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Abstract— We generate time-optimal velocity profiles for a
group of path-constrained vehicles with fixed and known initial
and goal locations. Each vehicle robot must follow a fixed path,
arrive at its goal as quickly as possible (or at least not increase
the time for the last robot to arrive at its goal) and stay
in communication with other robots in the arena throughout
its journey. We seek to solve this multi-objective optimization
problem by generating optimal velocities along the paths. The
problem is formulated as a nonlinear programming problem
(NLP) with constraints on the kinematics, dynamics, collision
avoidance and communication. Solutions demonstrate the trade
off between the arrival time, the required transmission power
and the communication connectivity requirements. Typically
the optimization improved connectivity at no appreciable cost
in journey time (as measured by the time of arrival of the
last-arriving robot).

I. INTRODUCTION

The coordination of the motion of n robots in a shared

workspace so that they avoid collisions is known as the

multiple robot path coordination problem [1, 2]. In this paper

we study this problem under communication connectivity

constraints. We plan the velocity of a group of mobile robots

confined to fixed paths and seeking to arrive from a set

of initial points to specified final destinations. A significant

body of work was devoted to path planning for mobile robots

[1], [3], but velocity planning along predetermined routes

seems to be relatively untouched. However, more often than

not, one does not get the liberty of planning an arbitrary path

around sparse obstacles, and must rather follow a prescribed

route. Here we are motivated by the additional need to

maintain communication while in transit. A communication

constraint forces the robots to stay within the communication

range of each other. The specific problem in this paper is to

generate time optimal speeds for robots in a group that moves

along fixed paths in order to maintain communication with a

specified number of co-travellers from the starting point till

the goal point and avoid collisions. At the same time we seek

to minimize the time it takes for the last-arriving robot to

reach to its goal and avoid collisions. Examples of situations

that may be represented by the problem of interest include

military operations in an urban environment and search and

rescue operation in a city.
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Several researchers have approached the problem of ve-

locity planning for mobile robots along fixed paths. Kant

and Zucker [4] introduced the concept of path-velocity

decomposition, wherein the motion planning problem was

broken up into two parts. The first part dealt with generating

paths to avoid static obstacles, and the second part dealt with

generating velocity profiles along these paths in order to

avoid moving obstacles. Th. Fraichard and C. Laugier [5]

extended the idea of path-velocity decomposition by intro-

ducing the concept of adjacent paths. Several approaches

have been used to address the problem of path coordination

of multiple robots [1], wherein multiple robots with fixed

paths coordinate with each other so as to avoid collisions

and reach destination points. These approaches include the

use of coordination diagrams [6], constrained configuration

space roadmap [7] and grouping robots with shared collision

zones into subgroups [2]. In recent work, Peng and Akella [8]

used mixed integer linear programming (MILP) formulations

to generate continuous velocity profiles for a group of robots

that satisfy kinodynamics constraints, avoid collisions and

minimize the task completion time. We extend the body

of work on such scenarios by addressing the problem of

path coordination for multiple robots under communication

constraints.

We formulate the problem as a nonlinear programming

problem (NLP). The fixed paths of the robots are repre-

sented using piecewise cubic spline curves. The feasibility

criterion for trajectories demands that the robots’ kinematic

and dynamic constraints be satisfied, along with avoiding

collisions and obeying the communication constraint. The

communication constraint demands that at all time, the robots

be in communication range of at least k other robots, where k

varies between 0 to n−1, n being the total number of robots.

Calculations related to communication use distances and

Signal to Noise ratios (SNR). Other factors such as multi path

propagation, fading, time delay and crosstalk are ignored in

the present exposition. The spline paths are generated using

Matlab, which is interfaced with the modeling environment

AMPL [9]. We use the software package LOQO [10] with

AMPL to solve the NLP.

II. PROBLEM FORMULATION

A. Robot Motion and Path

Consider a two wheeled differential drive mobile robot

as shown in Fig. 1. The robot moves in a global (X,

Y) Cartesian co-ordinate plane and is represented by the

following kinematic model with associated non-holonomic

constraint (that disallows the robot from sliding sideways).
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values of Gt and Gr (antenna gains) is assumed to be 1. The

values of α range from 1.6 (indoor with line of sight) to 6

(outdoor obstructed) depending on the environment.

