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Abstract— Business networks provide one of the most com-
pelling environments to study the conflicting effects of com-
petition and cooperation on multi-agent dynamical systems.
While firms engage various merger and divestiture strategies
to create the desired cooperative environment that enhances
their market power, governmental regulatory agencies enforce
antitrust measures that protect competition as a means to limit
the market power of these organizations. Merger simulation has
subsequently evolved in recent years as a mechanism to study
the impact of different organizational structures on the market.
Nevertheless, typical economic models can often lead to compe-
tition dynamics that arbitrarily lose stability when considering
different organizational structures. This work provides stability
robustness conditions with respect to coalition structure for
profit-maximizing dynamical systems with network demand,
and partially convex utility. In particular, we show that stability
of the coalition of all agents is sufficient to guarantee stability
of all other coalition structures. These conditions are then
leveraged to provide a systematic methodology for estimating
a rich variety of demand systems that guarantee sensible
stability results regardless of the structure of cooperation in
the marketplace.

I. BACKGROUND: FIRMS, MARKET POWER, AND

MERGER SIMULATION

One of the most well-studied multi-agent systems is the

marketplace. Market dynamics are governed by competition,

nevertheless one of the most interesting features of the mar-

ket is the spontaneous emergence of cooperation structures

we call firms. Firms represent coalitions of agents that offset

the computational limitations of individual agents to better

compete for scarce resources. They orchestrate policies that

attempt to drive profit-generating dynamics in the face of

considerable uncertainty, both from the consumer market and

from the competitive forces of other firms. Piloting a firm

is one of the most interesting and difficult control problems

we’ve encountered.

One way firms cope with market uncertainty is through

growth. As firms deploy successful policies, they acquire

capital that enable them to attract the cooperation of more

agents in the marketplace. This can happen organically
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through the hiring of employees and the natural expansion

of the firm’s existing operations, or it can happen suddenly

through mergers and acquisitions. Either way, such growth

attempts to mitigate uncertainty by either entrenching the

firm in the market niche known to have been previously

successful, or by offsetting risk by diversifying the types

of products or services the firm uses to compete for profits.

As firms generate wealth, they distribute a portion of it

to their stake holders, who then engage the marketplace as

consumers or investors of one kind or another. The ability of

consumers to translate this wealth into an improved quality of

life, however, depends significantly on the balance of power

between firms in the marketplace. When firms are too strong,

they do not have the incentive to innovate, and they can

restrict the flow of existing goods and services to consumers

unless premium prices are paid. When firms are too weak,

they do not have the ability to innovate, nor do they generate

the wealth their stake holders might otherwise have had to

participate more fully as consumers or further investors in

the marketplace. As a result, governments control the growth

and strength of firms, either by stopping proposed mergers

or by forcing firms to divide. This maintains competition as

an effective force to limit the market power of firms, and it

ideally creates resonance between the welfare of consumers

and the welfare of investors that fuel growth.

At the heart of both the firm’s growth strategy and the

government’s regulation strategy, then, lies the ability to

measure a firm’s market power. In 1997 the US Department

of Justice and the Federal Trade Commission’s released

guidelines governing the regulation of mergers within the

United States [1]. This, in turn, precipitated growing interest

in the use of “merger simulations” to estimate the effects of

proposed mergers or acquisitions [6], [7], [13], [2] and [3].

Merger simulations predict post-merger prices based on

a demand model of the relationship between prices charged

and quantities sold by the firms under investigation in the

relevant market. Assumptions or models about supply issues

are also incorporated into the simulation. Under a Bertrand

model of pricing, every firm sets the prices of its brands

to maximize its profits. Equilibrium results when no firm

can unilaterally change its prices to improve its profits.

Simulations compare pre-merger prices and profits with post-
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merger prices and profits to analyze the impact of the

merger. “Reverse” simulations compare prices and profits of

an existing firm with those resulting from the division of

the firm into constitutive components, thereby measuring the

“Value of Cooperation” achieved by the strategic positioning

of the firm as the coalition of those particular components

within the context of the larger market [9], [8], and [10].

In this way, Value of Cooperation can be viewed as a

quantification of market power, and merger simulation can

be thought of as a Value of Cooperation measurement on

the post-merger firm. The presence of market power alone,

however, is not necessarily illegal, nor is it sufficient to give

the firm monopolistic power, as the firm would also need to

create barriers of entry to prevent new firms from competing.

