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Abstract—The miniature tailsitter is a unique aircraft with
inherent advantages over typical unmanned aerial vehicles.
With the capabilities of both hover and level flight, these small,
portable systems can produce efficient maneuvers for enhanced
surveillance and autonomy with little threat to surroundings
and the system itself. Such vehicles create control challenges
due to the two different flight regimes. These challenges are
addressed with a computationally efficient adaptive quaternion
control algorithm. A backstepping method for model cancella-
tion and consistent tracking of reference model attitude dynam-
ics is derived. This is used in conjunction with a regularized
data-weighting recursive least-squares algorithm for the on-line
identification of system parameters. Simulation and hardware
results are presented as validation of the technique.

I. INTRODUCTION

VTOL UAVs have inherent advantages due to their hover

capabilities. Such vehicles can fly in confined areas and

effectively takeoff and land in designated regions without a

runway. These capabilities greatly enlarge the autonomy of

the UAV, limiting the need for human interaction in recovery

and deployment, and also allowing for perch-and-stare ma-

neuvers, in-flight persistent target imaging, and navigation of

obstacle filled terrain. All of these tasks are difficult, if not

infeasible, for typical fix-wing UAVs to accomplish.

A largely unexplored UAV concept is the miniature tail-

sitter (Figure 1). Tailsitter UAVs are fix-wing VTOL aircraft,

thus having all of the advantages of hover flight, as well as

the benefits of efficient fix-wing flight, which is significant

for miniature UAVs due to energy limitations. Moreover, the

miniature tailsitter, because of size, is more portable and can

navigate difficult terrain effectively and with little threat to

immediate surroundings and the vehicle itself.

This UAV concept with its many advantages, poses control

challenges. Conventionally the aeronautics community uses

the 3 − 2 − 1 body-referenced Euler angles (ψ, θ, and φ)
to relate the inertial and body frames of an aircraft. This

method contains singularities at θ = ±π/2, where θ = π/2
is a common flight condition for the tailsitter. Another control

challenge is the nonlinear dynamics of the tailsitter that are

difficult to model. Typical autopilot attitude control tech-

niques require that a good model of the aircraft’s dynamics

be available, all relevant states be measured or estimated, and

the aircraft remains in the design flight conditions. Due to
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Fig. 1. The Brigham Young University tailsitter in hover flight.

the nature of miniature tailsitter UAVs, flight conditions can

change drastically through typical maneuvers. Furthermore,

aerodynamics in some flight regimes (particularly in stall

conditions) are difficult to model and states such as aircraft

angle of attack and sideslip angle are at present infeasible for

miniature UAVs to measure or estimate. Also, small hover

aircraft require lightweight hardware. This constraint extends

to the autopilot processor. Currently, small autopilot hard-

ware for miniature UAVs is available. However, computation

on such small systems is limited.

Computationally efficient adaptive quaternion control is an

obvious solution to these challenges. The quaternion attitude

representation contains no singularities and attitude error can

be represented conveniently in the aircraft body reference

frame about principal x, y, and z axes, which correspond to
available actuator input torques. Also, through cancellation

of system dynamics, adaptive methods can be used to pro-

duce stable consistent performance amidst significant system

changes and despite modeling and sensing limitations.

The quaternion attitude control structure has been explored

by many for various applications [3], [12], [22], [24]. For

flight during aggressive maneuvers and in poorly modeled

conditions, a variety of different adaptive control techniques

have been proposed, including neural networks, least squares

estimation, and Lyapunov based methods. The neural net-

work approach is often employed to estimate nonlinear dy-

namics with off and on-line training for model inversion [7],

[13], [17], [19], [21]. Recursive least squares techniques

identify the airframe parameters on-line and use these param-

eters to adjust the controller. Such controllers have the ability

to quickly converge on the airframe parameters [5], [18],

[20], [21], and therefore, adapt rapidly to changes in flight
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conditions. In Lyapunov based approaches, the parameter

update law is selected to ensure stability of the tracking

error. These methods generally cannot guarantee parameter

convergence [6], [10], [11], [15], [16], [23]. The L1 adaptive

controller is a unique Lyapunov-based method that has also

been used in flight control of UAVs [4]. The method utilizes

filtering to enable fast adaptation and guarantee specific

performance properties [8], [9].