III. MODEL FORMULATION

We seek to minimize Tmax, the time of arrival of the

last arriving robot, while each robot is in communication

with at least k other robots at all time steps and satisfying

the kinodynamic and collision avoidance constraints. The

optimization is performed over the speeds of the robots along

the specified paths. Since Tmax is not known a priori, we

pick a sufficiently large number of time steps T (Tmax≤ T )

in our model so that it will yield a feasible solution. For a

given value of k between 0 to n− 1, the following problem

is solved:

minimize Tmax + σ
∑

i,t

di
goal(t) (4)

∀i ∈ {1, 2, ...n}, ∀t ∈ {1, 2, ...T},

∀j ∈ {1, 2, ...n}, j 6= i

subject to (xi(0), yi(0)) = oi (5)

(xi(T ), yi(T )) = ei (6)

ui(0) = 0 (7)

ui(t) = ui(t − 1) + si(t)∆t (8)

(xi(t), yi(t)) = psi(ui(t)) (9)

smin ≤ si(t) ≤ smax (10)

ṡmin ≤ ṡi(t) ≤ ṡmax (11)

dij(t) ≥ dsafe (12)

0 ≤ Ai(t) ≤ 1 (13)

Ai(t)di
goal(t) = 0 (14)

∀i, Tmax ≥





∑

t=0,...,T

(

1 − Ai(t)
)



 (15)

0 ≤ Cij(t) ≤ 1 (16)

lij(t) = SNRij
r (t) − τ (17)

Cij(t)lij(t) ≥ 0 (18)
∑

j:j 6=i

Cij(t) ≥ k (19)

A. Decision Variables

In (4)-(19), the main decision variables are the speeds,

si(t), for vehicle i at time t. The values of the remaining

variables are dependent on the speeds, as described in the

following sections on the problem constraints.

B. Objective Function

Equation (4) represents the objective function to be mini-

mized. The first term of the objective function is Tmax which

represents the time taken by the last robot to reach its goal

point. By using a penalty parameter σ, the second term forces

the robots to minimize the distance between their current

location and the goal position. This term prevents the robots

from stalling.

C. Path (Kinematic) Constraint

Constraints (5)-(9) define the path of each robot. Con-

straints (5) and (6) form the set of boundary requirements

that each robot i has to start at a designated start point oi and

finish at a designated end point ei at the end of the planning

horizon. Constraint (7) initializes the arc length travelled u

to zero value. Constraint (8) increments the arc length at

each time step based on the speed of the robot (∆t = 1).

Constraint (9) ensures that the robots follow their respective

paths as defined by the cubic splines. The function psi(ui(t))
denotes the location of robot i at time step t after travelling

an arc length of u along the piecewise cubic spline curves.

D. Speed and Acceleration (Dynamic) Constraint

Constraints (10) and (11) are dynamic constraints and

ensure that the speed and the acceleration respectively are

bounded from above and below. These constraints are deter-

mined by the capabilities of the robot.

In general, solving an optimal path planning problem consists

of finding a set of feasible pairs of linear and angular

velocities that minimize a given cost function. Here, we

assume that the maximum curvature of the path is within

the achievable bounds of the angular velocity and radial

acceleration of the robots and so the angular velocity cor-

responding to the optimal speed will always be achievable.

Hence the overall solution will be feasible. In absence of

such an assumption, by adding a constraint on the angular

velocity and radial acceleration in the model, the feasible set

of solutions for any given path with an associated curvature

can be determined.

E. Collision Avoidance Constraint

Constraint (12) ensures that there is a sufficiently large

distance between each pair of robots to avoid a collision.

F. Definition of Tmax

As defined by constraints (13) and (14), Ai(t) measures

the number of time periods for which the robot is not at the

destination. The equilibrium constraint (14) and the bounds

on Ai(t) (13) ensure that when di
goal(t) > 0, the value

of Ai(t) = 0. Therefore, if Ai(t) = 1 for all (i, t) with

di
goal(t) = 0, the total amount of time it takes a robot i to

reach its destination can be calculated as
∑

t=0,...,T

(

1 − Ai(t)
)

The equilibrium constraint (14) cannot guarantee by itself

that this property will hold. However, constraint (15) speci-

fies Tmax as an upper bound for this sum, and equation (4)

minimizes Tmax. Therefore at the optimal solution, for the

last robot(s) to reach its destination, Ai(t) = 1 when robot

i is at its destination at time t and that (15) will hold with

equality.
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Note that the solution obtained by including the constraints

(13)-(15) is equivalent to the one obtained by using the

following mixed-integer definition:

Ai(t) = 0 if (di
goal(t) 6= 0) (20)

= 1 if (di
goal(t) = 0)

Tmax = max
i=1,...,n





∑

t=0,...,T

(

1 − Ai(t)
)



 (21)

It is, however, more advantageous for efficiency of the

solution algorithm to solve an NLP instead of a mixed integer

nonlinear programming problem (MINLP). With recent re-

search in handling equilibrium constraints in NLPs, handling

the resulting nonsmoothness is not a complicating factor in

the solution process. For details on how the solver handles

equilibrium constraints, see [12].

