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Abstract— This paper presents a methodology for the robust
detection, isolation and compensation of control actuator
faults in particulate processes described by population balance
models with control constraints and time-varying uncertain
variables. The main idea is to shape the fault-free closed-loop
process response via robust feedback control in a way that
enables the derivation of performance-based fault detection
and isolation (FDI) rules that are less sensitive to the un-
certainty. Initially, an approximate finite-dimensional system
that captures the dominant process dynamics is derived and
decomposed into interconnected subsystems, each influenced
directly by a single manipulated input. A robustly stabilizing
bounded feedback controller is then designed for each subsys-
tem leading to (1) an explicit characterization of the fault-free
behavior of each subsystem in terms of a time-varying bound
on an appropriate Lyapunov function, and (2) an explicit
characterization of the robust stability region. Using the fault-
free bounds as thresholds for FDI, the detection and isolation
of faults in a given actuator is accomplished by monitoring
the evolution of the system within the stability region and
declaring a fault if the threshold is exceeded. The thresholds
are linked to the achievable degree of asymptotic uncertainty
attenuation and can therefore be properly tuned by tuning
the controllers. The robust FDI scheme is integrated with
a controller reconfiguration strategy that preserves closed-
loop stability following FDI. Finally, the implementation of the
fault-tolerant control architecture on the particulate process
is discussed and the proposed methodology is applied to a
simulated model of a continuous crystallizer with a fines trap.

I. INTRODUCTION

Particulate processes are widely used in a number of im-

portant processing industries including agricultural, chem-

ical, food, minerals, and pharmaceuticals. It is now well

understood that the Particle Size Distribution (PSD) in these

processes provides a critical link between the product qual-

ity and the process operating variables, and that the ability

to effectively manipulate the PSD is essential to controlling

the quality of the end product. These realizations have

motivated significant research work on the design of model-

based feedback control systems for particulate processes

to achieve PSDs with desired characteristics (e.g., [1], [2],

[3], [4], [5], [6], [7], [8]; see also [9], [10] for surveys of

recent results and references). Despite the significant and

growing body of research work on this topic, the problems

of fault diagnosis and fault-tolerant control of particulate

processes have received limited attention. For processes

involved in the production of specialty chemicals where the
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ability to meet stringent product specifications is critical to

the product utility, the erosion of control authority caused

by control system failures can result in off-spec products

and lead to substantial production losses if not properly

diagnosed and handled in the control system design.

While an extensive body of literature currently exists on

the problems of fault diagnosis and fault-tolerant control

(e.g., see [11], [12], [13], [14], [15], [16] and the refer-

ences therein), the majority of existing methods have been

developed for lumped parameter processes described by

systems of ordinary differential equations (ODEs). More

recently, methods for actuator failure diagnosis and com-

pensation have been developed for distributed parameter

systems modeled by partial differential equations (e.g., [17],

[18], [19]). The dynamic models of particulate processes,

however, are typically obtained through the application of

population, material and energy balances and consist of

systems of nonlinear partial integro-differential equations

that describe the evolution of the PSD, coupled with systems

of nonlinear ODEs that describe the evolution of the state

variables of the continuous phase. In [20] a methodology

for the detection and handling of actuator faults in single-

input particulate processes was developed on the basis of

appropriate reduced-order models that capture the dominant

process dynamics. The fault detection task was addressed

by means of a filter that simulates the behavior of the fault-

free, reduced-order model and uses the discrepancy from

the behavior of the actual process as a residual signal.

