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Abstract— In this paper, stochastic stability for discrete-time
singular systems with Markov jump parameters is addressed.
We present a set of coupled generalised Lyapunov equations
(CGLEs) that serves as a necessary and sufficient condition for
stochastic stability. A method for solving the obtained CGLEs is
also presented, based on iterations of usual descriptor Lyapunov
equations. An illustrative example is included.

I. INTRODUCTION

Very recently, singular systems with Markovian jumping
parameters have received attention in the literature [15], [19],
[20]. The interest in these systems is motivated by the fact
that they are sufficiently specialised to yield strong results
and, simultaneously, provide useful models for applications
as it comprises both the singular (also called descriptor) sys-
tems and the systems with Markovian jumping parameters.
Singular systems applications include aircraft modeling [18],
chemical processes [9], circuit systems [13], [14], economic
systems [11], large-scale interconnected systems [10], [17],
mechanical engineering systems [6], power systems [16], and
robotics [12]. Markov jump systems are becoming more and
more popular due to their capability to describe dynamic
behavior of systems with abrupt changes in their structures.
For applications modeled by Markov jump systems, see [1],
[4] and the references therein.

In this paper, a Lyapunov-type analysis of discrete-
time singular linear systems with Markov jump parameters
(SLSMJP) is developed in order to check stochastic stability.
The set of coupled generalised Lyapunov equations (CGLEs)
developed in this paper, and its respective solution, extend
the results presented in [7] and [8] for conventional singular
systems, and the results presented in [2] for conventional
linear systems with Markov jump parameters (LSMJP). For
computation solution of the proposed CGLE, a recursive
algorithm is proposed. The algorithm has the nice property
that, if a sequence generated by the recursion converges,
then it converges to a solution of the CGLE, whenever
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it exists, disregarding stability or any other condition. For
the interested reader in tests methods for solving coupled
algebraic Riccati equations that are available in the literature
for Markov jump linear systems, we can refer [3] and [5].

The paper is organized as follows. In Section II we present
the notation. The problem statement and previous concepts
are presented in Section III. The coupled generalized Lya-
punov equation is addressed in Section IV. An algorithm for
solving the CGLE is presented and studied in Section V. In
Section VI, a numerical example is presented.

II. NOTATION

Let Rn be the Euclidean linear space formed by all n-
vectors. Let Rr,n (respectively, Rr) represented the normed
linear space formed by all r× n real matrices (respectively,
r × r) and Rr0 (Rr+) the closed convex cone {U ∈ Rr :
U = U ′ ≥ 0}, (the open cone {U ∈ Rr : U = U ′ > 0}),
where U ′ denotes the transpose of U ; U ≥ V (U > V )
signifies that U − V ∈ Rr0 (U − V ∈ Rr+). For U ∈ Rn0,
σ(U) stands for the maximal eigenvalue of U . Let Mr,n

denote the linear space formed by a number N of matrices
such that Mr,n = {U = (U1, . . . , UN ) : Ui ∈ Rr,n, i =
1, . . . , N}; also, Mr ≡ Mr,r. We denote by Mr0 (Mr+)
the set Mr when it is made up of Ui ∈ Rr0 (Ui ∈ Rr+)
for all i = 1, . . . , N . For U ∈ Mn0, we define ||U || =
max0≤i≤N σ(Ui), and we denote as Ui(j, l) the j, l-element
of matrix Ui.

We define the operators L : Mn0 → Mn0, L̄ : Mn0 →
Mn0 and L̃ : Mn0 → Mn0 as follows:

Li(U) =
N∑

j=1

pijUj ;

L̄i(U) =
N∑

j 6=i

pijUj ;

(1)

for i = 1, . . . , N .

