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Abstract— Combining local state-feedback laws and open-
loop schedules, we design a hybrid control algorithm for robust
global stabilization of the pendubot to the upright configuration
(both links straight up with zero velocity). Our hybrid controller
performs the swing-up task by executing a decision-making al-
gorithm designed to work under the presence of perturbations.
The hybrid control algorithm features logic variables, timers,
and hysteresis. We explicitly design, implement, and validate
this control strategy in a real pendubot system using Mat-
lab/Simulink with Real-time Workshop. Experimental results
show the main capabilities of our hybrid controller.

I. INTRODUCTION

The pendubot is a two-link underactuated mechatronic

device frequently used for research in nonlinear control

and robotics. As shown in Figure 1, the pendubot consists

of a two-link planar robot arm (two coupled pendulums)

with only one torque actuator at link 1. The pendubot is

equipped with two optical sensors that measure angles at

the joints. Each joint can fully rotate 360 degrees without

any constraints on their motion. The pendubot has a total

of four equilibrium configurations defined by the angular

position and velocity of its links: both links resting (Ar),

link 1 resting and link 2 upright (Aru), link 1 upright and

link 2 resting (Aur), and both links upright (Au).

One control challenge for the pendubot system is robust

global stabilization of the upright configuration Au. While,

several control strategies such as energy pumping [2], [4],

jerk control [1], trajectory tracking [6], and hybrid control

[9] have been proposed in previous years to solve the

pendubot swing-up problem, the first provable robust and

global feedback stabilizer stems from the hybrid control

strategy in [7]. This general control strategy for robust global

stabilization of nonlinear systems applied to the pendubot

system combines, as illustrated in [7], local and regional

feedback stabilizers with open-loop schedules to steer the

trajectories of the pendubot to Au, even from configurations

like Aru and Aur where energy-based control strategies

would fail. In this paper, we explicitly design, implement,

and validate the hybrid control algorithm proposed in [7].

The paper is organized as follows. Section II presents

a model for the pendubot system and the control strategy.

In Section III, we design the pieces building the hybrid

controller. Section IV describes the testbed for hardware

implementation and presents experimental results.
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II. ROBUST GLOBAL STABILIZATION OF THE PENDUBOT

Through the use of Euler-Lagrange equations, we model

the pendubot system in Figure 1 as a differential equation

with states given by a vector of joint angles φ := [φ1 φ2]
T ∈

R
2 and angular velocities φ̇ ∈ R

2.

φ̈ = N−1R − N−1Oφ̇ − N−1P − N−1Q, (1)

where, omitting the arguments φ and φ̇ for simplicity,

N(φ) =

[

θ1 + θ2 + 2θ3 cos(φ2) θ2 + θ3 cos(φ2)
θ2 + θ3 cos(φ2) θ2

]

,

O(φ, φ̇) =

[

−θ3 sin(φ2)φ̇2 −θ3 sin(φ2)φ̇2 − θ3 sin(φ2)φ̇1

θ3 sin(φ2)φ̇1 0

]

,

P(φ) =

[

θ4γ cos(φ1) + θ5γ cos(φ1 + φ2)
θ5γ cos(φ1 + φ2)

]

,

Q(φ̇) =

[

θ6φ̇1

θ7φ̇2

]

, R(φ, φ̇) =

[

u
0

]

,

The torque input is denoted as u while the seven parameters

in N, O, P, Q, and R denoted as θ := {θ1, θ2, . . . , θ7}
contain the physical parameters of the pendubot system.

These are given by: θ1 = m1a
2
1+m2l

2
1+I1, θ2 = m1a

2
2+I2,

θ3 = m2l1a2, θ4 = m1a1 + m2l1, θ5 = m2a2, θ6 = ν1,

θ7 = ν2, where m1, m2; l1, l2; a1, a2; and I1, I2 denote the

mass, length, center of mass, and moment of inertia for link

1 and link 2, respectively. The constant ν1 and ν2 define

the viscous friction coefficients of the joint 1 and joint 2,

respectively, and γ denotes gravity. The state equations can

be written as

ẋ = f(x, u) , (2)

where x := [φ1 φ̇1 φ2 φ̇2]
⊤ and f is obtained from (1).