For particulate processes with several manipulated inputs,

it is important not only to detect that a fault has occurred but

also to identify its location in order to avoid the unnecessary

shut down of possibly healthy actuators following fault

detection. Another important issue that must be accounted

for in the design of model-based fault diagnosis and fault-

tolerant control systems is the presence of model uncer-

tainty. Population balance models that describe particulate

processes are inherently uncertain due to the presence of

unknown, or partially known, process parameters as well

as time-varying exogenous disturbances. If not properly

accounted for, uncertainty can adversely affect all compo-

nents of the fault-tolerant control architecture by degrading

the stability and performance properties of the feedback

controller, complicating the design and evaluation of the

fault diagnosis residuals, and leading to false alarms and

poor supervisory control. One way to decouple the effect

of uncertainty on the residual is to re-design the fault

detection filters using the unknown-input observer princi-
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ple. This approach, however, is complicated by the strong

nonlinear dynamics of particulate processes (e.g., owing to

complex growth, nucleation, agglomeration and breakage

mechanisms, and the Arrhenius dependence of nucleation

laws on solute concentration in crystallizers).

Motivated by these considerations, we present in this

work a unified framework for the design of integrated robust

fault detection and isolation (FDI) and fault-tolerant con-

trol (FTC) systems for multi-variable particulate processes

described by population balance models with control con-

straints, time-varying uncertain variables and actuator faults.

The methodology brings together robust feedback control,

robust FDI, and switching between multiple actuator config-

urations based on an approximate, finite-dimensional system

that captures the dominant process dynamics. The main idea

is to shape the fault-free closed-loop process response via

bounded robust feedback control in a way that facilitates

the design of performance-based FDI rules that are prac-

tically insensitive to the uncertainty. Uniting the tasks of

constrained robust stabilization and FDI allows obtaining

an explicit characterization of the state-space regions where

robust FDI is feasible under uncertainty and constraints. The

rest of the paper is organized as follows. Following some

mathematical preliminaries in Section II, the robust FDI-

FTC problem is formulated and the solution methodology

is highlighted. An approximate, finite-dimensional system is

then obtained in Section III using the method of weighted

residuals and subsequently used is Section IV to construct

and analyze the properties of the FDI-FTC structure. Fi-

nally, in Section V the proposed methodology is applied

to a continuous crystallizer with a fines trap. Due to space

limitations, the proofs of the main results will be omitted,

but can be found in the full version of this work [21].

II. PRELIMINARIES

A. Particulate processes with uncertainty and constraints

We focus on spatially homogeneous (well-mixed) partic-

ulate processes with simultaneous particle growth, nucle-

ation, agglomeration and breakage, and consider the case

of a single internal particle coordinate, which is assumed

to be the particle size. Applying a population balance to

the particle phase, as well as material and energy balances

to the continuous phase, we obtain the following general

nonlinear system of partial integro-differential equations:

∂n

∂t
= −

∂(G(x, r)n)

∂r
+ w(n, x, r, θ(t))

+ g1(n, x, r)[u
k
1(t) + fk

a1
(t)], n(0, t) = b(x(t))

(1)

ẋ = f(x)+g2(x)[u
k
2(t)+fk

a2
(t)]+X (x, θ(t),

∫ rmax

0

q(n, x, r)dr)

(2)
‖uk

i (t)‖ ≤ uk
i,max, i = 1, 2; ‖θ(t)‖ ≤ θb (3)

k(t) ∈ K := {1, 2, · · · , L}, L <∞ (4)

where n(r, t) ∈ L2 ([0, rmax), IR) is the particle size distri-

bution function which is assumed to be a continuous and

sufficiently smooth function of its arguments (L2[0, rmax)

denotes a Hilbert space of continuous functions defined

on the interval [0, rmax)), r ∈ [0, rmax) is the particle

size (rmax is the maximum particle size, which may be

infinity), t is the time, x ∈ IRn is the vector of state

variables that describe properties of the continuous phase

(e.g., solute concentration, temperature and pH in a crystal-

lizer), uk
1 ∈ IR is the manipulated input associated with the

particulate phase (e.g., fines destruction rate), uk
2 ∈ IR is

the manipulated input associated with the continuous phase

(e.g., solute feed concentration in a crystallizer), uk
i,max is

a real number that captures the size of constraints on the

magnitude of the i-th manipulated input, fk
ai

∈ IR denotes a

fault in the i-th control actuator, k(t) is a discrete variable

that denotes which control configuration is active at time

t, θ = [θ1 θ2 · · · θq]
T ∈ IRq denotes the vector of time-

varying (but bounded) uncertain variables (e.g., unknown

process parameters and time-varying external disturbances)

and θb is a known bound on the size of the uncertainty.

