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Abstract— In this paper, we present initial linear parameter-

varying control efforts aimed at closed loop control of anesthesia

delivery during surgery. The control designs are completed using

a recent system identification based MIMO modeling framework

for anesthetic pharmacodynamics.

I. INTRODUCTION

Modeling and control of drug dosing in clinical pharmacol-

ogy is particularly well-suited for applications of control de-

sign and analysis techniques. The increasing use of computers

in the operating room combined with the ongoing development

of non-invasive yet effective means of measuring a number

of the goals of anesthesia, such as the bispectral index or

BIS measure of sedation, real-time measurements of exhaled

gas concentrations by spectroscopic methods, and the use of

electromyographic methods to measure lack of movement,

promise to make the incorporation of control techniques into

the anesthetic delivery process imminent. In this paper, we

discuss preliminary linear parameter-varying (LPV) based con-

trol efforts aimed at closed loop control of anesthesia delivery

during surgery.

During surgery, the anesthesiologist continuously adjusts the

delivery of anesthetic agents given to the patient to maintain a

consistent and adequate level of anesthetic depth, that is, ade-

quate levels of hypnosis, or lack of consciousness; analgesia,

or lack of pain perception and the resulting autonomous system

effects (e.g., increased heart rate and blood pressure); and

muscle relaxation or lack of movement. Simultaneously, the

anesthesiologist maintains ventilation parameters and monitors

cardiovascular and respiratory functions such as heart rate

(HR), blood pressure (BP), oxygen saturation and end-tidal

(exhaled) carbon dioxide (CO2) levels. Invasive montitoring

is sometimes used to directly measure not only arterial blood

pressure, but right-heart filling pressures (CVP), left-heart fill-

ing pressures (PCWP), and pulmonary arterial pressures. Car-

diac output (CO) may be measured by thermodilation methods

and then used to derive systemic vascular resistance (SVR),

pulmonary vascular resistance (PVR) and a host of other car-

diac performance measures. Additionally, intra-operative blood

samples are often taken and used to observe gas concentrations,

blood-sugar levels, electrolyte concentrations and coagulation

parameters.

The determination of when a patient is properly anesthetized

thus is made by the anesthesiologist based on knowledge

and experience of individual drug dose-response effects and

synergistic effects of various drug combinations, combined

with the observation of a number of indicators of patient status,

such as those noted above. Vital signs and exhaled gases are

commonly used to monitor patient status, but measurements

of these quantities do not provide adequate information on the

patient’s anesthetic depth. At present, there does not exist a

single widely accepted indicator for anesthetic adequacy, and

in fact it is obvious that a single indicator will not suffice for

describing adequate levels of the three main components of

anesthesia. As a result, anesthesiologists perform the role of

a multivariable feedback controller during surgery, observing

multiple patient indicators while simultaneously adjusting and

controlling dosing and delivery of a number of anesthetic

agents as well as respiration system parameters.

Closed-loop administration of anesthetics during surgery

could provide a number of benefits, such as tailoring and

minimizing the overall amount of anesthetics required for

individuals, and allowing the anesthesiologist to focus on

critical safety tasks as necessitated by surgical demands on

the patient and unexpected events. The main advantages of

implementing closed-loop drug delivery would include reduced

pharmaceutical costs, reduced recovery time, and improved

long-term patient outcomes [1]. However, in order to design

and implement feedback control schemes, mathematical mod-

els of the patient/drug delivery system are required.

The standard modeling paradigm that has been commonly

used to describe the relationships between anesthetic inputs

and patient output indicators (or effects) is that of compartment

models. Pharmacokinetic (PK) compartment models are widely

used as a means of predicting the disposition of drug in the

body, by modeling the simultaneous diffusion of drug through

body tissues and the flow of drug in blood. Most drugs are

characterized by models containing a central compartment,

which typically has a drug concentration corresponding to

that of the blood, and peripheral compartments that represent

groupings of internal organs and tissues of the body. As

well, a theoretical effect compartment may be included which

typically consists of a nonlinear pharmacodynamic (PD) model

plus a first order linear time invariant system that is used

to reflect the time-lag in the patient response to anesthesia.