Likewise, there may be other measures used to quantify

the impact of market structure or industrial organization

on market conditions. Nevertheless, such measures typically

compare a property of an equilibrium of one market structure

with that resulting from a different market structure, and

are thus comparative static analyses that typically ignore

dynamic issues.

Often, however, the demand models used in such simula-

tions can lead to unstable equilibria, or even conditions where

no equilibria exist at all for some market structures [3]. Such

results are generally not the foreshadows of pending market

doom should the right conspiracy be formed, but rather

are simply dynamic limitations resulting from mathematical

technicalities of the these models. None of the demand

models typically used in economics, i.e. linear, log-linear

(constant elasticity), logit, AIDS, and PCAIDS, guarantee the

existence and stability of equilibria for all possible market

structures.

Viewing the marketplace as a profit-maximizing multi-

agent dynamical system (Section II), this work resolves

these issues by providing stability robustness conditions with

respect to coalition structure for such systems when these

systems have a particular network demand structure (Section

III). These conditions are then leveraged to provide a system-

atic methodology for empirically estimating a rich variety of

AIDS-like demand systems from market data, using standard

convex-optimization tools, that guarantee sensible stability

results regardless of the structure of cooperation in the

marketplace (Section IV).

II. MARKETS AS MULTI-AGENT SYSTEMS

Consider a market consisting of n products, each produced

and controlled by a single product division. These product

divisions are the constitutive agents in our multi-agent sys-

tem, N, and they are arbitrarily ordered and numbered 1 to

n. Following a Bertrand model of pricing, each agent has

complete authority and control to price its product as it sees

fit. The prices for all the products are public knowledge,

known at any given time by all the agents, and denoted by

the vector x ∈ R
n. For convenience, we will assume that the

prices are in units relative to the unit cost of production for

each product. That is, xi is the markup for product i.

We suppose that the aggregate effect of consumers in

the market is given by a demand function, q(x) : R
n → R

n,

which characterizes how the quantity sold for each product

varies with prices. Note that the demand, qi(x) : R
n →R, for

product i depends, in general, not only on its own price, but

on the prices of all the other products as well.

Each agent is equipped with a utility function that scores

its reward as a function of the decisions of all the agents in

the system. This utility function is a component of the market

utility and is given by each product division’s profits:

Ui(x) = xiqi(x). (1)

A firm, F , is a coalition of agents, represented as a

subset of N. We allow the market to coalesce into m ≤ n

firms, where every agent belongs to one and only one firm.

Thus, the market structure, or industrial organization, F =
{F1,F2, ...,Fm}, is a partition of N. We will write F−1(i) for

the firm to which agent i belongs.

We associate with each firm an objective or profit function

given by the sum of the utility functions of the agents

belonging to the firm,

UF(x) = ∑
i∈F

Ui(x) = ∑
i∈F

xiqi(x). (2)

By associating with a firm, an agent agrees to adjust the

prices of its product to maximize the total profits or objective

of the firm, rather than simply maximize its own utility.

Thus, all agents belonging to the same firm adopt a common

objective and effectively surrender their pricing authority to

the firm, allowing the firm to lose money by underpricing in

one division in order to induce a greater demand and profit

in another division.

Each agent therefore changes its price in the direction of

the gradient of the objective of the firm to which it belongs;

ẋi =
∂UF

∂xi

(x) =
∂ [∑i∈F Ui]

∂xi

= ∑
i∈F

∂Ui

∂xi

(x). (3)

Substituting from (1) for the profit structure of an agent’s

utility and writing them in vector notation, these dynamics

become

ẋ = VF (x) =
[

DF

(

JT
q (x)

)]

x+q(x), (4)

where Jq(x) is the Jacobian of the function q(x), AT denotes

transpose of a matrix A, and DF (A) is defined as: a) di j =
ai j if j ∈ F−1(i), and b) di j = 0 otherwise. Thus, if F =
{(1,2),3} and A were given by

A =





1 2 3

4 5 6

7 8 9



 , then DF (A) =





1 2 0

4 5 0

0 0 9



 .

Given a market structure and a demand function, Equation

(4) thus represents the profit-maximizing dynamics of the

multi-agent system and becomes the central focus of our

analysis.

Our stability robustness problem, then, is to find conditions

under which we can guarantee existence, uniqueness and
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stability of the equilibrium of Equation (4) for all market

structures F ∈ ∆, where ∆ is the set of all partitions of N.