The objective of this paper is to explore the applica-

tion of a computationally efficient least-squares-based model

reference adaptive quaternion backstepping control method

for the control of a miniature tailsitter UAV. Section II

contains a description of models used in the controller

development, namely the aircraft attitude dynamic model, the

controller reference model, and the open loop error model.

The adaptive quaternion controller is presented in Section III

and simulation and hardware results are shown in Section IV.

II. DYNAMIC MODELS

A. Aircraft Attitude Dynamics

In this section, attitude dynamics are modeled for con-

troller derivation. The complex angular acceleration dynam-

ics are simplified to facilitate on-line parameter estimation

that is computationally easy, yet effective. Based upon

knowledge about the system, these simplifications are chosen

with design considerations in mind, to reduce computation

and still capture the major contributions of angular acceler-

ation given the information available to the autopilot.

For rigid-body aircraft, such as the tailsitter, the rotational

acceleration dynamics are described as

ω̇ = −J−1ω × Jω + J−1M, (1)

where ω = (p, q, r)T and M = (l,m, n)T are the vectors

of body frame angular velocities and moments and J is the
constant positive-definite symmetric inertia matrix:

J =





Jxx −Jxy −Jxz

−Jxy Jyy −Jyz

−Jxz −Jyz Jzz



 . (2)

Assuming symmetry in the aircraft’s xz-plane, equation (1)
can be written explicitly as

ṗ =
Jxz(Jxx − Jyy + Jzz)

JxxJzz − J2
xz

pq −
Jzz(Jzz − Jyy) + J2

xz

JxxJzz − J2
xz

qr

+
Jzz

JxxJzz − J2
xz

l(V, Vpw, β, p, δa)

+
Jxz

JxxJzz − J2
xz

n(V, Vpw , β, r, δr), (3)

q̇ =
Jzz − Jxx

Jyy

pr −
Jxz

Jyy

(p2
− r2) +

1

Jyy

m(V, Vpw, α, q, δe),

(4)

ṙ =
Jzz(Jzz − Jyy) + J2

xz

JxxJzz − J2
xz

pq −
Jxz(Jxx − Jyy + Jzz)

JxxJzz − J2
xz

qr

+
Jxz

JxxJzz − J2
xz

l(V, Vpw, β, p, δa)

+
Jzz

JxxJzz − J2
xz

n(V, Vpw , β, r, δr). (5)

It can be seen that the torques (l, m, and n) are a function of
airspeed (V ), propeller wash airspeed (Vpw), sideslip angle

(β), angle of attack (α), angular rates (p, q, and r), and
actuator input deflections (δa, δe, and δr).
For model simplification, angular acceleration about each

body referenced axis is modeled with one bias acceleration

term and one actuator-based input term:

ṗ = θ1 + V̄ 2θ2δa, q̇ = θ3 + V̄ 2θ4δe, ṙ = θ5 + V̄ 2θ6δr.
(6)

The term V̄ is introduced to represent the dominant source
of airflow over the control surfaces (aircraft velocity or

propeller wash velocity). This simplified model reduces com-

putation significantly for parameter estimation and control.

These two types of contributions to angular acceleration

are typically the most significant for the scale of aircraft

described in this paper. From aerodynamic modeling [14], it

can be seen that torques in level flight and propeller wash

models are linear in one main actuator scaled by several

constants (which denote actuator effectiveness) and either

V 2 or V 2

pw , as modeled above. All other contributions to

angular acceleration are lumped into the bias terms. In view

of design tradeoffs, only two terms were chosen to represent

acceleration, under the assumption that the method will be

able to track dynamics with the reduced model.

The angular acceleration model equation (6) can now be

rewritten in vector form as

ω̇ = C1 + V̄ 2C2U, (7)

where C1 = (θ1, θ3, θ5)
T and U = (δa, δe, δr)

T are vec-

tors of unknown bias parameters and actuator settings, and

C2 is a diagonal matrix of unknown actuator effectiveness

parameters:

C2 =





θ2 0 0
0 θ4 0
0 0 θ6



 .