In the population balance of Eq.1, G(x, r) is the growth

rate that accounts for particle growth through condensation,

and w(n, x, r, θ) := w0(n, x, r)+wu(n, x, r)θ is a term that

accounts for the net rate of introduction of new particles into

the system, i.e., it includes all the means by which particles

appear or disappear within the system including particle

agglomeration, breakage, nucleation, feed and removal. The

x-subsystem of Eq.2 is derived by applying material and

energy balances to the continuous phase. In this subsystem,

f(·), q(·), g2(·), X (·) are smooth nonlinear functions. The

term containing the integral accounts for mass and heat

transfer from the continuous phase to all the particles in the

population and has the form X (·, ·, θ) = X0(·, ·)+Xu(·, ·)θ.

B. Problem formulation and solution methodology

Consider the system of Eqs.1-4 with non-vanishing un-

certainty and disturbances. Of the L control actuator config-

urations available, only one is to be active for control at any

given time, while the rest are kept dormant as backup. The

backup configurations may contain alternative manipulated

variables or redundant actuators of the same manipulated

inputs. The problems under consideration include how to

suppress the effect of the uncertainty, how to detect and

isolate faults in the operating actuator configuration under

uncertainty, and how to decide which fall-back actuator

configuration should be activated to maintain robust closed-

loop stability following FDI. To address these problems,

model reduction techniques will be used initially to obtain

an approximate, finite-dimensional system that captures the

dominant dynamics of the infinite-dimensional system of

Eqs.1-4. The approximate system will subsequently be used

to: (1) synthesize, for each actuator configuration, a family

of bounded robust nonlinear feedback controllers with well-

characterized stability regions and robust uncertainty attenu-

ation properties, and (2) derive robust FDI rules that exploit

the uncertainty attenuation capabilities of the controllers

to detect and isolate destabilizing and/or performance-

deteriorating faults. Finally, an actuator reconfiguration law

is devised to maintain robust closed-loop stability.
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III. MODEL REDUCTION

We initially use the method of weighted residuals to

derive a set of nonlinear ODEs that accurately reproduce the

solutions and dominant dynamics of the distributed parame-

ter system of Eqs.1-4. To this end, we expand the solution

of n(r, t) in an infinite series in terms of an orthogonal and

complete set of basis functions, {φk(r) : r ∈ [0, rmax)},

as n(r, t) =
∑

∞

k=1ak(t)φk(r), where ak(t) are time-

varying coefficients. Substituting this expansion into Eqs.1-

4, multiplying the population balance with the weighting

functions, ψν(r), integrating over the entire particle size

spectrum, and finally truncating the series expansion of

n(r, t) up to order N keeping the first N equations, we

obtain the following finite-dimensional system:

˙̄z1 = f̄1(z̄1, z̄2) + ḡ1(z̄1, z̄2)[u
k
1 + fk

a1
] + w̄1(z̄1, z̄2)θ

˙̄z2 = f̄2(z̄1, z̄2) + ḡ2(z̄1, z̄2)[u
k
2 + fk

a2
] + w̄2(z̄1, z̄2)θ

(5)

where z̄1 = āN = [āN
1 · · · āN

N ]T , z̄2 = xN , xN and āN
k

are the approximations of x and ak, respectively, obtained

by an N -th order truncation, f̄i(·), ḡi(·), w̄i(·) are nonlinear

functions whose explicit form is omitted brevity, and the

bar symbol in z̄i indicates that this variable is associated

with the approximate system. The asymptotic validity of

the approximation (i.e., the fact that limN→∞‖n(r, t) −
∑N

i=1 ai(t)φ(r)‖2 = 0 when u = θ = 0) can be established

using results from perturbation theory [6].