While we do not do it explicitly, we consider the following

embedding for the angles: φ1 and φ2 are given by the angle

u

φ1
φ2

Link 1
Link 2

Joint 1
Joint 2

Fig. 1. The pendubot system: a two-link pendulum with torque actuation in
link 1. The pendulum angles are denoted by φ1 and φ2 for link 1 and link

2, respectively. The torque input is denoted by u.
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of vectors z1 and z2, respectively, such that z1, z2 belong

to the unit circle S1 in R
2. Then, without loss of generality,

we assume that φ1 = ∠z1 mod 2π and φ2 = ∠z2 mod 2π,

where ∠ : S1 → [−π, π) is such that ∠z denotes the angle,

positive in the counterclockwise direction, between z and the

positive horizontal axis.

The four equilibrium points of the pendubot system are

given by Ar := (π, 0, 0, 0), Aru := (π, 0, π, 0), Aur :=
(0, 0, π, 0), and Au := (0, 0, 0, 0).

The throw-and-catch hybrid control algorithm for non-

linear systems proposed in [7] aims to robustly globally

stabilize nonlinear systems to compact sets. For the pendubot

system, this control strategy is as follows.

1. A local state-feedback stabilizing controller κr for the

resting equilibrium point Ar,

2. A local state-feedback stabilizing controller κu for the

upright equilibrium point Au,

3. An open-loop controller αur→r to transition from a

neighborhood of Aur to a neighborhood of Ar,

4. An open-loop controller αru→r to transition from a

neighborhood of Aru to a neighborhood of Ar,

5. An open-loop controller αr→u to transition from a

neighborhood of Ar to a neighborhood of Au, and

6. A bootstrap controller κ0 to steer trajectories to a

neighborhood of the union of the four equilibria from

any other point,

to perform the following tasks.

A. Steer the trajectories to a neighborhood of Ar by

applying αur→r or αru→r when the trajectory is near

Aur or Aru, respectively.

B. Stabilize the trajectories to the resting equilibrium by

applying κr when the trajectory is near Ar.

C. Steer the trajectories to a neighborhood of Au by

applying αr→u when the trajectory is near Ar.

D. Stabilize the trajectories to Au by applying κu when

the trajectory is near Au.

E. Steer the trajectories toward the union of the four

equilibria by applying κ0 from any other point or

when either αr→u, αur→r, or αru→r is not capable

of performing the open-loop maneuver in the expected

amount of time.

The executions in A and C are called throw mode while

the local stabilization in B and D are called catch mode. The

sets defining throws that start near Aur, Aru, Ar are denoted

by Sur→r, Sru→r, Sr→u, respectively. The sets of points at

which the throws end when starting near Aur, Aru, Ar are

denoted by Er→u, Eur→r , Eru→r, respectively. These sets

are subsets of the basin of attraction of the local stabilizers

κu and κr, denoted Lvu
and Lvr

, respectively. The execution

in E corresponds to the recovery mode.

III. CONTROL DESIGN

To stabilize the pendubot trajectories to the upright con-

figuration, a hybrid controller is implemented with logic

variables and logic rules on a digital control board with

sampling time Ts = 0.0005 sec.

