other functionalities. In this case study, we

will consider a restricted structured controller for position

regulation.

The first principle full order valve model is highly non-

linear. The detailed description of modeling of such a twin

spool two stage valves can be seen in our previous work [11].

However, based on the assumption that the pilot stage has

faster response compared to the main stage, we can get the

reduced order linear system approximation. Simple analysis

shows that the control command is positive associated with

the main stage spool velocity. A velocity feedforward PI

controller [12] can be selected for trajectory tracking of spool
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position.

u = Kd

d

dt
yd + Kp(yd − ym) + Ki

∫

(yd − ym)dt (12)

where yd is the desired position, ym is the actual main

stage spool position, u is the current through the voice coil

actuator, as can be seen in Fig. 1. The selected controller

falls into the category of a restricted structured controller

C(θ) with the parameters θ =
[

Kd Kp Ki

]T
.

As aforementioned, for this time domain based auto tuning

algorithm, we will use the periodic step response. In the

case study, we particularly customize the step profile during

the portion of the steady state range to emphasize tracking

(minimizing integral of absolute error). A mathematic repre-

sentation of such a profile is given by

yd =







Ad + Od, tm ∈ [0, 0.5dT );
Ad + Od + As sin(ωst + φs), tm ∈ [0.5dT, dT );
Od, tm ∈ [dT, T )

(13)

where Ad Od are the amplitude and the offset of the step

profile, respectively, As, ωs and φs are the amplitude, the

frequency, and the phase of the sinusoidal signal, d is the

duty ratio, T is the period of the step profile, and tm :=
mod(t, T ).

A. Simulation study

The physical model of the Ultronics valve is developed in

Matlab/Simulink (Mathworks, US). The proposed restricted

structured controller in Eq. (12) is implemented to regulate

the plant model.

Monte Carlo simulation is conducted in terms of various

combination of controller gains. As can be seen in Fig. 5 6,

we exhaustively visit the possible combination for Kd, Kp

and Ki. Each period of the step profile corresponds to a set

of control gains. For instance, the plot in the most upper left

corner of Fig. 5 contains eight step cycles. The first cycle

corresponds to a set of gains {Kd = 0.5,Kp = 0.02,Ki =
0.45}, and the second one refers to {Kd = 0.5,Kp =
0.02,Ki = 1.32}, and so on. In Figs. 5 6, Kp values increase

from top to bottom on the left side, and then from top to

bottom on the right side. Ki values monotonically increase

from left to right in each plot.

Several observations from Monte Carlo analysis in Figs.

5 6:

• Larger Ki causes greater natural frequency and smaller

damping ratio, as can be seen in each plot in Fig. 5 6.

This is consistent with the closed loop transfer function

analysis.

• As Kp increases, the overall performance is getting

improved. However, if Kp is larger than 0.15, the

performance starts to get degraded dramatically.

• Given Kp, the larger Ki induces the larger overshoot.

On the other hand, it is not clear for the relationship

between the overshoot and Kp.

• Kd plays a role on determining optimal solution.

Compared to the case with Kd = 0.5, the optimal

solution for Kd = 1.5 shifts from the larger gains
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Fig. 5. The main stage spool trajectory for various control gains. Kd = 0.5.

(Kp = 0.14,Ki = 1.7) to the smaller ones (Kp =
0.095,Ki = 1.4). This can be explained by the fact that

the feedforward term contributes more to the control

command as Kd increases. The consequence is that the

optimal proportional and integral gain will be reduced.

Next, convexity of the optimization problem is investi-

gated. If this is not a convex problem, then there is no

guarantee that the solution will be global optimal. Based

the collected data in Figs. 5 6, we represent the results in

a contour format in Fig. 7. The figure shows that for each

Kd, it is a convex problem in the search domain. It may

not preserve its convexity in the entire feasible domain since

not all possible solutions are exhaustively investigated. In

practice, however, it implies that we will be solving a convex

problem for an appropriately defined domain. The above

analysis ensures the convergence of the SPSA auto-tuning

algorithm.

The auto-tuning algorithm is implemented in Stateflow

(Mathworks, US). The diagram is illustrated in Fig. 1. We

can define a second order system Gcl(s) =
ω2

d

s2+2ζdωds+ω2
d

where ζd and ωd are the desired damping ratio and natural

freqency. The auto-tuning process follows the description in

Section II-C. Based on the empirical experience, the auto-

tuning domains can be roughly specified as Kd ∈ [Kd, Kd],
Kp ∈ [Kp,Kp], and Ki ∈ [Ki,Ki].