IV. DESIGN OF ROBUST FDI-FTC ARCHITECTURE

USING THE REDUCED-ORDER MODEL

A. Robust feedback controller synthesis

The objectives of this step are to: (a) synthesize, for each

actuator configuration, a family of feedback controllers that

enforce constraint satisfaction and robust stability with an

arbitrary degree of asymptotic attenuation of the effect of

uncertainty on the closed-loop system, and (b) explicitly

characterize the robust stability region associated with each

configuration in terms of the constraints and the size of

uncertainty. While several controller designs can be used to

meet the desired objectives, we consider in what follows

the bounded robust control law introduced in [22] (inspired

by the results in [23]) as a specific example to work with

and illustrate the main ideas:

uk
i = −Pk

i (z̄, uk
i,max, θb, χi, ρi, φ̄i)Lḡi

V̄i, k ∈ K (6)

where

Pk
i =

αi(z̄) +

√

α2
i (z̄) +

(

uk
i,maxβ

k
i (z̄)

)4

(βk
i (z̄))2

[

1 +
√

1 + (uk
i,maxβ

k
i (z̄))2

] (7)

αi = Lf̄i
V̄i +

(

ρi‖z̄i‖ + χiθb‖Lw̄i
V̄i‖

)

(‖z̄i‖/(‖z̄i‖+ φ̄k
i )),

βk
i = ‖Lḡi

V̄i‖, V̄i is a robust control Lyapunov function

[24] for the i-th subsystem in Eq.5, Lf̄i
V̄i, Lḡi

V̄i and Lw̄i
V̄i

are the Lie derivatives of the scalar field V̄i with respect to

the vector fields, f̄i, ḡi and w̄i, respectively, z̄ = [z̄T
1 z̄T

2 ]T ,

and ρi > 0, χi > 1, φ̄i > 0 are adjustable parameters. Let

Πk
i be the set defined by:

Πk
i := {z̄ ∈ IRn+N : αk

i (z̄, ̺i, θb) ≤ uk
imax

βk
i (z̄)} (8)

where ̺i = [ρi χi φ̄i]
′, and let Πk := Πk

1

⋂

Πk
2 be the

intersection of the two sets, and consider the subset:

Ω̄k
s(θb, u

k
max) := {z̄ ∈ Πk : V̄ (z̄) ≤ ckmax} (9)

for some ckmax > 0, where V̄ =
∑2

i=1V̄i is a composite

Lyapunov function for the system of Eq.5. The following

proposition characterizes the closed-loop stability properties

of the subsystems of Eq.5 under the controllers of Eqs.6-7

in the absence of faults.

Proposition 1: Consider the closed-loop system of Eqs.5-

7, for a fixed k ∈ K, with fk
ai

≡ 0 for a fixed i. Then,

if z̄(t) ∈ Πk
i , for some t ≥ 0, there exists positive real

numbers, γi, φ̃i, and a class K function σi(·)
1 such that if

φi := φ̄i(χi − 1)−1 ≤ φ̃i, the time-derivative of V̄i along

the trajectories of the i-th subsystem in Eq.5 satisfies:
˙̄V i(t) ≤ −γiV̄i(t) + σi(φi) (10)

Furthermore, if z̄(0) ∈ Ω̄k
s(θb, u

k
max) and fk

a1
= fk

a2
≡ 0,

then for every real number δ̄di
> 0, there exists φ∗i such

that if φi ∈ (0, φ∗i ], lim sup
t→∞

V̄i(t) ≤ δ̄di
, for i = 1, 2 and

the origin of the closed-loop system is practically stable.

Remark 1: The set Ω̄k
s(uk

max, θb) represents an estimate

of the robust stability region for the k-th fault-free control

configuration in terms of the size of the constraints and

the size of the uncertainty. Starting within this region,

each controller drives the trajectory of its corresponding

subsystem in finite-time to a small terminal neighborhood

of the desired steady-state where it remains confined for all

future times (residual set). Depending on the desired degree

of uncertainty attenuation, the size of the residual sets, δ̄di
,

can be made arbitrarily small provided that the controller

tuning parameters are chosen properly.