Example 1: Consider a market with three products with

consumer demand given by:




q1(x)
q2(x)
q3(x)



 =





−3 −5 4

−4 −4 3

1 2 −15









x1

x2

x3



+





80

90

80



 (5)

Note that the demand is linear, and based on the signs of

coefficients in the demand function, we can see that Products

(1 and 2) are compliments, while (1 and 3) and (2 and 3)

are substitutes. That is to say, an increase in the price of

Product 1 results in decreased sales of both Products 1 (as

you would expect) and 2 (i.e it is a compliment to Product

1), but an increase of sales of Product 3 (i.e. it is a substitute

for Product 1).

The utility functions of the constitutive agents, meaning

the three product divisions that each control a single product,

are thus given by

U1 = (−3x1 −5x2 +4x3 +80)x1

U2 = (−4x1 −4x2 +3x3 +90)x2

U3 = (x1 +2x2 −15x3 +80)x3

. (6)

Moreover, given any market structure F , the profit-

maximizing dynamics of this multi-agent system then be-

come

ẋ = DF









−3 −4 1

−5 −4 2

4 3 −15







x+q(x). (7)

Now, lets compare the market dynamics for two dif-

ferent industrial organizations. First, we will consider the

organization where every product division is its own firm,

F = {1,2,3}. In this case, the dynamics become:

ẋ =





−3 0 0

0 −4 0

0 0 −15



x+q(x)

⇒





ẋ1

ẋ2

ẋ3



 =





−6 −5 4

−4 −8 3

1 2 −30









x1

x2

x3



+





80

90

80



 (8)

It is easy to verify that this system has a stable equilibrium

at x = (8.91,8.11,3.50) dollars. The demand at this point

becomes q = (26.72,32.42,52.63) units sold per unit time,

and the profits for each firm are U = (238.07,262.93,184.21)
dollars per unit time.

Now let’s consider the organization where Divisions 1 and

2 merge to form a single firm. This market structure is given

by F = {(1,2),3}, and the corresponding dynamics become:

ẋ =





−3 −4 0

−4 −4 0

0 0 −15



x+q(x)

⇒





ẋ1

ẋ2

ẋ3



 =





−6 −9 4

−8 −8 3

1 2 −30









x1

x2

x3



+





80

90

80



 (9)

We see that with these dynamics the system has an equi-

librium at x = (6.40,6.08,3.29) dollars, corresponding to

the demand of q = (43.56,49.95,49.21) units sold per unit

time and profits for the two firms of U = (582.48,161.90)
dollars per unit time. Nevertheless, this equilibrium point

is unstable. As a result, these equilibrium values are never

really attainable, the profits of $582.48 for the merged firm

can not actually be realized, because even small changes in

prices will lead, according to this model, to a never ending

price war that never converges. Note that there is no way

to detect a priori that this particular market structure would

be unstable with this particular demand system. The merger

of Divisions 1 and 3, for example, corresponding to market

structure F = {(1,3),2}, is stable.

III. STABILITY ROBUSTNESS CONDITIONS

Example 1 demonstrates how otherwise reasonable models

of market dynamics can fail when considering industrial

organization issues. The demand model, which is of suffi-

cient fidelity to address questions such as the complimen-

tary/substitutive relationship between products, drives the

prediction that one possible merger will result in prices

going to infinity. In reality, such a merger would not result

in continually increasing prices; this result is simply an

artifact of the model we have chosen. As a result, we see

that this model is simply inadequate to describe market

dynamics under changes in market structure, at least for some

structures.

Nevertheless, if a model breaks down for some market

structures by predicting unstable equilibria (or the lack of

any equilibria, as happens for constant-elasticity models),

can it be trusted to yield accurate results for any market

structure? Whatever simplifications in the model cause it

to drastically fail for some market structures might degrade

its representation of the true dynamics under other market

structures. The only safe course is to identify models that

have sufficient fidelity to yield sensible results for every

possible market structure.

Note that verifying the fidelity of a proposed model by

checking the stability properties for all possible market struc-

tures is intractable; the number of possible market structures

grows worse than exponential with n, the number of products,

and real markets can involve thousands of products. As

a result, we need tractable robustness conditions that can

guarantee existence, uniqueness and stability of equilibria

regardless of market structure.

To generate such conditions, we begin by defining the

quantities we will use to check stability robustness of the

system (4). For notational convenience let F(i) = F−1(i)
denote the firm to which the ith agent belongs. When

introducing the lemmas, we will write Mm,n(F) for the set

of all m×n matrices whose entries are elements of the field

F, and we will abbreviate to Mn(F) in the case of square

matrices. For any square matrix A ∈ Mn(C), we will denote

its numerical range as W (A) = {x∗Ax | ‖x‖2 = 1}, and its

spectrum as σ(A). For a subset S of a vector space, we will
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write co(S) to denote its convex hull. For two subsets A and

B of a group (G,+), we write A+B = {x+y | x ∈ A,y ∈ B}.