The resulting mathematical models are inherently single-input

single-output (SISO) and consist of a system of ordinary

differential equations plus a nonlinear function, representing

the relations between the drug input function, the concentration

of drug in the various compartments, and the effect of the drug

on specific patient endpoints (see [2], [3], [4], [5] and the

references therein for details). Unfortunately, as these models

are strictly SISO, they are incapable of capturing the effects

of disturbances, drug synergies, and the interrelation among

effects in the human body.

Remark 1.1: Note that the PK-PD modeling framework

offers just one approach to modeling drug response, and

represents, essentially, a grey-box method for constructing

SISO models.

In our research we have addressed this shortcoming directly

by focusing on (1) the development of control-relevant mul-
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tivariable models to describe patient response to anesthetic

agents, ventilation controls and external stimuli [6], and (2)

the development and implementation of MIMO control strate-

gies for which patient safety and postoperative outcomes are

improved. Although closed-loop control of anesthesia delivery

has been studied for over 50 years [7], prior efforts have all

essentially been SISO, thus, many important issues for MIMO

modeling and control remain open. We have targeted some

of these problems, on which we elaborate in the sequel. The

remainder of this paper is organized as follows. In Section

II, we present an overview of LPV control methods, and

outline the MIMO switched-linear systems modeling approach

we have introduced. Simulation results and comparisons from

these modeling efforts are given. In Section III, we provide an

overview of prior control efforts aimed at closed loop control

of anesthesia delivery based on PK-PD models, followed

by a discussion of our control design approach, including a

discussion of the LPV models we have derived, the application

of LPV synthesis techniques, and resulting control simulations.

A discussion of future directions is given in Section IV.

II. PRELIMINARIES

In this section we provide an overview discussion of LPV

methods, and discuss our approach to modeling the response

to anesthesia which relies on subspace identification methods.

A. Linear parameter-varying control methods

The study of LPV systems has been largely motivated by

the gain-scheduling philosophy [8], [9]. The state-space entries

of LPV systems are linear fractional functions of one or more

exogenous parameters, which are assumed to vary with time.

These time-varying parameters are assumed to be bounded,

and in most cases, have bounded measurable time derivative.

The trajectories of these time-varying parameters are a priori

unknown other than the range of variations [10]. However, it

is assumed these parameters may be measured or estimated

upon operation of the system. The stability of the closed-

loop system is guaranteed using constant quadratic Lyapunov

functions [10], [11]. The following overview is excerpted

from [10], [12].

Figure 1 shows the structure of the LPV control design

paradigm. The upper two blocks in this figure, denoted M

and Θ, represent a system whose dynamics are assumed to

evolve relative to the set of time-varying parameters denoted

by θ(t), as well as in time, that is, with state equations

x(t + 1) = Ã(θ(t) )x(t) + B̃(θ(t) )

»

w(t)
u(t)

–

(1)

»

z(t)
y(t)

–

= C̃(θ(t) )x(t) + D̃(θ(t) )

»

w(t)
u(t)

–

, (2)

where Ã(·), B̃(·), C̃(·), D̃(·) are matrix-valued functions

of appropriate dimensions, dependent on the vector-valued

parameter function θ(t) = (θ1(t), . . . , θk(t)). In the standard

setup of [13], [10] we have that the parameter functions are

known only to satisfy −1 ≤ θi(t) ≤ 1, and that functions

Ã, B̃, C̃, D̃ are linear fractional functions of the matrix

Θ(t) = diag
ˆ

θ1(t)Im1
, . . . , θp−1(t)Imp−1

˜

, where the di-

mensions mi are appropriately defined. The lower two blocks

in this figure, denoted K and ΘK , represent an H∞ control

synthesis constructed to satisfy stability and performance spec-

ifications over the range of variations assumed for the θi; such

controllers also have dynamics that evolve with respect to the

set of time-varying parameters θ(t), with state equations

xK(t + 1) = ÃK(θ(t) )xK(t) + B̃K(θ(t) )uK(t) (3)

yK(t) = C̃K(θ(t) )xK(t) + D̃K(θ(t) )uK(t), (4)

where in feedback yK(t) = u(t) and uK(t) = y(t) from (1).