B. Performance-based fault detection and isolation

To achieve robust FDI and guard against false alarms

due to the presence of uncertainty and disturbances, we

follow a performance-based approach. The key idea is to use

the characteristic closed-loop behavior obtained in Eq.10

for each subsystem under fault-free actuation as the basis

for deriving a set of rules that determine when a fault

has occurred in a given controller or actuator. This idea

is formalized in Proposition 2.

Proposition 2: Consider the i-th closed-loop system of

Eqs.5-7, for a fixed k ∈ K, with φi ∈ (0, φ∗i ], where

φ∗i was defined in Proposition 1. If, for some Td > 0,

z̄(Td) ∈ Ω̄k
s(uk

max, θb) and, for some a ∈ (0, 1), either:

(a) ˙̄V i(Td) > −(1 − a)γiV̄i(Td) for V̄i(T
−

d ) > δ̄di
, or

(b) V̄i(Td) > δ̄di
for V̄i(T

−

d ) ≤ δ̄di
,

where δ̄di
was defined in Proposition 1, then fk

ai
(Td) 6= 0

and a fault is declared in the i-th control actuator.

The condition in part (a) of Proposition 2 provides the

FDI rule for the case when, immediately prior to a fault

in the i-th actuator, z̄i lies outside its residual set. In

this case, faults in the i-th actuator that cause an increase

in V̄i (destabilizing faults) and faults that slow down the

1A continuous real-valued function is said to be of class K if it is
monotonically non-decreasing and is zero at zero.
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decay rate of V̄i beyond the minimum rate enforced by

the healthy robust controller (performance-degrading faults)

will be detected and isolated. The condition in part (b) gives

the FDI rule for the case when, immediately prior to the

fault, z̄i lies within its residual set. In this case, a fault in

the i-th actuator that causes z̄i to begin to escape its terminal

set gets detected and isolated. Essentially, Eq.10 acts as a

dedicated FDI filter for the i-th controller – albeit in terms

of a differential inequality rather than a differential equation

– with either ˙̄V i (as in condition (a)) or V̄ (as in condition

(b)) serving as a residual to be evaluated and compared

against some alarm threshold.

Remark 2: Note that the FDI rules in Proposition 2 cannot

be used to declare with certainty that a fault exists in the i-
th actuator unless at the time of FDI z̄ lies within Ω̄k

s (or, at

least, within Πk
i ) which is a region where ˙̄V i is guaranteed

to satisfy Eq.10 under constraints and in the absence of

faults in the i-th actuator. As such, any observed behavior of

the i-th subsystem inconsistent with Eq.10, while z̄ is within

this region, is conclusive indicator of a fault. In this sense,

Ω̄k
s is not only a stability region but also a region where

FDI is feasible. This dual interpretation is a consequence

of using robust stabilization as a tool for FDI.

Remark 3: The fact that each subsystem in Eq.5 is driven

by a different manipulated input is an important structural

feature that facilitates the derivation of the desired FDI

rules. However, this feature alone is insufficient to uniquely

isolate faults in a given actuator due to the inherent coupling

between the two subsystems in Eq.5 which implies that the

evolution of a given subsystem, say the z̄1-subsystem, will

not only be sensitive to fk
a1

but could also be influenced

indirectly by fk
a2

through the effect of the latter on z̄2.

Decoupling the effect of fk
aj

on z̄i, where j 6= i, is

achieved by the robust controllers which not only suppress

the effect the uncertainty but also cancel the influence

of each subsystem on the other and enforce satisfaction

of Eq.10. Due to the presence of control constraints, this

decoupling is guaranteed only within Πk
i outside of which

no conclusions can be drawn regarding stability or FDI.

Remark 4: Under the FDI scheme of Proposition 2, faults

that do not cause a breach of the expected bounds on ˙̄V i

and V̄ will go undetected. Such faults, however, are not

detrimental to closed-loop stability or the desired perfor-

mance properties, and thus require no corrective action.