A. Identification of Parameters

The model parameters θ = {θ1, θ2, . . . , θ7} are deter-

mined using the least-squares method of system identification

proposed in [5]. We proceed to apply this identification

method to the pendubot as done in [3]. Let T(x) denote

both motor torque and friction forces, K(x) kinetic energy,

and Ur(x) potential energy (with respect to Ar), that is,

T(x) = R(φ, φ̇)+Q(φ̇), K(x) = 1
2 φ̇TN(φ)φ̇, and Ur(x) =

θ4γ(cos (φ1) + 1) + θ5γ(cos (φ1 + φ2) + 1). The energy

theorem1 leads to
∫ t

0

T(x)Tφ̇dt =

7
∑

i=1

∂K(x)

∂θi

θi +

7
∑

i=1

∂Ur(x)

∂θi

θi, (3)

where K and Ur are such that their partial derivatives with

respect to the parameters θ are constant and independent

of the parameters. Then, approximating the integral in (3)

and using experimental data, a least-squares fit for the set

of parameters θ is obtained. To implement this identification

scheme, the pendubot was driven with an open-loop uni-

formly distributed random signal u : [0, 15 sec] → [−1, 1].
The system identification algorithm2 was iterated 32 times

to obtain a proper set of parameter values given by

θ :

{

θ1 = 0.0266, θ2 = 0.0092, θ3 = 0.0074, θ4 = 0.1803,
θ5 = 0.0634, θ6 = 0.0130, θ7 = 0.0042,

which is consistent with the values obtained in [9].

B. Local State Feedback Control Laws

The local state feedback controllers (κu and κr) are

designed to stabilize the trajectories of the pendubot to the

upright and resting configurations through linearization and

pole placement.

1) Design of κu: The linearized model of the plant in (2)

around Au is of the form ẋ = Fux + Guu and is given by

ẋ =









0 1 0 0
61.4 −0.63 −24.2 0.37
0 0 0 1

−43.2 1.14 111 −1.12









x +









0
48
0

−87









u. (4)

Let κu(x) := −KT
ux. We solve for the control gain

Ku using a Zero-Order Hold (ZOH) discretization of (4)

with sampling time Ts. Discrete Linear Quadratic Regulator

(LQR) with weighting functions Q = diag(13 5 5 3) and

R = 1 is used to solve for Ku and a matrix Pu satisfying

Pu = PT
u > 0 and (Fu−GuK

T
u)TPu+Pu(Fu−GuK

T
u) < 0.

The resulting control gains are

Ku = [−91.7,−15.2,−89.1,−10.6]T,

Pu = 106 ×









1.45 0.25 1.30 0.14
0.25 0.04 0.23 0.02
1.30 0.23 1.19 0.13
0.14 0.02 0.13 0.01









.

1The energy theorem states that the work of forces applied to a system
is equal to the change of total energy of the system.

2This identification algorithm uses MATLAB’s lsqnonneg() func-
tion (a linear least squares function with nonnegativity constraints) and
trapz() function for approximation of the integral in (3) to solve for
a set of parameter values θ.
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These control gains place all the poles of the closed-loop

system inside the unit circle (i.e. controller κu(x) locally

asymptotically stabilizes Au). An estimate of the basin of

attraction for this local stabilizer was computed experimen-

tally by trial and error using the Lyapunov function Vu(x) :=
xTPux. It was found that LVu

(ĉu) = {x ∈ R
4 | Vu(x) ≤ ĉu}

with ĉu = 15000 is a sublevel set contained in the basin of

attraction of κu for Au. For implementation purposes, let

cu = 0.95ĉu.

2) Design of κr: The linearized model of the plant around

Ar is of the form ẋ = Frx + Gru and is given by

ẋ =









0 1 0 0
−61.4 −0.63 24.2 0.37

0 0 0 1
43.2 1.14 −111 −1.12









x +









0
48
0

−87









u, (5)

In a similar fashion to the design of κu, let κr(x) := −KT
rx.

A ZOH discretization of (5) around Ar is used to solve for

the control gain. As we proceeded for κu, Kr and a matrix

Pr, such that Pr = PT
r > 0 and (Fr−GrK

T
r)

TPr+Pr(Fr−
GrK

T
r) < 0, are solved using a discrete LQR design with

a weighting matrices Q = diag(13 5 5 3) and R = 1. The

resulting control gains are

Kr = [−6.68, 1.95,−9.3,−0.96]T,

Pr = 104 ×









10.1 −0.08 8.19 −0.03
−0.08 0.34 −0.31 0.18
8.19 −0.31 9.07 −0.15
−0.03 0.18 −0.15 0.10









.