The resulting closed-loop transfer function from disturbance

input w(t) to controlled output z(t) is denoted by

T (M, K, Θ) = (Θ ⋆ M) ⋆ (K ⋆ ΘK), (5)

where for a general system realization M =

»

M11 M12

M21 M22

–

and Θ = diag[δ1(t)In1
, . . . , δp(t)Inp

] we define

Θ ⋆ M = (M22 + M21Θ(I − M11Θ)−1M12)
M ⋆ Θ = M11 + M12Θ(I − M22Θ)−1M21.

The state dimensions and the dimensions of Θ(t) for the

plant and controller indicate the dimensions of the constant

realization matrices associated with the respective mappings

Θ ⋆ M and K ⋆ Θ. These matrices are partitioned as
»

A B

C D

–

and

»

AK BK

CK DK

–

with the dimensions of A being n×n and of AK being nK ×
nK , where

Pp
i=1 ni = n and

Pp
i=1 nKi = nK . The LPV

H∞ problem is formulated as finding a realization MK =
»

AK BK

CK DK

–

such that the resulting LPV controller satisfies

• the closed-loop system given by (5) is internally stable

for all assumed parameter variations

• the induced L2 norm of the operator T (M, K, Θ) satisfies

max
||Θ|| ≤ 1

γ

||T (M, K, Θ)||∞ < γ. (6)

Controllers satisfying our design objectives are found by

applying algorithms resulting directly from the following the-

orem.

q~p~

Θ

Θ

u

z w

q

y

p

Κ

Μ

K

Fig. 1. Structure of LPV control
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Theorem 2.1: [10], [12] Consider an LPV plant defined by

(1) and shown by the interconnection of upper blocks of Figure

1, where M is a proper discrete-time plant with minimal

realization

M(λ) =

»

D11 D12

D21 D22

–

+

»

C1

C2

–

(λI−A)−1 ˆ

B1 B2

˜

,

Θ is the parameter operator given by Θ =
diag[δ1(t)In1

, . . . , δp(t)Inp
], and λ is the usual shift

or delay operator. Let LΘ denote the set of scaling matrices

defined by

LΘ = {L positive definite : LΘ = ΘL, ‖Θ‖ <
1

γ
} ⊂ R

n×n
.

Assume

• (A, B2, C2) is stabilizable and detectable, and

• D22 = 0.

Let ImNR = Ker
ˆ

BT
2 DT

12 0
˜

and ImNS =
Ker

ˆ

C2 D21 0
˜

. Then, the parameter-dependent H∞

control synthesis is solvable if there exist pairs of symmetric

matrices (R, S) in Rn×n and (L, J) in Rn×n such that

N
T
R

2

4

ARAT − R ARCT
1 B1

C1RAT C1RCT
1 − γJ D11

BT
1 DT

11 −γL

3

5 NR < 0 (7)

N
T
S

2

4

ASAT − S AT SB1 CT
1

BT
1 SA BT

1 SB1 − γL DT
11

C1 D11 −γJ

3

5 NR < 0 (8)

»

R I

I S

–

≥ 0 and

»

L I

I J

–

≥ 0 (9)

Moreover, there exist γ-suboptimal controllers of order k

if (7)-(9) hold for some (R, S, L, J) where R and S further

satisfy

rank(I − RS) ≤ k. (10)

See [10] for a proof.

Equations (7)-(9) are LMIs that can be solved directly for

(R, S, L, J) using public domain SDP solvers [14], [15].

Once solutions R and S are computed, an explicit controller is

constructed by applying the synthesis algorithm given in [10],

[12].

B. Multivariable switched-linear models

The modeling and control studies we have previously com-

pleted and published were based on data collected from a clin-

ical study of 10 volunteers, completed under the supervision of

Dr. Bloom []. In these studies we have found that the response

of the patient (or volunteer in our case) transitions from one

set of dynamic behaviors to another as the course of anesthesia

takes the subject from the alert state to the sedated state. We

therefore have proposed the use of linear switching systems,

where the underlying subsystems are linear state-space models

over which the volunteers’ responses switch based on their

sedative state. We briefly describe our data before discussing

our methods and the simulation results we have obtained.