From the quaternion time derivative, the attitude kinematics

are

η̇ =
1

2
(η× + η4I3)ω, η̇4 = −

1

2
ηTω, (8)

where the notation ξ× denotes the skew-symmetric matrix
given by:

ξ× =





0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0



 .

The tailsitter rotational dynamics are therefore represented

with equations (7) and (8).

B. Reference Model Dynamics

Reference model dynamics are derived to smooth desired

attitude trajectories. The reference model is chosen to have

desired performance that is attainable by the actual system.

Because a second-order model is used in the derivation of

aircraft dynamics the reference model is also designed with

second-order dynamics. These basic guidelines are pertinent

to the Lyapunov-based adaptive controller.
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The reference model quaternion (η̄m) has the same kine-

matic relationship with the reference model angular veloci-

ties (ωm) as given in equation (8), namely

η̇m =
1

2
(η×m + η4mI3)ωm, η̇4m = −

1

2
ηT

mωm. (9)

For second-order dynamics, the reference model angular

accelerations are defined as

ω̇m = −k2mωm + k1mηem, (10)

where k1m and k2m are positive scalar gains which determine

the damping and natural frequency of the reference model

and η̄em is the error quaternion from the reference model to

the commanded attitude.

C. Error Dynamics

Open loop attitude error dynamics are derived to simplify

the development of the backstepping controller. Quaternion

attitude error (η̄e) is defined as the rotation between the actual

attitude and the controller reference model (η̄m = η̄e ⊗ η̄).
The tailsitter attitude error can then be written as

ηe = −η4mη + η4ηm − η×ηm, η4e = η4η4m + ηT ηm.
(11)

Given equations (8), (9), and (11) the attitude error dynamics

can be defined as

η̇e =
1

2
(η×e +η4eI3)(R̃ωm−ω), η̇4e = −

1

2
ηT

e (R̃ωm−ω).

(12)

To rotate from the reference model reference frame to the

actual body reference frame, the following rotation matrix

(R̃) is defined as

R̃ = (η2

4e − ηT
e ηe)I3 + 2ηeη

T
e + 2η4eη

×

e . (13)

III. CONTROLLER DERIVATION

A. Backstepping Attitude Controller Derivation

Derivation of the adaptive quaternion controller is based

upon Lyapunov theory. Because the system has a relative

degree of two, the backstepping method is utilized to drive

attitude error between the actual and reference model to zero

by tracking desired angular rates with actuator inputs. As a

result, the system is designed to asymptotically converge on

desired angular rates and reference model attitude.

Let

V
′ =

1

2
ηT

e ηe (14)

be the initial candidate Lyapunov equation. Differentiating

equation (14),

V̇
′ = ηT

e

1

2
(η×e + η4eI3)(R̃ωm − ω)

is obtained from equation (12). The derivation goal is for

V̇ ′ = −k1η
T
e ηe, where k1 is a positive scalar gain. To achieve

this, the desired angular velocity (ωd) can be defined as

ωd = 2k1(η
×

e + η4eI3)
−1ηe + R̃ωm. (15)

Thus,

V̇
′ = −k1η

T
e ηe + ηT

e

1

2
(η×e + η4eI3)ω̃, (16)

where ω̃ is the backstepping variable:

ω̃ = ωd − ω. (17)

Let

V =
1

2
ηT

e ηe +
1

2
ω̃T ω̃ (18)

be our final candidate Lyapunov equation. Equations (7) and

(16) combined with equation (18) differentiated yields

V̇ = −k1η
T
e ηe+η

T
e

1

2
(η×e +η4eI3)ω̃+(ω̇d−C1−V̄

2C2U)T ω̃.

(19)

As a result, the chosen control for model cancellation and

asymptotic convergence is

U =
1

V̄ 2
C−1

2

(

k2ω̃+
1

2
(−η×e +η4eI3)ηe+ω̇d

)

−
1

V̄ 2
C−1

2
C1,

(20)

where k2 is a positive scalar gain. Thus,

V̇ = −k1η
T
e ηe − k2ω̃

T ω̃ (21)

and with Lyapunov arguments it can be shown that ηe and

ω̃ → 0 as t→ ∞.