Lemma 1: Given the system (4), the Jacobian of the

system dynamics, VF , decomposes as:

JVF
(x) =

[

A(x)+DF (AT (x))
]

+BF (x)+CF (x), (10)

where A(x), BF (x), and CF (x) are given as follows:

A(x) : Aii(x) = 1
2 ∑n

j=1
∂ 2U j

∂x2
i

(x), Ai j(x) = ∂ 2Ui

∂xi∂x j
(x) (11)

BF (x) : Bii(x) = 0, Bi j(x) = ∑k∈F(i)\{i, j}
∂ 2Uk

∂xi∂ x j
(x) (12)

CF (x) : Cii(x) = −∑ j/∈F(i)
∂ 2U j

∂x2
i

Ci j(x) = 0 (13)

Proof: The diagonal entries of JVF
(x) are given by,

Jii(x) =
∂Vi

∂xi

(x) = ∑
j∈F(i)

∂ 2U j

∂x2
i

(x)

=
n

∑
j=1

∂ 2U j

∂x2
i

(x)− ∑
j/∈F(i)

∂ 2U j

∂x2
i

(x)

= 2Aii(x)+Cii(x) = 2Aii(x)+Bii(x)+Cii(x). (14)

For j 6= i, the off-diagonal Ji j(x) is given by,

Ji j(x) =
∂Vi

∂x j

(x) = ∑
k∈F(i)

∂ 2Uk

∂xi∂x j

(x)

= ∑
k∈F(i)∩{i, j}

∂ 2Uk

∂xi∂x j

(x)+ ∑
k∈F(i)\{i, j}

∂ 2Uk

∂xi∂x j

(x)

= ∑
k∈F(i)∩{i, j}

∂ 2Uk

∂xi∂x j

(x)+Bi j(x). (15)

When j ∈ F(i), we then have

Ji j(x) =
∂ 2Ui

∂xi∂x j

(x)+
∂ 2U j

∂xi∂x j

(x)+Bi j(x)

= Ai j(x)+A ji(x)+Bi j(x)

= Ai j(x)+A ji(x)+Bi j(x)+Ci j(x). (16)

Otherwise, when j /∈ F(i), we then have

Ji j(x) =
∂ 2Ui

∂xi∂x j

(x)+Bi j(x)

= Ai j(x)+Bi j(x)+Ci j(x) (17)

Therefore,

JVF
(x) =

[

A(x)+DF (AT (x))
]

+BF (x)+CF (x). (18)

Definition 1: The market structure consisting of a single

firm, F = {(1,2, ...,n)}, that is, where all agents belong to

the same coalition, is called the Grand Structure, denoted

G , and the associated firm is called the Grand Coalition,

denoted G.

Lemma 2: Given by (13) and Definition 1, CG (x) = 0.

Proof: This follows directly from the definition of

CF in (13), where the only nonzero elements are on the

diagonal, and the diagonal elements become zero for the

Grand Structure since all agents belong to the same firm.

Definition 2: A function h(x) : R
n → R

m is said to have

network structure if there exist functions fi j : R
2 → R such

that

hi(x) =
n

∑
j=1

fi j(xi,x j), i = 1, ...,n. (19)

Lemma 3: A demand function, q(x) : R
n → R

n, with

network structure induces network structure on the market

utility function, given by (1), and the objective function of

each firm in the market, given by (2).

Lemma 4: If the utility function, U(x), associated with

system (4) has network structure, then BF (x) = 0 for all

market structures F .

Proof: Network structure of U(x) implies there exist

functions fi j : R
2 →R such that Ui(x) = ∑n

j=1 fi j(xi,x j), i =
1, ...,n. Hence, for k /∈ {i, j},

∂ 2Uk

∂xi∂x j

(x) =
n

∑
l=1

∂ 2 fkl(xk,xl)

∂xi∂x j

=
∂ 2 fki(xk,xi)

∂xi∂x j

+
∂ 2 fk j(xk,x j)

∂xi∂x j

=
∂

∂xi

∂ fki(xk,xi)

∂x j

+
∂

∂x j

∂ fk j(xk,x j)

∂xi

= 0.

Therefore, following from (12), BF (x) = 0 for all market

structures F .