G. Communication Constraint

Constraints (16)-(19) define the requirement that each

robot must be in communication with at least k other

robots at all times. If there is a need for each robot to

communicate with a greater number of robots (e.g., for

contingency planning), the right-hand side of the constraint

(19) can be increased.

Constraint (17) defines an intermediate variable, lij(t),
that aids in defining the communications constraint. The sign

of lij(t) at any given point in time indicates whether the

robots i and j are within communication range of one other:

lij(t) ≥ 0 indicates that the two robots are in communication

range whereas lij(t) < 0 indicates that the two robots are

not in communication range of each other.

Constraint (18) then ensures that if there is no communica-

tion between robots i and j at time t, then the variable Cij(t)
must necessarily equal 0. That is, if pairwise communication

is lost, we have that lij(t) < 0 and since constraint (16)

requires that the value of Cij(t) ≥ 0, the only way to

satisfy constraint (18) is to have Cij(t) = 0. If there is

communication between the two robots at time t, then Cij(t)
can take on any value between 0 and 1, inclusive, as allowed

by constraint (16).

Finally, constraint (19) ensures that for each robot i at time

t, at least k of the Cij(t), j ∈ {1, 2, ...n}, j 6= i must be

greater than zero. There are several issues to consider here:

• This formulation avoids the use of a binary variable

to define the communications constraint. Each variable

Cij(t) is continuous and bounded below by 0 and above

by 1. Doing so greatly reduces the complexity of the

problem.

• For any pair of robots that are in communication at time

t, there may be an infinite number of optimal values

for Cij(t). As an example, assume that in the optimal

solution, robot i is within communication range of

robots j and m. Then, as long as Cij(t)+Cim(t) ≥ 1,

the communication constraint will be satisfied. Optimal

values for (Cij(t), Cim(t)) include (0, 1), (1, 1), (1, 0),
(0.75, 0.75), among others. This does not constitute

a difficulty for the solver, since the set of optimal

solutions is bounded by constraint (16). The values of

the variables can be reset to binary values after the

optimal solution is found simply by observing the sign

of lij(t).
• The intermediate variables lij(t) are provided here to

simplify the exposition, but are not necessary to express

the same requirements. In fact, constraints (17) and (18)

can be replaced by a single set of constraints of the form

Cij(t)(SNRij
r (t) − τ) ≥ 0, j 6= i, j = 1, . . . , n. (22)

IV. SIMULATIONS AND RESULTS

A. Simulation Setup

Paths for each of the robots were generated randomly

in Matlab, using 6 waypoints for each robot. The function

spline() was used to generate piecewise cubic splines

passing through the waypoints, parametrized by arc length

u. Finally the individual splines were combined to generate

the spline curve.

The optimization model, defined by (4)-(19) was imple-

mented in the modeling environment AMPL and the solver

LOQO was used. The AMPL-LOQO combination solves all

problems discussed below in under 1 minute of real-time on

a PC running RedHat Linux 2.4.20-8 with 512MB of main

memory and a 2.4GHz clock speed. In our numerical testing,

we have used LOQO Version 6.07 compiled with the AMPL

solver interface Version 20021031.

B. Simulations

We focus on the effect of the communication constraint

on the velocity profile design and on the transmission power

requirements. We have tested our model using scenarios

with 2, 6, and 10 robots, and a number of communications

constraints. In the following discussion, we plot the spline

curve paths of the robots with different colors indicating

different robots. The starting (origin) point of each robot is

indicated by a dot marking and the end point is indicated by

a square marking. The triangular markings on the curves

indicate the position of the robot in the (X,Y) Cartesian

coordinate plane at each step in time while traveling at

optimal speeds along the path. The parameters used in our
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TABLE I

PARAMETER VALUES USED FOR SIMULATIONS

dsafe 0.01 m smin 0 smax 2 m/s

ṡmin -1 m/s2 ṡmax 0.5 m/s2 σ 100

α 2 f 2.4 x 10
9 Hz τ 4.5 x 10

6

simulations are listed in Table. I. For all the simulations the

value of T = 10 and Ptr is in milliwatts. In all plots, the

triangular markings on different paths do not overlap with

each other completely at any point in time. This observation

indicates that the robots indeed do not collide with each other

at any point in time (thus satisfying the collision avoidance

constraint at all times).