1) Clinical data: The original study was designed to define

the relation between clinical evaluation of the state of con-

ciousness, explicit recall, drug concentrations and BIS effects

of the anesthetic agent isoflurane when administered alone to

healthy volunteers under controlled conditions. Additionally, a

series of external stimuli, or disturbances, were applied to the

volunteers throughout the administration of anesthesia. These

stimuli included: laryngeal mask insertion and removal, per-

formed when the volunteer was considered completely sedated;

evoked potential evaluations involving the application of short

electrical stimulation signals to the wrist of the volunteer at

a period of every 3 seconds and up to 100 µA and 100 V

amplitude; and alertness evaluations which included yelling at,

shaking, and squeezing the trapezius muscle of the volunteer.

(See [16] for details of the clinical protocols).

Time-synchronized measured volunteer outputs included

BIS levels, MAP and HR. Note that BIS values range from

0 − 100, where a BIS value near 100 corresponds to a

completely alert state, a BIS value around 60 corresponds to

a moderate hypnotic state, a BIS value around 40 corresponds

to a deep hypnotic state, and very low BIS values are referred

to as characterizing a profound anesthetic state [17], [18]. For

healthy individuals, normal ranges for MAP are between 70

and 110 mmHg, and the average resting HR for normal adults

is around 70 beats per minute.

An example of a set of data taken from one subject during

the study is shown in Figures 2 and 3. Note that we developed

quantitative models of the stimuli applied to the volunteers

during the study, hence in Figure 2 the plot with vertical axis

labeled EP represents evoked potentials stimuli, that labeled

LMA represents the laryngeal mask insertion process, and that

labeled EVAL respresent the alertness evaluation tests. Similar

quantitative models have been adopted in related studies [19],

[20], [21]. The maximum amplitude of the external stimuli

has been normalized to one. Note the distinct transitions, or

the effective switching that has been attained between the BIS

levels in the plot presented in Figure 3.
2) Switched-linear modeling via subspace identification:

We have found that switched-linear models effectively cap-
ture the response to anesthesia. The constituent subsystems
in the switched-linear models we have proposed have been
constructed using subspace identification methods applied to
the data described above. Specifically, we have implemented
the N4SID algorithm, first introduced in [22], in MATLAB.
(See [23], [24] for detaila on subspace identification methods).
We have identified two linear state-space subsystems, denoted
S1 and S2 and given by

x1(k + 1) = A1x1(k) + B1u(k) + w(k)
y(k) = C1x1(k) + D1u(k) + v(k)

and

x2(k + 1) = A2x2(k) + B2u(k) + w(k)
y(k) = C2x2(k) + D2u(k) + v(k)

which model the patient response in the awake and sedated

states, respectively. In this framework, u(k) and y(k) represent

the sampled input and output data described in the preceding

section, x(k) is the state vector, w(k) and v(k) are assumed

to be white-noise processes, and Ai, Bi, Ci, and Di, i = 1, 2,

3
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Fig. 2. Isoflurane and stimuli inputs versus time
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Fig. 3. BIS, HR and MAP outputs versus time

are constant real-valued matrices estimated by the subspace

identification process.

Observed BIS values have been used to choose between

one of two models for a patient’s response to anesthesia and

stimuli (i.e., the alert models, and the sedated models which

include both moderate and deeply sedated states). Switching

between these two models occurs based on a BIS threshold

value of 70; this choice of switching value is physiologically

motivated, as it was noted in [18] that approximately 50% of

the population will be unconscious at a BIS value of 70. From

the data we used, it is clear that this value always lies in the

transition region from alert to sedate states. Upon switching

from one subsystem, Sj , to the other subsystem, Si the initial

state for the subsystem Si is calculated directly from the last

output of Sj . Although the output will remain continuous, a

jump in state values may result at the switching instant.

In order to complete a comparative analysis, we also mod-

elled the dosing and related effects of isoflurane using the

standard pharmacological approaches, i.e., PK-PD models.

For the PK model, we used the mammillary compartment

model identified by Yasuda, et al [25]; this model has been

determined based on data collected from seven healthy male

volunteers. An example of measured and predicted outputs for

a switched-linear multi-input-to-BIS response model is shown

for one volunteer in Figure 4, along with SISO (isoflurane-

to-BIS) switched-linear and PK-PD responses. The thin solid

line represents the measured data, and the thick solid line

represents the simulated responses. Note the dashed verticle

line in each of the plots; this line represents the point at which

we separated the data record for estimation and validation

purposes, for the switched-linear models. The entire data

record is used to construct the PK-PD models. In summary,

the switched-linear models we have introduced resulted in

improved responses over the PK-PD models in comparisons of

predictive capabilities, error signal means and variances over

pooled data, normalized errors for individual patient data sets,

and computational effort required. For further details regarding

the switched-linear and PK-PD modeling efforts, complete

estimation and prediction results, and quantitative comparisons

of the modeling results, see [26], [6].
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Fig. 4. Clinical data (thin line) and simulated responses (thick line)
for Patient 1

Multi-input multi-output piecewise-linear models for MAP

and HR responses also were constructed using the N4SID

algorithm, from which a good fit was obtained. Representative

examples of these model responses are shown in Figure 5.