B. Stabilized Recursive Least Squares With Data Forgetting

The backstepping adaptive controller described in the

previous section requires real-time accurate estimation of

system parameters. System parameters can be chosen to min-

imize the error between estimated and observed or measured

dynamics. Solving for the least-squares solution is a proven

method, which lends itself well to a recursive algorithm. For

adaptation, data forgetting, where recent data is weighted

higher than old data, can be applied easily. Consequently, if

system parameters change, weighting on new performance

data allows the algorithm to learn the new parameters. Also,

regularization, a stabilizing technique, can be employed to

address instabilities introduced from noisy data combined

with data forgetting.

Considering only the angular rate dynamics about the body

reference frame x-axis where ṗ =
(

1 V̄ 2δa
)

(θ1 θ2)
T

=
ΦT

1
Θ1, the following convex function is chosen to be mini-

mized:

J =

N
∑

k=1

1

2
(Φ1[k]

T Θ̂1[N ] − ṗ[k])2λN−k

+
2

∑

k=1

1

2
αk(θ̂k[N ] − θ̂k[N − 1])2. (22)

The term λ weights the data according to the iteration
difference N − k. A value between 0 and 1 is chosen for
λ, where a value of one weights all of the past data the
same; the closer the value gets to zero the less it weights old

data. The terms αk penalize large changes in the estimated

parameters from one time step to the next. This is a form of

regularization that stabilizes the algorithm in the presence of

noisy data when weighting is applied.
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The gradient of J with respect to Θ̂1 is

∇J =

N
∑

k=1

Φ1[k](Φ1[k]
T Θ̂1[N ] − ṗ[k])λN−k

+ α(Θ̂1[N ] − Θ̂1[N − 1]), (23)

where α denotes the diagonal matrix

α =

(

α1 0
0 α2

)

.

The least-squares solution is then found by setting ∇J = 0
and solving for Θ̂1[N ] as follows:

Θ̂1[N ] =

( N
∑

k=1

Φ1[k]Φ1[k]
TλN−k + α

)

−1 N
∑

k=1

Φ1[k]ṗ[k]λ
N−k

+ αΘ̂1[N − 1]. (24)

Because equation (22) is convex and the problem is uncon-

strained, equation (24) is a global minimum. Note that the

inverse term is the covariance matrix

P [N ] =

( N
∑

k=1

Φ1[k]Φ1[k]
TλN−k + α

)

−1

. (25)

A simple recursive algorithm for the least-squares solution

is

Θ̂1[N ] = Θ̂1[N − 1] +P [N ]Φ1[N ](ṗ−Φ1[N ]T Θ1[N − 1]),
(26)

where

P−1[N ] = λP−1[N −1]+Φ1[N ]Φ1[N ]T +α(1−λ). (27)

This procedure can be easily reproduced for estimating

angular acceleration parameters associated with the other two

body-referenced axes. Note that this algorithm is computa-

tionally simple, resulting in little burden on the autopilot

processor.

IV. RESULTS

For the testing of attitude control in both simulation and

hardware, trajectories were generated from navigational con-

trollers described in Ref. [14]; the actual quaternion attitude

was estimated with the method also given in Ref. [14].

The simulation and hardware controllers flew the same

desired flight path, which was chosen to represent all of the

flight conditions a tailsitter might encounter. This path was

comprised of a hover takeoff, followed by a hover waypoint,

a transition to level flight, two level waypoints, a transition

to hover, a hover waypoint, and finally a hover land. Figure 2

gives an example of the desired path just described.

A. Simulation Results

Simulation results of the adaptive attitude controller are

presented in this section. The simulation environment, which

is described in [14] incorporated the standard quaternion

based translational and rotational kinematic and dynamic

equations for nonlinear 6-DOF rigid-body aircraft simulation.

Quaternion attitude performance during the experiment

is given in Figure 3. Note that the reference model is

Fig. 2. The waypoint path selected for the attitude control experiment.
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Fig. 3. Attitude results during simulation testing.

tracked consistently well throughout the entire flight, even

in transition maneuvers, which occur at 5 and 35 seconds.