Remark 1: The operator L is monotonically increasing in
the positive semidefinite sense, i.e., for matrices U , V ∈
Mn0,

L(V ) ≤ L(U) whenever V ≤ U. (2)

III. PROBLEM STATEMENT AND PREVIOUS
CONCEPTS

We consider the discrete-time SLSMJP, described by
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Φ :

{
Eθ(k+1)x(k + 1) = Aθ(k)x(k), k = 0, 1, . . .

x(0) = x0, θ(0) = θ0

(3)

where x ∈ Rn is the state variable, θ is the state of an
underlying discrete-time homogeneous Markov chain Θ =
{θ(k); k ≥ 0} having N = {1, . . . , N} as state space
and P = [pij ], i, j = 1, . . . , N as the transition matrix.
The system is defined in a fundamental probability space
(Ω,F, P). Matrices Ai, Ei ∈ Rn, i = 1, . . . , N , belong to
the collections of N real constant matrix: A = (A1, . . . , AN )
and E = (E1, . . . , EN ) may be singular, with rank(Ei) =
rEi

≤ n.

Definition 1: A matrix V is stable if and only if all its
eigenvalues have magnitude less than 1.

The following notion is standard for stochastic systems,
and have been considered in the literature of singular systems
as well, see e.g. [19].

Definition 2: The discrete SLSMJP in (3) is said to be
stochastically stable (SS) if there exist a scalar M(x0, θ0) >
0 such that

lim
N→∞

E

{
N∑

k=0

||x(k, x0, θ0)||2
∣∣∣x0, θ0

}
≤ M(x0, θ0) (4)

where x(k, x0, θ0) denotes the solution to the System Φ at
time k under the initial conditions x0 and θ0.

IV. COUPLED GENERALIZED LYAPUNOV EQUATION

Let x = {x(k)}∞k=0 be a solution to the System Φ.
Consider the following Lyapunov function candidate

V (x(k), θ(k)) := x′(k)E′θ(k)Xθ(k)Eθ(k)x(k) ≥ 0 (5)

where Xi ≥ 0 for θ(k) = i, i = 1, . . . , N . Then, for a set
of matrices Xi = X ′

i ≥ 0, Xi ∈ Rn, Ri ∈ R(n−r), n, and
W ∈ Mn0 we define the following CGLEs as follows

A′i

 N∑
j=1

pijXj

Ai + A′i

 N∑
j=1

pijĒj

Ri

+ R′i

 N∑
j=1

pijĒ
′
j

Ai − E′iXiEi + Wi = 0.

(6)

for i = 1, . . . , N , where Ei, Ai ∈ Rn, and Ēi ∈ Rn, (n−r)

is a full column rank matrix such that E′iĒi = 0 and r =
rank(Ei). With these assumptions, we are in position to state
the following theorem

Theorem 1: The System Φ is stochastically stable if and
only if for Wi ∈ Rn0 there exist solutions E′iXiEi ≥ 0 and
Ri, i = 1, . . . , N , to the CGLEs in (6).

Proof: (Necessity). Consider the sequence qT (k, x, i),
k ≥ 0, defined by

qT (k, x, i) :=E

{
k+T∑
t=k

x′(t)Wθ(t)x(t)
∣∣x(k) = x,

θ(k) = i

}
.

(7)

We can show that there exist Xi(T ), i = 1, . . . , N , T ≥ 0,
satisfying

x(k) E′iXi(T )Ei x(k) = qT (k, x, i), (8)

for any x ∈ Rn, i = 1, . . . , N , and k ≥ 0. Since Φ is
stochastically stable, we can evaluate

qT (k, x, i) = E

{
k+T∑
t=k

x′(t)Wθ(t)x(t)
∣∣x(k) = x,

θ(k) = i

}

≤ ||W ||E

{
k+T∑
t=k

x′(t)Wθ(t)x(t)
∣∣x(k) = x,

θ(k) = i

}
< ∞,

(9)

Equations (8) and (9) yield

lim
T→∞

x′E′iXi(T )Eix ≤ ∞, (10)

for any x and i = 1, . . . , N , hence

Xi = lim
T→∞

Xi(T ) ∈ Rn.