The fact that the FDI thresholds can be tightened through

proper controller tuning also provides a handle to minimize

missed alarms about these faults. Finally, we note that the

performance-based FDI scheme can be used to detect and

isolate both partial and complete actuator failures, as well as

faults that do not necessarily appear in the control actuators,

as long as they influence the evolution of the states.
C. Robust stability-based actuator reconfiguration

Following FDI, the supervisor needs to determine which

backup control configuration can be activated to maintain

robust closed-loop stability. To this end, consider the sys-

tem of Eq.5 where, for each control configuration: (1) a

family of robust controllers of the form of Eqs.6-7 have

been designed, (2) the robust stability and FDI regions

Ω̄k
s(uk

max, θb) have been determined, and (3) given the

desired uncertainty attenuation level δ̄d := mini{δ̄di
},

appropriate values for φi have been determined (e.g., choose

φi ≤ mini{φ
∗

i }). Theorem 1 below describes how FDI and

actuator reconfiguration tasks are integrated to ensure fault-

tolerance in the approximate closed-loop system.

Theorem 1: Consider the closed-loop system of Eqs.5-7

with k(0) = j ∈ K, z̄(0) ∈ Ω̄j
s(u

k
max, θb). Let Td :=

min{t : f j
ai

(t) 6= 0}, for some i, then the switching rule:

k(t) =

{

j, 0 ≤ t < Td

ν 6= j, t ≥ Td, z̄(Td) ∈ Ω̄ν
s , u

ν
r = uj

r, r 6= i

}

(11)

practically stabilizes the origin of the closed-loop system

and lim sup
t→∞

V̄i(z̄i(t)) ≤ δ̄d, for i = 1, 2.

The switching law of Eq.11 ensures that (1) the fall-back

actuator configuration activated and implemented following

FDI is one that guarantees robust closed-loop stability

and the desired degree of uncertainty attenuation (this is

captured by requiring z̄(Td) ∈ Ω̄ν
s ), and (2) only the faulty

actuators of the operating configuration are switched out

while the healthy ones remain active in the new configura-

tion (this is captured by the requirement uν
r = uj

r, r 6= i).
Remark 5: It can be shown using regular perturbation tech-

niques that the FDI-FTC architecture designed on the basis

of the approximate system continues to enforce stability

and fault-tolerance in the infinite-dimensional system of

Eqs.1-4 if the approximation is of a sufficiently high-order

and the FDI rules are appropriately modified to account

for approximation errors. Specifically, the closeness of

solutions between the approximate and infinite-dimensional

systems can be exploited to obtain modified FDI thresholds

that are O(ǫ(N)) larger than the bounds obtained for the

approximate system, where ǫ(N) is a small positive real

number that satisfies limN→∞ ǫ(N) = 0. By limiting the

FDI region to a subset of the stability region (where z can

be used to reliably infer z̄), a fault in the i-th controller

is then declared if the modified threshold is breached,

since a breach in this case exceeds the maximum possible

approximation error (see [21] for the mathematical details).

Remark 6: The on-line implementation of the FDI-FTC

architecture presented above requires that the values of the

state variables z be known. To address the problem when

only limited measurements of the principal moments of the

PSD and the continuous-phase variables are available, a

nonlinear state observer of the following form can be used

to estimate z from the measured outputs:

η̇ = f̃(η) + g̃(η)u + w̃(η)θn + L(y − h̃(η)) (12)

where η ∈ IRn+N denotes the observer state vector, y is

the measured output vector, h̃(η) is the estimated value of

the output, θn denotes a nominal value for θ(t) and L is a

matrix chosen so that the eigenvalues of the matrix CL =

[∂f̃
∂η

− L∂h̃
∂η

](η=ηs), where ηs is the operating steady-state,

lie in the open left-half of the complex plane. It can be
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shown (e.g., [25]) that the bounded stability of the closed-

loop system resulting from the application of a robust output

feedback controller that combines the controller of Eqs.6-

7 with the observer of Eq.12 to the particulate process is

guaranteed (in the absence of faults), provided that there

exists a matrix L such that CL = (1/µ)Ā where µ is a

sufficiently small positive parameter (related to the size of

the observer gain) and Ā is a Hurwitz matrix. Similar to the

handling of approximation errors, state estimation errors can

be accounted for in the FDI rules by (1) enlarging the FDI

thresholds further to account for the discrepancy between η
and z̄, and (2) limiting the FDI region to a smaller subset of

the stability region where η can be used to reliably infer z̄.

Unlike the state feedback case, however, FDI under output

feedback is possible only after η has converged sufficiently

close to z (which occurs fast for sufficiently small µ).

V. APPLICATION TO A CONTINUOUS CRYSTALLIZER

WITH FINES TRAP

We consider an isothermal continuous crystallizer with

a fines trap to demonstrate the implementation of the

proposed FDI-FTC strategy. The trap is used to remove

small crystals and increase the mean crystal size. In a

crystallizer, the precise regulation of the shape of the crystal

size distribution (CSD) is important because it significantly

influences the necessary liquid-solid separation and the

product properties. Under standard modeling assumptions,

the following process model can be derived [26]:
∂n

∂t
= −k1(c− cs)

∂n

∂r
−
n

τ
− h̄(r)

2
∑

j=1

εj(t)
n

τ̄j

+ δ(r − 0)ǭk2 exp
(

−k3/(c/cs − 1)2
)

dc

dt
=

∑2
i=1ϕi(t)(c

0
i − ρ)

ǭτ
+

(ρ− c)

τ
+

(ρ− c)

ǭ

dǭ

dt

(13)

where n(r, t) is the number of crystals of radius r ∈ [0,∞)
at time t per unit volume of suspension, τ is the residence

time, c is the solute concentration in the crystallizer, ρ is

the particle density, c0i is the solute concentration in the i-th
feed stream, ϕi is a binary variable that takes a value of 1

whenever the i-th feed stream is used and zero otherwise,

ǭ = 1 −

∫

∞

0

n(r, t̄)
4

3
πr3dr is the volume of liquid per

unit volume of suspension, cs is the concentration of solute

at saturation, k1, k2, and k3 are constants, and δ(r − 0)
is the standard Dirac function. The term containing the

Dirac function in Eq.13 accounts for the production of

crystals of infinitesimal (zero) size via nucleation. The rate

at which crystals are circulated in the fines trap (using the

j-th flow control actuator) is 1/τ̄j = F0j
/V , (F0j

is the

fines recirculation rate and V is the active volume of the

crystallizer which is assumed to be constant), εj is a binary

variable that takes a value of 1 whenever the j-th flow

control actuator in the fines trap is used and zero otherwise,

and h̄(r) expresses the desired selection curve for fines

destruction (classification function). It is desired to remove

with the fines trap crystals of size rm and smaller, and

therefore h̄(r) = 1 for r ≤ rm and h̄(r) = 0 for r > rm.

All process parameter values can be found in [6].

The control objective is to stabilize the crystal and

solute concentrations at desired set-points, ν1 = 0.015 and

ν2 = 0.5996, respectively, by manipulating the flow rate

of suspension through the fines trap and the inlet solute

concentration in the presence of actuator constraints and

faults. Measurements of the crystal concentration (e.g., via

light scattering techniques) and the solute concentration

(e.g., via mass spectrometer) are assumed to be available.

Uncertainties in the form of modeling errors in the pre-

exponential factor of the nucleation rate, k2, and the density

of crystals, ρ, are considered. For simulation purposes, we

set k2 = k2,nom + 0.5k2,nom sin(0.5t) and ρ = ρnom +
0.1ρnom where k2,nom and ρnom are the nominal values.