Definition 3: A utility function U(x) : R
n → R

n is said to

be partially convex if,

∂ 2U j

∂x2
i

(x) ≥ 0 ∀ j 6= i, ∀x ∈ R
n. (20)

Lemma 5: When utility functions of the system (4) are

partially convex, CF (x) is a negative semidefinite diagonal

matrix.

Definition 4: An n-product market with profit-maximizing

dynamics given by (4), with demand function q(x) : R
n →R

n

that has network structure, and with partially convex utility is

said to be an industrial organization network for any market

structure F .

Definitions 1 through 4 equip the models we will use to

represent market dynamics with the technical structure we

will need to guarantee stability robustness for all industrial

organizations. In particular, industrial organization networks

provide a model class with sufficient fidelity to explore ques-

tions involving changes in market structure. The following

lemma comes from various parts in [4].

Lemma 6: Let A,B ∈ Mn(C).

(i) W (A) is compact and convex.

(ii) co
(

σ(A)
)

⊆W (A).
(iii) W (A+B) ⊆W (A)+W (B).
(iv) A is normal ⇒ co

(

σ(A)
)

= W (A).

Lemma 7: For A ∈ Mn(R),

maxW (A+AT ) = maxReW (A)+maxReW (AT ).
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Proof: Essentially follows from the definition of nu-

merical range,

maxW (A+AT ) = max
‖x‖2=1,x∈Cn

x∗(A+AT )x

= max
‖x‖2=1,x∈Cn

(

x∗Ax+ x∗AT x
)

= max
‖x‖2=1,x∈Cn

(

x∗Ax+ x∗Ax
)

= 2 max
‖x‖2=1,x∈Cn

Re(x∗Ax) = 2maxReW (A).

Following the same reasoning, maxW (A + AT ) =
2maxReW (AT ), hence maxW (A + AT ) = maxReW (A) +
maxReW (AT ).

The following lemma is from [12].

Lemma 8: Given f : R
n → R

n, the equation f (x) = y will

have exactly one root for each y if there exist positive ε,R ∈
R such that for all x ∈ R

n, ‖x‖2 > R,

zT ∂ f

∂x
(x)z ≤−ε‖z‖2

2 ∀z ∈ R
n.

Corollary 1: Given f : R
n → R

n, the equation f (x) = y

will have exactly one root for each y if there exists positive

ε ∈ R such that,

maxReW

(

∂ f

∂x
(x)

)

≤−ε ∀x ∈ R
n.

Proof: For all z ∈ R
n, zT

‖z‖2

∂ f

∂x
(x) z

‖z‖2
∈W

(

∂ f

∂x
(x)

)

, and

also, zT

‖z‖2

∂ f

∂x
(x) z

‖z‖2
∈ R, hence

zT

‖z‖2

∂ f

∂x
(x)

z

‖z‖2
∈W

(

∂ f

∂x
(x)

)

∩R ⊆ ReW

(

∂ f

∂x
(x)

)

.

Thus, if maxReW
(

∂ f

∂x
(x)

)

≤−ε then,

zT

‖z‖2

∂ f

∂x
(x)

z

‖z‖2
≤ maxReW

(

∂ f

∂x
(x)

)

≤−ε

⇒ zT ∂ f

∂x
(x)z ≤−ε‖z‖2

2,

which satisfies the condition of Lemma 8.

Lemma 9: For matrix A ∈ Mn(R), W
(

DF (A)
)

⊆W (A).

Proof: For F ⊆ F = {F1,F2, . . .Fm}, let IF =
diagn

i=1 (χF(i)), with χF(·) being the membership function

of F . Note that

DF (A) =
m

∑
k=1

IFk
AIFk

.

Let w ∈ W
(

DF (A)
)

and let x ∈ C
n such ‖x‖2 = 1 and

w = x∗DF (A)x. Since ∑m
k=1 IFk

= I, ∑m
k=1 IFk

x = x, hence

1 = ‖x‖2
2 = x∗x =

(

m

∑
k=1

IFk
x

)∗
m

∑
l=1

IFl
x

=
m

∑
k=1,l=1

x∗IFk
IFl

x =
m

∑
k=1

x∗I2
Fk

x =
m

∑
k=1

‖IFk
x‖2

2.

Let F
+ = {F ∈F : IF x 6= 0}. For F ∈F+, let yF = IF x

‖IF x‖2
.