¿From (7) and (9) we can write

qT (0, x(0), θ(0)) = x′(0)E′θ(0)Xθ(0)(T )Eθ(0)x(0)

= E

{
T∑

t=0

x′(t)Wθ(t)x(t)
∣∣x(0), θ(0)

}
(11)

and
qT−1(1, x(1), θ(1))

= x′(1)E′θ(1)Xθ(1)(T − 1)Eθ(1)x(1)

= x′(1)E′θ(1)Xθ(1)(T − 1)Eθ(1)x(1)

+ x′(1)E′θ(1)Ēθ(1)Rθ(0)x(0)

+ x′(0)R′θ(0)Ē
′
θ(1)Eθ(1)x(1)

= E

{
T∑

t=1

x′(t)Wθ(t)x(t)
∣∣x(1), θ(1)

}
.

(12)

By subtracting (12) from (11), we have that

x′(1)E′θ(1)Xθ(1)(T − 1)Eθ(1)x(1)

+ x′(1)E′θ(1)Ēθ(1)Rθ(0)x(0)

+ x′(0)R′θ(0)Ē
′
θ(1)Eθ(1)x(1)

− x′(0)E′θ(0)Xθ(0)(T )Eθ(1)x(1)

= −E
{

x′(0)Wθ(0)x(0)
∣∣∣x(0), θ(0)

}
(13)
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and taking the expectation in (13) yelds

E

{
x′(0)

[
A′θ(0)Xθ(1)(T − 1)Aθ(0)

+ A′θ(0)Ēθ(1)Rθ(0) + R′θ(0)Ē
′
θ(1)Aθ(0)

− E′θ(0)Xθ(0)(T )Eθ(0)

]
x(0)

∣∣∣x(0), θ(0) = i

}
= −x′(0)Wix(0),

or equivalently,

x′(0)

[
A′i

N∑
j=1

(pijXj(T − 1))Ai

+ A′i

N∑
j=1

(
pijĒj

)
Ri + R′i

N∑
j=1

(
pijĒ

′
j

)
Ai

− E′iXi(T )Ei

]
x(0) = −x′(0)Wix(0),

(14)

x ∈ R, i ∈ N, which

A′i

N∑
j=1

(pijXj(T − 1))Ai + A′i

N∑
j=1

(
pijĒj

)
Ri

+ R′i

N∑
j=1

(
pijĒ

′
j

)
Ai − E′iXi(T )Ei + Wi = 0

(15)

Finally, we take the limit with T →∞ in (15), leads to

A′i

N∑
j=1

(pijXj) Ai + A′i

N∑
j=1

(
pijĒj

)
Ri

+ R′i

N∑
j=1

(
pijĒ

′
j

)
Ai − E′iXiEi + Wi = 0

(16)

when Wi > 0 for any i = 1, . . . , N ,

A′i

N∑
j=1

(pijXj) Ai + A′i

N∑
j=1

(
pijĒj

)
Ri

+ R′i

N∑
j=1

(
pijĒ

′
j

)
Ai − E′iXiEi < 0

(17)

(Sufficiency). For x0 = 0, we can consider x(k) = 0, k =
0, 1, . . . and so, (4) holds trivially. Therefore, we consider
x0 6= 0 in what follows. We can rewrite (6) equivalently as

A′i

N∑
j=1

(pijXj) Ai + A′i

N∑
j=1

(
pijĒj

)
Ri

+ R′i

N∑
j=1

(
pijĒ

′
j

)
Ai − E′iXiEi + Wi = 0

(18)

where we set stochastic Lyapunov function (5), we can
evaluate Wi = W ′

i > 0 conveniently. For

E
{

V (x(k + 1), θ(k + 1))
∣∣∣x(k) = x, θ(k) = i

}
= E

{
x′(k + 1)E′θ(k+1)Xθ(k+1)Eθ(k+1)x(k + 1)