The parameters used in the auto tuning method are given

as follows: Kd = 0.01, Kd = 1.75, Kp = 0.01, Kp = 0.375,
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Fig. 6. The main stage spool trajectory for various control gains. Kd is
fixed to be 1.5.

Ki = 0.01, Ki = 1.5, ak = (1 + k)−0.5, ck = 0.125(1 +
k)−0.5, M1 = 1, M2 = 0.1, M3 = 10, δ = 1, w1 = 0.5,

w2 = 0.3, w3 = 0.2.

In the auto tuning process, θ̂k is iterated as illustrated

in Fig. 8. Note that its iteration rate is 4.5 [sec]. This is

consistent with the fact that the iteration period of SPSA

tuning will be three times of that of the step profiles (see

Section II-C) with T = 1.5 [sec]. The convergence rate is

relatively fast. After 10 iterations (at t = 45 [sec]) , the gains

are already very close to the final solution. The optimal gains

from the SPSA algorithm is {Kd = 1.4,Kp = 0.1,Ki =
1.25}.

The performance index (cost function) has been optimized

during auto-tuning process. In Fig. 9, the desired and actual

main stage spool positions are illustrated. The left plot shows

those in the beginning of auto-tuning; while the right one is

the profiles in the end of auto-tuning. The performance has

been significantly improved.

It is worth mentioning that instability may occur during

auto tuning process for a certain combination of parameter

values. In order to protect the system under test, it will be

useful to include the mechanism for instability detection and

suppression. In the left plot in Fig. 9, vibration occurs at

t = 6 [sec]. Instability has been detected at t = 6.05 [sec],

and eliminated by resetting the parameter values.
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Fig. 10. Experimental setup of the twin spool two stage valve.

0 2 4 6 8 10
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time [sec]

S
p

o
o

l 
p

o
s
it
io

n
 [

µ
m

]

Desired Spool position

Actual Spool position

Fig. 11. The tracking performance of the auto-tuned restricted structured
controller for the 0.5 [Hz] sinusoidal signal.

B. Experimental Study

The proposed auto-tuning algorithm has been validated

experimentally. The experimental setup is illustrated in Fig.

10. TI C2000 series (TI, US) is selected as target [13].

Target TI C2000 Toolbox (Mathworks, US) is integrated with

TI code composer studio for code generation, compiling,

linking, and downloading. TI JTAG emulator is used for

control and monitoring the signals, shown as a black block

in Fig. 10.

In the study, we turn on auto-tuning for two minutes. After

the SPSA algorithm stops, the tuned optimal gains will be

automatically saved. The velocity feedforward PI controller

is with the tuned gains Kd = 0.215, Kp = 0.047,Ki =
0.08. Note that the gains from the experimental study is

different from those from simulation. The reason is that

for the quite complex plant model, not all the parameters

are precisely calibrated. Variation of the actual plant from

model causes different tuning results. In addition, the tuning

results for one individual valve are different from another

in experimental study, since manufacturing tolerance will

introduce the slightly different dynamic behavior. The level

of gain variation depends on the level of variation of electro-

hydro-mechanical property.

The position control is tested for the auto-tuned velocity

feedforward PI controller. Without loss of generality, a

sinusoidal signal with 0.5 [Hz] frequency and 3000 [µm]

amplitude is set to be the tracking objective. As shown in

Fig. 11, the actual position tracks the desired position quite

well for the auto tuned parameter values of the controller.

Note that the tracking performance is disturbed around ym =
−100 [µm]. This is caused by nonlinear behaviors of the

mechanical system that are not considered by the selected

restricted structured controller.

IV. CONCLUSION

In the paper, a model free auto tuning algorithm for

restricted structured controllers is developed. A unique dis-

crete distributed (DD) cost function is defined so that the

auto tuning can directly reflect some typical performance

requirements in industry, like integral of absolute error, over-

shoot and settling time. In addition, the industrial solution

needs fast convergence even with the limited computation

capability. In the paper, Simultaneous Perturbation Stochastic

Approximation (SPSA) technology is utilized to optimize

the parameters. The benefit of this approaches is that only

three measurement of the cost function are needed inde-

pendent the dimension of the parameters. It is especially

efficient for high dimensional problem. The modification of

SPSA in terms of Normalization of Bernoulli distribution,

and iteration rejection has been made in order to improve

convergence stability and rate. A case study of auto tuning

of a twin spool two stage valve is conducted. The simulation

study verifies that the Modified SPSA is effective to locate

the optimal parameters of the proposed restricted structured

controller. The algorithm has also been implemented in TI

C2000 embedded target. The experimental study shows that

the auto-tuning process can be successfully executed in the

target. The controller with the tuned gains provides a good

tracking performance.
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