Therefore ‖yF‖2 = 1 and IF x = ‖IF x‖2yF .

w = x∗DF (A)x = x∗

(

∑
F∈F

IF AIF

)

x = ∑
F∈F

x∗IF AIF x

= ∑
F∈F

(IF x)∗A(IF x) = ∑
F∈F+

(IF x)∗A(IF x)

= ∑
F∈F+

(‖IF x‖2yF)∗A(‖IF x‖2yF)

= ∑
F∈F+

‖IF x‖2
2(y

∗
F AyF), (21)

while ∑F∈F+ ‖IF x‖2
2 = ∑F∈F ‖IF x‖2

2 = 1. Therefore, w is a

convex combination of y∗F AyF , which are in W (A) because

‖yF‖2 = 1. W (A) is convex (Lemma 6) ⇒ w ∈W (A).
These lemmas demonstrate intermediate results that will

enable us to provide stability robustness conditions for

profit-maximizing dynamics under any coalition structure. In

particular, Lemma 8 and Corollary 1 provide the machinery

used to guarantee existence and uniqueness of an equilib-

rium for every market structure. To demonstrate stability of

these equilibria using Lyapunov’s indirect method, Lemma

1 provides a decomposition of the Jacobian of the system

dynamics that simplify under certain technical assumptions.

Lemmas 2-5 then invoke these technical assumptions to char-

acterize an industrial organization network and simplify the

expression for the Jacobian of its dynamics. Finally, Lemmas

6, 7, and 9 then yield the machinery to demonstrate how a

simple check on the stability of the Grand Structure dynamics

will guarantee stability for all other market structures. We

now state and prove the stability robustness theorem.

Theorem 1: Consider an n-product market with agent set

N = {1,2, ...,n} and an industrial organization network char-

acterized by (4). Let the Grand Coalition, G, of this network

be given as in Definition 1, with objective function, UG, as

specified in (2). Under these conditions, then (4) will have a

unique and stable equilibrium for all F ∈ ∆, where ∆ is the

set of all partitions of N, if there exists positive ε ∈ R such

that

maxσ
(

H(x)
)

≤−ε ∀x ∈ R
n, (22)

where H(x) is the Hessian matrix of the objective function

UG(x).
Proof: Let F be an arbitrary market structure in ∆.

Let JVF
(x) be the Jacobian matrix of VF (x) given by (4).

Following from Lemma 1,

JVF
(x) =

[

A(x)+DF

(

AT (x)
)]

+BF (x)+CF (x).

The network structure of demand, q(x), and thus also of

utility, U(x), then imply that BF (x) = 0 as shown in

Lemma 4. In the case that F is the Grand Structure,

we know from Lemma 2 that CG (x) = 0. Thus, JVG
(x) =

A(x)+ AT (x) = H(x). In general, however, we have JVF
=

A(x)+DF (AT (x))+CF (x). From Lemma 6 this yields,

W
(

JVF
(x)

)

= W
(

A(x)+DF

(

AT (x)
)

+CF (x)
)

⊆W (A(x))+W
(

DF

(

AT (x)
))

+W (CF (x)).
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From Lemma 9, W
(

DF

(

AT (x)
))

⊆W
(

AT (x)
)

, hence

W
(

JVF
(x)

)

⊆ W (A(x)) + W
(

AT (x)
)

+ W (CF (x)) .

As a result,

maxReW
(

JVF
(x)

)

≤ maxReW (A(x))+ReW
(

AT (x)
)

+maxReW (CF (x)) .

Due to Lemma 5, W (CF (x)) ≤ 0. Also, from Lemma 7,

maxReW (A(x))+ReW
(

AT (x)
)

= maxW
(

A(x)+AT (x)
)

= maxW
(

H(x)
)

= maxσ(H(x)).

Following that,

maxReW
(

JVF
(x)

)

≤ maxσ(H(x)) ≤−ε.

By Corollary 1, we can conclude that the equation VF (x) =
0 has exactly one solution xe. Hence the market structure

F yields exactly one equilibrium xe. Moreover, since the

Jacobian evaluated at the equilibrium point,JVF
(xe), satisfies,

maxReσ(JVF
(xe)) ≤ maxReW (JVF

(xe)) ≤−ε < 0,

then the equilibrium xe is locally stable due to Lyapunov’s

indirect method.

IV. DEMAND ESTIMATION FOR INDUSTRIAL

ORGANIZATION NETWORKS

This section shows how we apply the stability robustness

condition in Theorem 1 to a class of AIDS-like demand mod-

els. We will begin to cover first our main tool, semidefinite

programming [11] [5], used in finding the model parameters

that best fit the data, while meeting the sufficient condition

given in Theorem 1.