+ x′(k + 1)E′θ(k+1)Ēθ(k+1)Rix

+ x′R′iĒ
′
θ(k+1)Eθ(k+1)x(k + 1)∣∣∣x(k) = x, θ(k) = i

}
= E

{
x′A′iXθ(k+1)Aix + x′A′iĒθ(k+1)Rix

+ x′R′iĒ
′
θ(k+1)Aix

∣∣∣x(k) = x, θ(k) = i
}

(19)

E
{
V (x(k + 1), θ(k + 1))

∣∣x(k) = x, θ(k) = i
}

= x′A′iE
{
Xθ(k+1)

∣∣x(k) = x, θ(k) = i
}

Aix

+ x′A′iE
{
Ēθ(k+1)

∣∣x(k) = x, θ(k) = i
}

Rix

+ x′R′iE
{

Ē′θ(k+1)

∣∣x(k) = x, θ(k) = i
}

Aix

= x′

A′i

 N∑
j=1

pijXj

Ai

+ A′i

 N∑
j=1

pijĒj

Ri +R′i

 N∑
j=1

pijĒ
′
j

Ai

x,

(20)

consider the function ∆V : Rn ×N → R+ defined by

∆V (x(k) = x, θ(k) = i)
= E

{
V (x(k + 1), θ(k + 1))

∣∣x(k) = x, θ(k) = i
}

− V (x(k) = x, θ(k) = i)

then,

∆V (x(k) = x, θ(k) = i)
= E

{
V (x(k + 1), θ(k + 1))

∣∣x(k) = x, θ(k) = i
}

− V (x(k) = x, θ(k) = i)

= x′

[
A′i

 N∑
j=1

pijXj

Ai + A′i

 N∑
j=1

pijĒj

Ri

+ R′i

 N∑
j=1

pijĒ
′
j

Ai − E′iXiEi

]
x

= −x′Wix.

(21)

We now split the proof in two parts. First, assume x and i
are such that x′E′iXiEix > 0, and consequently V (·) 6= 0.
Defining the scalar

α := 1− min
i=1,...,N

 λmin(Wi)

λmax

(
E′θ(k)Xθ(k)Eθ(k)

)
 (22)
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we have that
E
{
V (θ(k + 1), x(k + 1))

∣∣x(k), θ(k)
}
− V (x(k), θ(k))

V (θ(k), x(k))

= − x′(k)Wix(k)
x′(k)E′θ(k)Xθ(k)Eθ(k)x(k)

≤ α− 1
(23)

Note that, when Wi and Xi are definite positive matrices,
then 0 < α < 1, from (23) we have that

E
{
V (x(k + 1), θ(k + 1))

∣∣x(k), θ(k)
}

V (x(k), θ(k))
≤ α (24)

and from (24) we conclude that

0 < E
{
V (x(k + 1), θ(k + 1))

∣∣x(k), θ(k)
}

≤ α V (x(k), θ(k))
(25)

where 0 < α < 1. Now, for xE′iXiEix = 0, we have that
V (·) = 0 and (25) holds. Employing basic properties of the
operator E{·}, from (25) we obtain with k = 0

E
{
V (x(1), θ(1))

∣∣x(0), θ(0)
}
≤ α V (x(0), θ(0))

and with k = 1
E
{
V (x(2), θ(2))

∣∣x(0), θ(0)
}

= E
{
V (x(2), θ(2))

∣∣x(0), x(1), θ(0), θ(1)
}

≤ α E
{
V
(
x(1), θ(1)

∣∣x(0), θ(0)
)}

yielding

E
{
V (x(2), θ(2))

∣∣x(0), θ(0)
}
≤ α2 V (x(0), θ(0)) . (26)

Similarly as above, for a general k ≥ 0, we have

E
{
V (x(k), θ(k))

∣∣x(0), θ(0)
}
≤ αk V (x(0), θ(0)) (27)

hence,

E

{
T∑

k=0

V (x(k), θ(k))
∣∣x(0), θ(0)

}
= E {V (x(0), θ(0)) + . . .