Again the control gains place all the poles of the closed-loop

system inside the unit circle (i.e. controller κr(x) locally

asymptotically stabilizes Ar). Analogously to κu(x) an

estimate of the basin of attraction for this local stabilizer was

performed using the Lyapunov function Vr(x) := xTPrx.

Experiments were performed to compute sublevel sets of

Vr. It was found that LVr
(ĉr) = {x ∈ R

4 | Vr(x) ≤ ĉr},

where ĉr = 1000, is a sublevel set that the pendubot is

locally stabilized to Ar. For implementation purposes, let

cr = 0.95ĉr.

C. Open-Loop Control

The control signals αr→u, αur→r, and αru→r are designed

through partial feedback linearization as in [8] (see also [3]).

To this end, note that (1) can be written as

N11φ̈1 + N12φ̈2 + O11φ̇1 + O12φ̇2 + P1 + Q1 = u (6)

N21φ̈1 + N22φ̈2 + O21φ̇1 + O22φ̇2 + P2 + Q2 = 0 (7)

where Nij , Oij , Pi, and Qi, i = 1, 2 and j = 1, 2, correspond

to the entries in the matrices N , O, P , and Q, respectively.

Solving for φ̈2 in (7), substituting it into (6), and let

u = N11v + O11φ̇1 + O12φ̇2 + P1 + Q1 (8)

where

N11 = N11 −
N12N21

N22
, O11 = O11 −

N12O21

N22
,

O12 = O12, P1 = P1 −
N12P1

N22
, Q1 = Q1 −

N12Q1

N22
,

we get φ̈1 = v. Then, we can design an outer-loop controller

to make φ1, φ̇1 track a given reference trajectory r∗ :=
[φ∗, φ̇∗]⊤, where φ∗ is the reference position and φ̇∗ is the

reference velocity for link 1. We control v through a PD

controller v = JD(φ̇∗ − φ̇1) + JP (φ∗ − φ1), where JD is

the derivative gain and JP is the position gain.

Through trial and error, we obtained that a reference signal

r∗u := [φ∗
u, φ̇∗

u]⊤, where φ̇∗
u = 0, φ∗

u = 0, and the gain

values JD
u = 20 and JP

u = 192 consistently steered the

trajectories from a neighborhood of Ar to a neighborhood

of Au. To steer the trajectories to a neighborhood of Ar

from nearby Aur or Aru, a reference signal r∗r := [φ∗
r , φ̇

∗
r ]

⊤,

where φ̇∗
r = 0, φ∗

r = −π, and gain values JD
r = 20 and

JP
r = 80 were used.

1) Design of αr→u: Given the reference signal r∗u and

gains JD
u and JP

u , the control input u resulting from (8) is

recorded in memory using sampling time Ts during the throw

from a point nearby Ar to a point nearby Au. The open-loop

control αr→u is given by this recorded input. Experimentally,

we estimate a sublevel set of Wr(x) = K(x) + Ur(x),
denoted Sr→u, defined by a constant cr→u from where such

throws are successful. This constant was set to cr→u =
0.0001, which defines Sr→u := {x ∈ R

4 | Wr(x) ≤
0.0001}.

2) Design of αur→r and αru→r: Given the reference

signal r∗r and gains JD
r and JP

r , the control input u is

recorded with sampling time Ts for the pendubot during the

throws from Aur and Aru to Ar. Then, as in Section III-C.1,

the open-loop control αur→r and αru→r is set equal to the

respected recorded input u. Experimentally, we estimate a

sublevel set of Wur(x) and Wru(x), denoted Sur→r and

Sru→r, and defined by the constants cur→r and cru→r,

respectively, from where such throws are successful. Wur(x)
and Wru(x) are defined as Wur(x) = K(x) + Uur(x)
and Wru(x) = K(x) + Uru(x), where Uur(x) and Uru(x)
are the potential energy with respect to Aur and Aru,

respectively.Then, these sets are given by Sur→r := {x ∈
R

4 | Wur(x) ≤ cur→r} and Sru→r := {x ∈ R
4 | Wru(x) ≤

cur→r} with cru→r = cru→r = 0.1.