A. Semidefinite Programming

In semidefinite programming, one minimizes a convex

function subject to the constraint that an affine combination

of symmetric matrices is positive semidefinite. As the authors

of [11] noted, such a constraint is nonlinear and nonsmooth,

but convex. In fact, it is shown in [11] that although

semidefinite programs are much more general than linear

programs, they are not much harder to solve. Most interior-

point methods for linear programming have been generalized

to semidefinite programs. As in linear programming, these

methods have polynomial worst-case complexity, and per-

form very well in practice.

Let us show the canonical form of a semidefinite program,

minimize f0(x)

subject to σ

(

Ψ0 +
n

∑
i=1

Ψixi

)

≤ 0, (23)

where f0(x) is convex and Ψi are symmetric for i =
0,1, . . . ,n.

B. Demand Estimation with Stability Robustness Constraint

Now we will show our methodology applying to a class of

demand models. Let us first do so by describing our model,

after which we shall show that both the requirements given

in Definition 2 and Definition 3 are met. This demand model

is based on the concept of effective price: we recognize that

changing prices from different price ranges will yield differ-

ent effects on demand. Therefore, let fi(xi) be a function

representing the effective price of product i, our demand

function will be,

q = P f (x)+b,where f (x) =
(

f1(x1), f2(x2), . . . , fn(xn)
)

.

(24)
1) Use demand functions given by Equation (24): Let us

show that this demand model given in (24) satisfies all the

assumptions of an industrial organization network. First, it

can be shown that the network assumption in Definition 2 is

met, because

qi(x) =
n

∑
j=1

pi j f j(x j). (25)

Also the partially convex requirement, as defined in Defini-

tion 3, is met. For j 6= i,

∂ 2U j

∂x2
i

(x) =
∂ 2[x jq j(x)]

∂x2
i

= x j

∂

∂xi

∂q j(x)

∂xi

= x j

∂

∂xi

(

p ji

∂ f j(x j)

∂xi

)

= 0 ≥ 0. (26)

2) Use splines to design the effective price functions, f(x),

in the demand model : These functions should be monotone

and will serve as basis functions in a nonlinear regression

when fitting P and b from data. The choice of f(x) can be

guided by data or use professional expertise to characterize

price sensitivity in the market.
3) Substitute the desired effective price functions to build

a semidefinite program. Note that this program samples H(x)
to try to enforce that σ(H(x)) ≤ −ε everywhere: This is

the most important step in the process. Let us be detailed in

showing how it is carried out. Assuming that we are given K

data points (qi,xi), i = 1,2, . . .K, where qi ∈ R
n are quantity

demanded at a price setting xi ∈ R
n, our objective is to

minimize the regression error. For example, if the regression

error is measured by the l2 norm, then we have a least square

regression problem,

find P ∈ Mn(R),b ∈ R
n to

minimize
K

∑
i=1

‖Pxi +b−qi‖
2
2. (27)

In addition, we need to ensure that the condition (22) is

met. This condition needs to be held for an infinite number

of x ∈ R
n. However, by looking carefully at,

H(x) =
∂ 2UG

∂ 2x
=

[

Pdiag

(

d fi

dxi

(x)

)

+diag

(

d fi

dxi

(x)

)

PT

]

+diag

(

∑
j

pi jx j

d2 fi

dx2
i

(x)

)

, (28)
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Fig. 1. Plot showing price sensitivity: a spline going through points (5,19),
(20,47), (35,56), and (50,61).

we recognize that if we require that the effective price

functions are linear for x∈Cn(R) = {R
n, ‖x‖2 > R} for some

radius R, then, H(x) is unchanged for x ∈ Cn(R). Therefore

we only need to meet the constraint (22) for a compact ball

x ∈Bn(R) = {x ∈ R
n | ‖x‖2 ≤ R}. In fact, we will make one

step further by sampling the points in this ball, so that the

number of points to check is finite. This is often done in

practice. So, let S = {sj} be a finite sample of x ∈ Bn(R),
constraint (22) can be approximated by,

maxσ
(

H(sj)
)

≤−ε ∀sj ∈ S, (29)

If we let y =
[

p11 . . . p1n b1 . . . pn1 . . . pnn bn

]T
,

Π ∈ MKn,n2+n(R), Π = diag(Σ,Σ, . . . ,Σ), where Σ ∈ MK,n+1,

[Σ]i =
[

f1(x1) . . . fn(xi) 1
]