1) Effect of the communication constraint on the velocity

profiles: We will start by demonstrating the effect of varying

k between 0 to n − 1 for n = 2, 6, and 10 on the velocity

profiles.

• 2 robots:

For a scenario where Ptr = 2.5, Fig. 3 shows the

trajectories of the 2 robots for k = 0 (no communication

connectivity requirement) and k = 1. It is observed, that

the trajectory of the Robot 1 changes as k goes from

0 to 1. Fig. 4 shows the velocity profiles of both the

robots for scenarios when k = 0 and k = 1. For both

the cases, Tmax = 7.

• 6 robots:

Fig. 5 shows the trajectories of the 6 robots for scenarios

when k = 1 (Ptr = 2.7) and k = 5 (Ptr = 10.1). The

trajectory of the Robot 1 changes with a change in the

value of k. Fig. 6 shows the velocity profile of the Robot

1 for k = 1 and k = 5. For both the cases, Tmax = 9.

• 10 robots:

Fig. 7 shows the trajectories of the 10 robots for

scenarios when k = 0 and k = 9 (Ptr = 10.5). The

most visible changes in the trajectories that are observed
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Fig. 3. A 2 robot scenario with varying communication constraint
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Fig. 4. Effect of communication constraint on the velocity profiles in a 2
robot scenario

correspond to the Robots 1 and 2. Fig. 8 shows the

velocity profile of the Robots 1 and 2 for k = 0 and

k = 9. For k = 9, Robot 1 slows down at times steps

2, 3 and 4 as compared to the case when k = 0 in

order to maintain communication with the other robots,

but speeds up during the latter part of its journey when

its path is closer to the other robots. Similar behavior

is observed in case of Robot 2. For both the cases,

Tmax = 9.

From the above results, the following points are observed

• With an increase in the value of k, the velocity profile

of the robot(s) change in order to satisfy the communi-

cation constraint.

• Even when the communication constraint becomes more

stringent, the value of Tmax in these examples re-

mained the same, i.e. the cost incurred does not change.

Typically, the robots whose times of arrival at their
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Fig. 5. A 6 robot scenario with varying communication constraint
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Fig. 6. Effect of communication constraint on the velocity profiles in a 6
robot scenario

respective destinations are less than Tmax change their

velocity profiles to comply with the new communication

constraint, without affecting Tmax.

2) Effect of the communication constraint on transmit

power: We determined the minimum transmit power re-

quired for the robots to satisfy the communication constraint

for all the values of k.

Fig. 9 and Fig. 10 indicate the minimum transmit power

required for the robots with paths as shown in Fig. 5 and

7 respectively, as the value of k is varied. Typically as the

value of k is increased, the value of the minimum Ptr also

needs to be increased.

3) Effect of the penalty parameter σ on the velocity

profiles: We demonstrate the effect of the penalty parameter

σ in the objective function for a 2 robot scenario. Fig. 11

indicates the trajectories of the two robots for k = 1 and

Ptr = 2.5. Clearly for σ = 100, the robots are much more

active as compared to the case where σ = 0. This results in
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Fig. 7. A 10 robot scenario with varying communication constraint
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Fig. 8. Effect of communication constraint on the velocity profiles in a 10
robot scenario

them ending up closer to the destination at the penultimate

time step before reaching the goal as indicated by the circles

on both the plots. For both cases Tmax = 7.

Without penalty, there are infinitely many optimal so-

lutions, each of which satisfies the constraints and has

all robots reach their destination within Tmax. One such

solution as depicted on the left side of Fig. 11. With the

penalty, however, the robots must travel as close to the

destination as possible at each time step, and in this example

we show one optimal solution, which is indicated on the right

hand side plot of Fig. 11.
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Fig. 9. Minimum power required to satisfy the communication constraint
for six robots
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Fig. 10. Minimum power required to satisfy the communication constraint
for 10 robots

V. CONCLUSIONS

We generated time optimal velocity profiles for a group of

mobile robots along fixed paths with kinodynamic, collision

avoidance and communication constraints. We demonstrated

the effect of the communication constraint on the velocity

profiles and observed that in most scenarios studied by

us, a change in the communication constraint requirements

affected the velocity profile without deteriorating the cost

incurred (Tmax). We further demonstrated that the transmit

power required increases as the communication constraint

becomes more demanding. Finally, we demonstrated the ef-

fect of penalizing the distances from the goal in the objective

function on the velocity profiles. We observe that with a non-

zero penalty term (σ = 100) in the objective function, the

robots tend to move closer to the goal positions at each time

step before reaching their destination as compared to cases

when there is no penalty term (σ = 0).
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