We also have found that the switched-linear models for

one individual provide reasonable central models, i.e., models

applicable to a group of subjects, in the sense that simulated

output responses obtained utilizing the input data set for one

volunteer applied to the switched-linear model for another

4

828



0 50 100 150 200
50

60

70

80

90

100

110

120

130

HR
 (b

ea
ts/

m
inu

te
)

Time (minutes)

Piecewise linear: Patient 1

0 50 100 150 200
70

80

90

100

110

120

130

M
AP

(m
m

Hg
)

Time (minutes)

Piecewise linear: Patient 1

0 50 100 150
50

60

70

80

90

100

110

120

130

HR
 (b

ea
ts/

m
inu

te
)

Time (minutes)

Piecewise linear: Patient 3

0 50 100 150
70

80

90

100

110

120

130

140

150

M
AP

(m
m

Hg
)

Time (minutes)

Piecewise linear: Patient 3

Fig. 5. Clinical data (thin line) and simulated responses (thick line)
from switched-linear and PK-PD models for Patient 1 and Patient 3
HR and MAP responses

volunteer produces an acceptable fit to the output data for the

first volunteer; see [26] for more details.

III. LPV MODELING AND CONTROL SYNTHESIS

Closed-loop control of anesthesia delivery previously has

been considered in a number of studies. We outline a few of

those studies here.

Schwilden and colleagues have used median frequencies

from EEG power spectra as one measure of hypnotic effect

to develop PK-PD model-based adaptive feedback control of

propofol, methohexital, and alfentanil delivery during both

clinical studies and for surgery [27], [28], [29]. A number of

model-based closed-loop anesthesia control studies have been

published by Gentilini and colleagues [30], [21], [31], [32],

[33]. In [30], physiological models and rule-based controllers

for the regulation of respiratory functions and MAP under

administration of isoflurane are described; model predictive

control is investigated in [21]; and control schemes for the

regulation of MAP and sedation level using PK-PD models and

loop-at-a-time control implementation for the anesthetic agent

isoflurane are discussed in [31], [32]. Mortier had also earlier

considered control of sedation level via BIS monitoring in

[34], where PK-PD model-based adaptive control of propofol

is implemented. More recently, Bailey et al. have completed

adaptive and neural network based control designs for the

regulation of unconciousness under administration of propo-

fol [35]. Although this by no means represents an exhaustive

discussion of prior work on closed-loop control of anesthesia,

it presents the work most closely related to ours. The main

point to consider here is that all of the prior and ongoing work

discussed above involves the use of SISO models, and SISO

control design, for what is clearly a MIMO system. We now

discuss the MIMO control efforts we have pursued to date.

The use of switched-linear models in our work has been

based, intuitively, on the course that the patient response to

anesthesia takes from the alert state to the sedated state.

Switching is based directly on knowledge of BIS values.

However, most current piecewise-linear synthesis strategies are

based directly on states, i.e., on transitions from one partition

in state space to another, and require either direct knowledge

or estimation of both the current state and reasonable partitions

of the state space. In the identification-based models we use,

the states in our state-space models have no direct physical

relevance, hence state-space partitions and transitions between

such partitions are not practical to affect.

As an alternative, we consider the LPV methods outlined

earlier, in which BIS is viewed as a measurable time-varying

system parameter. The benefit of utilizing LPV models is that

these models are able to capture the transition from alert to

sedate and back in a continuous manner. In order to transform

the switched-linear models into LPV models, a curve fitting

process was applied using the system realizations obtained

for the patients in the awake (A) and sedated (S) states.