To ensure actuator fault-tolerance, it is assumed that, for

each manipulated input, an appropriate redundant actuator

is available for use as backup in the event that the primary

control actuator fails. At any given time, only one actuator is

used for each manipulated variable, while the other is kept

dormant (i.e., ϕ1(t) + ϕ2(t) = 1 and ε1(t) + ε2(t) = 1 for

all t ≥ 0). Using the method of moments and approximating

the size distribution function using a Laguerre polynomial

expansion to close the set of moment equations [27], an

approximate fifth-order nonlinear ODE system describing

the evolution of the first four moments of the CSD and the

solute concentration is obtained in the form of Eq.5 and

used for the synthesis of the appropriate output feedback

controllers (by combining the controllers of Eqs.6-7 with

the observer of Eq.12) which are then implemented on a

sufficiently high-order discretization of the process model

of Eq.13 obtained using a finite-difference scheme with

1000 discretization points (higher order discretizations led

to identical results), starting from the initial condition

n(r, 0) = (2.189×10−3)e−1.168r mm−4, c(0) = 992.1 kg ·
m−3. The model derivation and output feedback controller

synthesis details are omitted due to space limitations.

To detect and isolate faults during crystallizer operation,

we consider the following two residual signals. The resid-

ual, r1(t) := ‖η1(t) − w̄1(t)‖, is dedicated to the first

manipulated input (flow rate through fines trap), where η1
is an estimate of z1 generated from the observer of Eq.12

using measurements of the crystal concentration, and w̄1 is

a copy of z̄1 (when fa1
= 0) whose evolution is estimated

from Eq.10. The second residual, r2(t) := ‖η2(t)− w̄2(t)‖,

is dedicated to the second manipulated input (solute feed

concentration), where η2 is an estimate of z2 generated from

the observer of Eq.12 using measurements of the solute

concentration, and w̄2 is a copy of z̄2 (when fa2
= 0) whose

evolution is also estimated from Eq.10. The following

thresholds δ1 = 0.01 and δ2 = 0.025 are chosen for r1 and

r2, respectively, (by properly tuning the controllers and ob-

server) to account for the combined effects of uncertainties,

state estimation and model reduction errors in the absence of

faults. To demonstrate how the integrated FDI-FTC scheme

works, the process is initialized using the healthy controllers

which successfully drive the controlled outputs into their

prescribed terminal sets very quickly (see Figs.1(a)-1(d)).
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We begin to monitor the evolution of the state estimates at

Tb = 5 hr (to allow sufficient time for the convergence

of the estimation errors; see Remark 6). At Tf1 = 15
hr, failure is introduced in the actuator manipulating the

suspension flow rate through the fines trap (see the solid line

in Fig.1(c)). Figs.1(e)-1(f) depict how this failure is detected

and isolated since it causes r1 to cross its specified threshold

at t = 15.51 hr, while not affecting r2. Following FDI in the

first controller, the supervisor switches to a backup actuator

that maintains the closed-loop outputs near their desired set-

points. This is shown by the solid lines in Figs.1(a)-1(b).

After handling the fault in the first controller, another failure

in the actuator manipulating the solute feed concentration

occurs at Tf2 = 25 hr as shown by the solid line in Fig.1(d).

By examining Figs.1(e)-1(f), it is seen that this failure is

detected and isolated immediately since it causes r2 to cross

the threshold at t = 25.07 hr, while not affecting r1 which

remains within its threshold limit. Following the detection

and isolation of the second actuator failure, the supervisor

switches to a backup actuator to preserve robust closed-loop

stability as shown by the solid lines in Figs.1(a)-1)(b). The

dashed lines in Figs.1(a)-1(b) show the destabilizing effect

of controller failures when no corrective action is taken.
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Fig. 1. Evolution of the controlled outputs (a)-(b) (solid), manipulated
inputs (c)-(d) and FDI residuals (e)-(f) under two consecutive failures in
the control actuators and subsequent actuator reconfiguration. The dashed
lines in (a)-(b) show the behavior in the absence of failure compensation,
and the dashed lines in (c)-(d) depict the outputs of the backup actuators.
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