+V (x(T ), θ(T ))
∣∣x(0), θ(0)

}
= E

{
V (x(0), θ(0))

∣∣x(0), θ(0)
}

+ . . .

+ E
{
V (x(T ), θ(T ))

∣∣x(0), θ(0)
}

≤ V (x(0), θ(0)) + α1 V (x(0), θ(0)) + . . .

+ αT V (x(0), θ(0))

=
(
1 + α1 + α2 + . . . + αT

)
V (x(0), θ(0))

(28)

and we evaluate

lim
T→∞

(
E

{
T∑

k=0

V (x(k), θ(k))
∣∣x(0), θ(0)

})

≤ lim
T→∞

(
1− αT

)
1− α

V (x(0), θ(0))

=
(

1
1− α

)
V (x(0), θ(0))

=
(

1
1− α

)
x′(0)E′θ(0)Xθ(0)Eθ(0)x(0).

(29)

Remember (7), (8), and that by hypotheses Wi = W ′
i >

0, i = 1, . . . , N . Then, we have that

x(k)E′iXi(T )Eix(k)

= E

{
k+T∑
t=k

x′(t)Wθ(t)x(t)
∣∣x, i

}

then, we can evaluate

lim
T→∞

E

{
T∑

k=0

x′(k)x(k)
∣∣x(0), θ(0)

}

≤ lim
T→∞

E

{
T∑

k=0

x′(k)Wθ(k)x(k)
∣∣x(0), θ(0)

}

≤ lim
T→∞

E

{
T∑

k=0

x′(k)E′θ(k)Xθ(k)Eθ(k)x(k)
∣∣x(0), θ(0)

}

= lim
T→∞

E

{
T∑

k=0

V (x(k), θ(k))
∣∣x(0), θ(0)

}

≤
(

1
1− α

x′(0)E′θ(0)Xθ(0)Eθ(0)x(0)
)

:= M(x(0), θ(0))
(30)

Remark 2: It is a straightforward task to check that, when
N = 1, the CGLE given in (6) reduces to the GLE of
standard singular linear systems, see for instance [8]. Note
that, in this situation, P = 1, and we can rewrite (6) as

A′1X1A1 + A′1Ē1R1 + R′1Ē
′
1A1

− E′1X1E1 + W1 = 0.

Remark 3: The following set of coupled generalized Lya-
punov inequality (CGLI) has been considered in [19],

E′iXiEi ≥ 0,

A′i

 N∑
j=1

pijXj

Ai − E′iXiEi < 0.

From the proposed CGLE in this paper, we can further as-
sociate for stochastic stability characterization, an alternative
CGLI described as following

A′i

 N∑
j=1

pijXj

Ai + A′i

 N∑
j=1

pijĒj

Ri

+ R′i

 N∑
j=1

pijĒ
′
j

Ai − E′iXiEi < 0.

(31)

V. AN ALGORITHM FOR SOLVING THE CGLE

In this section we consider a method for solving the
following CGLE. The CGLE consists of a set of CGLs with
unknowns Xi ∈ Rn, i = 1, . . . , N and associated matrices
A1, . . . , AN and similarly E, Ē, R and W , as in (6).
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Note that modifying the CGLEs, adding and subtracting
κipiiA

′
iXiAi, we obtain

κipiiA
′
iXiAi − E′iXiEi + Wi

+ A′i

(1− κi) Xi

N∑
j=1,j 6=i

pijXj

Ai

+ A′i

 N∑
j=1

pijĒj

Ri + R′i

 N∑
j=1

pijĒj

′Ai = 0.

The method for solving the CGLE generates a sequence
X(k) ∈ Mn0, k ≥ 0, as follows:

Step 1. Set X(0) ∈ Mn0 and W ∈ Mn0 as Xi(0) = 0
and Wi = I , i ≥ 1. For each i ∈ N, set κi as the
largest scalar such that the matrix (κipii)1/2Ai is
stable, see Definition 1; if κi > 1 then set κi = 1.
Let k = 1.