System identification performance can be seen in Figure 4,

where θ1, θ3, and θ5 represent bias terms and θ2, θ4, and
θ6 indicate the associated control surface effectiveness. It
can be seen that despite drastic changes, the true parameters

are identified accurately and with little delay. Consider for

example, the aileron effectiveness term (θ2) which changes
from 1.8 to 0.2 instantly during a transition from level
to hover flight at 35 seconds. The parameter is accurately
identified within a tenth of a second. The level-flight roll

moment due to poor aileron trim, can be seen in θ1, where it
changes from roughly 0 to 5 in the transition to level flight.
This is also identified and cancelled. In addition, note the

pitch and yaw bias terms during level flight (θ3 and θ5).
Large transients are accurately tracked, which occur during

rotations about the associated axes due to aerodynamic

damping and torque from sideslip and angle of attack.
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Fig. 4. Parameter estimation during the simulation test.

B. Hardware Results

For hardware implementation a miniature tailsitter was

produced. The airframe design chosen was the commercially

available RC tailsitter model kit known as the Pogo [1] with a

23 1

4
inch wing span, where corrugated plastic was substituted

for Depron foam (see Figure 1). Lightweight construction, a

powerful propulsion system, and large control surfaces in

the propeller wash region allowed the miniature UAV to

takeoff and land vertically, hover, and fly level, meeting

the needs of a miniature tailsitter hardware testbed. The

UAV was equipped with the Kestrel Autopilot [2] running a

29 MHz Rabbit microcontroller with 512K Flash and 512K

RAM. The sensors on the autopilot include rate gyroscopes,

accelerometers, magnetometers, an absolute pressure sensor

for measuring altitude, a differential pressure sensor for

measuring airspeed, and a GPS receiver.

Attitude results acquired during the hardware test flight

are shown in Figure 5, where transitions occur at about

12 and 52 seconds. The controller demonstrated consistent
attitude tracking throughout the maneuvers of tailsitter flight.

This indicates accurate and fast adaptation as dynamics

change significantly during transitions between hover and

level flight. The yaw angular rate tracking throughout the

flight is available in Figure 6. Note that it is through the

tracking of desired angular rates that attitude is controlled

with the backstepping method.

On-line parameter estimation during the flight is shown

in Figure 7. Results appear to be similar to those presented

from the simulation of the estimation algorithm. The first

thing to note is that adaptation, like in simulation, occurs

quite fast. Consider for example θ̂2, θ̂4, and θ̂6, it can be seen
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Fig. 5. Attitude results during the hardware flight test.

Fig. 6. Angular rate r during the hardware flight test.

that the estimated control surface effectiveness terms change

instantly during transitions. Observe also that as expected,

the actuator effectiveness terms are all relatively small in

hover when compared to level flight. Level-flight bias angular

acceleration due to poor aileron trim, which is identified

quickly after the transition, can be seen as the nominal value

of θ̂1 changes from roughly 0 to 15. This term reduces back
to roughly zero after the transition to hover, indicating that

aileron trim is poor in level flight only. Accelerations from

sideslip and angular yaw rate damping are shown in the

estimation of θ5. It can be seen that as expected angular
acceleration opposing rotation is present in yaw rotations

(θ5 is shown to be the opposite sign of r in Figure 6).
Angular pitch acceleration tracking is presented in Fig-

ure 8. The plot of measured and estimated acceleration

shows excellent modeling during both hover and level flight.

Observe that the transition occurs at about 12 seconds.
Pitch acceleration modeling error is 3.7 rad/sec2 on average
throughout the flight.

V. CONCLUSION

In this paper a novel backstepping method for consis-

tent stable quaternion attitude control was derived enabling
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Fig. 7. Parameter estimation throughout the hardware test.
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Fig. 8. Pitch angular acceleration and error throughout the hardware test.

miniature tailsitter flight. The controller with a regularized

data-weighted recursive least-squares parameter estimation

algorithm exhibited effective learning of rapidly changing

dynamics for model cancellation and stable tracking of

reference model attitude. This was demonstrated in both

simulation and hardware results verifying the method.
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