For example, for the multi-input to BIS output models the

relationships

PBIS

8

>

<

>

:

A(δ) = δ(δ−1)
2

AA + δ+1
2

AS

B(δ) = δ(δ−1)
2

BA + δ+1
2

BS

C(δ) = δ(δ−1)
2

CA + δ+1
2

CS

(11)

where δ(t) = 1 −
2

1 + expη∗(70−BIS(t))
, (12)

were implemented. This choice of the function for δ(t) is

based on the fact that a BIS value around 100 corresponds to a

completely alert state and a BIS value around 40 corresponds

to a deep hypnotic state. As a result, δ = −1 represents

patients being in a totally awake state. In contrast, δ = 1
represents patients being in a deeply sedated state. The slope

η was selected as 0.2, providing a “smooth piecewise-linear”

type of response.

For the multi-input to MAP/HR output models, the LPV

curve fitting equations are defined as

PMAP/HR

8

<

:

A(δ) = 1−δ
2

AA + 1+δ
2

AS

B(δ) = 1−δ
2

BA + 1+δ
2

BS

C(δ) = 1−δ
2

CA + 1+δ
2

CS

(13)

Note that the resulting LPV systems have fairly high dimen-

sions, for example typical resulting dimensions are n1 = 35 in

the δ parameter and n2 = 4 in the state. To facilitate control

design, multidimensional model reduction methods were first

applied to the LPV models, resulting in reduced dimensions

on the order of nr1
= 15 in the δ parameter and nr2

= 4 in

the state [36]. Model reduction errors are on the order of 5%
or less.

3) Preliminary LPV control design results: Desired refer-

ence trajectories for patient BIS values were determined by the

attending anesthesiologist. The control goals are to track the

BIS reference signal, attenuate the effect of disturbances, and

for obvious safety reasons, maintain the HR and MAP within

prespecified bounds. At the same time, the overall consumption

of anesthetics should be minimized; these goals lead to a

multi-objective control problem. In this discussion, we focus

on tracking of the BIS reference trajectory when subjected

to external disturbances (i.e., external stimuli). LPV control

5
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synthesis algorithms such as those proposed in [37], [10], [13],

[38], [11] have been implemented in MATLAB.

Preliminary control designs have been completed for each

individual data set using the LPV/LMI algorithms outlined

in Section II. Figure 6 shows one example of the control

simulation results for the BIS reference tracking; a second

example is given in Figure 7. In these 2-by-1 plots the upper

plot represents the desired BIS reference trajectory (thick

line) and the control simulation output (thin line); the lower

plot represents the isoflurane control input (thick line) (in

%volume concentration) and the isoflurane measurements from

the associated clinical trial (thin line).
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Fig. 6. Control simulation result of BIS reference tracking for
volunteer 1
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Fig. 7. Control simulation result of BIS reference tracking for
volunteer 3

Controller cross-validations amongst patients for the BIS

reference tracking also have been evaluated. Controllers gen-

erated from the estimated model for one subject have been

implemented on other subjects’ data and associated models. An

example is shown in Figure 8. A number of such combinations

have been evaluated; these results indicate that the controller

generated for patient 1 can be used as a controller for patients 2

and 6 with little degradation in performance, and similarly the

controller generated for patient 3 can be used as a controller

for patients 5, 7, and 8 without experiencing degradation in

performance. This suggests that the use of central models for

population subgroups (which could be based on covariate anal-

yses, for example) combined with robust control techniques is

one multivariable approach that bears further investigation.
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Fig. 8. Patient 3 controller with patient 1 model/data for BIS reference
tracking

IV. CONCLUSIONS

We have discussed initial evaluation of the use of LPV

control synthesis techniques for the problem of control of

anesthesia delivery. The primary advantage of using the LPV

control methodology at this time, versus direct switched-linear

design methods, is the existence of synthesis algorithms and

a priori provable performance guarantees. Ongoing efforts

are aimed at improving and extending the control synthesis

results discussed herein, the construction of multi-drug MIMO

switched-linear models that incorporate multiple anesthetic

agents, in particular models aimed at capturing the syner-

gistic effects of combining opioid and hypnotic agents, and

implementation of multi-objective control strategies (e.g., such

as [39], [40]) aimed at optimizing dosing and administration

of anesthetic agents affecting hypnosis and neuromuscular

blockade levels while simultaneously regulating hemodynamic

functions.
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