Step 2. For each i ∈ N, solve1 the following equality in
the variable Ri(k),

0 = R′i

 N∑
j=1

pijĒ
′
j

Ai + A′i

 N∑
j=1

pijĒj

Ri

+ κipiiA
′
iXi(k − 1)Ai − E′iXi(k − 1)Ei+

+ A′iL̃i(X(k − 1))Ai + Wi

(32)
We define the operator L̃ : Mn0 → Mn0 as follows:
where

L̃i(X) = (1− κi)piiXi + L̄i(X),

for i = 1, . . . , N .
Step 3. For each i ∈ N, solve the following generalized

algebraic Lyapunov equation in the variable X(k),

κipiiA
′
iXi(k)Ai − E′iXi(k)Ei + Q̃i = 0 (33)

where

Q̃i = A′iL̃i(X(k − 1))Ai + Wi

+ A′i

 N∑
j=1

pijĒj

Ri + R′i

 N∑
j=1

pijĒj

′Ai.

Step 4. If X(k) satisfies the stopping criterion (e.g.
‖X(k) − X(k − 1)‖ ≤ ε for some pre-specified
ε), then stop, else set k = k + 1 and go to Step 2.

Theorem 2: If X(k) converges to some X∞ ∈ Mn0 as
k →∞ then X∞ is a solution to the CGLE.

Proof: Assuming that X(k) converges to some X∞ as
k →∞, employing (33) we have that

κipiiA
′
iX∞(k)Ai − E′iX∞(k)Ei + Q̃i = 0 (34)

1Note that (32) forms a set of equations that are linear in the variables
Ri[j, `], which can be easily solved by Gaussian elimination.

where

Q̃i = A′iL̃i(X∞)Ai + Wi

+ A′i

 N∑
j=1

pijĒj

Ri + R′i

 N∑
j=1

pijĒj

′Ai

that satisfies the CGLE in (6).

VI. NUMERICAL EXAMPLE

Example 1: Consider the System Φ for the following
numerical example, with N = 2,

E1 =

1 0 0
0 1 0
0 0 0

 , E2 =

1 0 0
0 0 0
0 1 0

 ,

A1 =

0.1 0 0
0 0.1 0
0 0 0.1

 , A2 =

 1 0 0
0 0 1
−1 0 0

 ,

W1 = W2 =

1 0 0
0 1 0
0 0 1

 , Ē1 =

0
0
1

 , Ē2 =

0
1
0

 .

For P =
[
0.9 0.1
0.9 0.1

]
, in k = 10 steps R converges to

R1 =
[
0 0.6235 −5.6111

]
and R2 =

[
−90 0 −10

]
,

and X converges to semidefinite matrices

X1 =

1.1942 0 0
0 1.0225 0
0 0 1.1111


and X2 =

183.4164 0 0
0 0.7978 0
0 0 0


then for this transition matrix of Markov chain, the system
is stochastically stable.

For P =
[
0.1 0.9
0.1 0.9

]
, in k = 13 steps and R converges to

R1 =
[
0 454.5 −50.5

]
and R2 =

[
−0.1235 0 −1.1111

]
,

and X converges to

X1 =

1.1942 0 0
0 82.8200 0
0 0 10


and X2 =

21.4411 0 0
0 −8.0911 0
0 0 0


then, for this second transition matrix of Markov chain, the
system is not stochastically stable.
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VII. CONCLUSION

In this paper, a new characterization of stochastic stability
for discrete-time SLSMJP was proposed. The set of coupled
generalized Lyapunov equations (CGLEs), developed in this
paper, reduces to the usual generalized Lyapunov equation
for descriptor systems when the Markov chain is degenerated
to the case N = 1 [8], and to a standard coupled Lyapunov
equation when there is no singularity, i.e., E is a positive
definite matrix [4]. We further derived a recursive algorithm
for solving the CGLEs, and so, the issue of practical imple-
mentation of the proposed stability test was also dealt with.
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