,

z =
[

q11 . . . qK1 . . .q1n . . .qKn

]T
, and l = n2 +n, then

the regression objective becomes,

find y ∈ R
l to

minimize ‖Πy− z‖2
2. (30)

Also, let Φi j(s) ∈ Mn(R), Φi j(s) = diagn
i=1(∑s j

∂ 2 fi
∂xi

(si)),

Θi j(s) ∈ Mn(R) having two non-zero (i, j)th and

( j, i)th entries with value ∂ fi
∂ xi

(si), Ψi j ∈ Mn‖S‖(R),

Ψi j = diagsk∈S [Φi j(sk)+Θi j(sk)], and Ψ0 ∈ Mn‖S‖(R),Ψ0 =
diag(ε,ε, . . .ε), then the regression constraint becomes

subject to maxσ

[

Ψ0 +
n

∑
i=1, j=1

Ψi jy(n+1)i+ j

]

≤ 0. (31)

(30) and (31) together constitute a semidefinite program.

4) Solve for y - or equivalently - P and b : Solving the

least square semidefinite program in (30) and (31) yields the

network demand function, q(x), that best fits the data, and

guarantees that the conditions from Theorem 1 on H(x) that

guarantee stability robustness for all market structures are

met.
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Fig. 2. Plot showing the histogram of residuals. The top one is the
histogram residual values, while the bottom shows a histogram of absolute
residuals. These results indicate that the industrial organization network
model fits the data extremely well.

C. Numerical Experiment

Consider 100 data points generated by the log-linear

model,

logq(x) =





−0.57 0.10 −0.12

0.20 −1.00 0.11

−0.02 0.06 −0.68



 logx+





7

7

7



+w, (32)

where w is white noise with standard deviation 1. We choose

fi(·) to be the same function for each dimension: a spline

going through (5,19), (20,47), (35,56), and (50,61) (we

chose these points by looking at the generated data, and

roughly estimating the effects of different price ranges on

demand.) A plot showing this spline is shown in Figure 1.

Based on this spline, we perform a semidefinite regression

to fit the demand function q = A f (x)+b while meeting the

robustness condition. The optimal parameters become:

q(x) =





−5.70 0.96 −1.23

1.96 −10.00 1.17

−0.24 0.59 −6.82



 f (x)+





481.22

636.45

563.00



 . (33)

These matrices do not look quite the same as the matrices

in the original model because our regression model is not

in logarithm scale. To see how our model fits the demand,

we plot of percentage difference of demands between our

regression model and the log-linear model in Figure 2.

Since we have 100 data points, and each data point reflects

the demand of three different products, we show in our

plot the histogram of 300 differences, and the histogram

of 300 absolute error. While the demanded quantities range

between 150 and 400 units, the differences range between

0 and 12 units. For 90% of the data points, the difference

is less than 1.5 percent. The maximal difference is about

3.5 percent. Our model fits the data quite well, but more

importantly, it guarantees existence, uniqueness, and stability

of equilibriums under all market structures.
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Fig. 3. Demand plots of each product with respect to its own price, fixing
the other two prices at 20. The solid lines plot our demand functions, and
the dashed lines plot the loglinear demand functions.

Note also see that the complimentary/substitutive relation-

ships between different products are also preserved. In the

log-linear model, we see that the pairs of products 1 and

2, and 2 and 3 are substitutes, while products 1 and 3 are

complements. This is also reflected by the sign of elements

of P.

Finally, we show how our demand model reflects own-

price demand by plotting qi with respect to xi, while fixing

both other two prices at 20. The shape looks quite realistic

(Figure 3), as it shows a decreasing function that gets

flatter when price increases, reflecting the law of diminishing

returns. These results suggest the method is quite practical.

We also show the log linear demand function in the same

plot. The difference between our demand function and the

log linear demand function is when price is close to 0,

and due to nature of logarithm, log-linear demand increases

exponentially fast.

V. CONCLUSION

In this paper we demonstrated stability robustness con-

ditions with respect to coalition structure for a class of

profit-maximizing nonlinear systems. These conditions were

then leveraged to provide a systematic methodology for

estimating a rich variety of demand systems from data that

guarantee sensible stability results regardless of the structure

of cooperation within the marketplace.

The importance of these results emerges from the ability

for regulators and managers alike to reliably conduct market

power analyses using merger simulation and reverse merger

simulation techniques. In such studies one can compute, for

example, the value of cooperation of a firm as a measure of

its market power.
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