Estimates of the sets where open-loop schedules αr→r,

αur→r, and αru→r take the trajectories of the pendubot

were also obtained experimentally. It was found that αr→u

consistently steered the trajectories within the sublevel set

Er→u = {x ∈ R
4 | Vu(x) ≤ c′r→u} with c′r→u = 13000.

The open-loop controllers αur→r and αru→r consistently

steered the trajectories within the sublevel sets Eur→r =
{x ∈ R

4 | Vr(x) ≤ c′ur→r} and Eru→r = {x ∈
R

4 | Vr(x) ≤ c′ru→r} with c′ur→r = c′ru→r = 600. Finally,

constants τr→u, τur→r, and τru→r defining the upper bounds
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on the time required to reach Au and Ar during throws were

found to be τr→u = 1.5 and τur→r = τru→r = 2.

D. Bootstrap Control

To steer trajectories from points where the previous control

laws are not applicable to a neighborhood of the union of the

four equilibria, we design a bootstrap controller κ0. Since the

system is naturally damped, one would assume that κ0 ≡ 0
would be sufficient. However, since friction in the pendubot

system is small, a more sophisticated controller is developed.

From (3), the energy of the pendubot (with respect to Ar)

is given by Wr(x) = K(x) + Ur(x) and satisfies

〈∇Wr(x), f(x, 0)〉 < 0 ∀x /∈ Ar ∪ Au ∪ Aur ∪ Aru,

by virtue of the dissipative properties of the pendubot system.

Writing f(x, u) as fe(x) + ge(x)u, note that

〈∇Wr(x), f(x, u)〉 = 〈∇Wr(x), fe(x) + ge(x)u〉

= 〈∇Wr(x), f(x, 0)〉 + 〈∇Wr(x), ge(x)〉u .

Then, taking u = κ0(x) := −λ〈∇Wr(x), ge(x)〉 with λ >
0 improves convergence speed. Through trial and error, we

determined that λ = 0.2 gives good performance.

E. Angular velocity estimation

The vector of joint angular velocities φ̇ are estimated via

a Kalman state estimator using the nonlinear model of the

plant in (2), that is, the estimated states are given by

˙̂x = f(x̂, u) + L(y − ŷ) with L =









15.2 −3.90
123 −64.7

−3.90 21.2
−77.7 233









.

where L is the estimator gain matrix, y is the measured out-

put of the pendubot system given by φ, and ŷ is the estimated

output y. The matrix L is determined experimentally and

uses the solution to the algebraic Riccati equation associated

to the Kalman estimator for the estimation of the state of

the linearized model of (2) at each equilibrium configuration

Ar, Aru, Aur, and Au.

F. Hybrid Controller

Two logic variables and a timer are used to implement

the decision-making strategy described in tasks A-E in

Section II. As discussed in [7], the decisions made by this

control strategy can be visualized in a directed tree or graph

with nodes given by the equilibrium points. The directed tree

consists of two paths: path 1 defined by Aur → Ar → Au

and path 2 defined by Aru → Ar → Au. We number

the nodes that define each path via pairs (i, j) ∈ R :=
{1, 2, 3}×{1, 2}, where i indicates node number and j path

number. Using this approach, we introduce the following

convenient notation:

• For each (i, j) ∈ R, Ai,j represents a node in the

directed tree. Thus, A1,1 = Aur, A1,2 = Aru, A2,1 =
A2,2 = Ar, and A3,1 = A3,2 = Au.

• For each i ∈ {2, 3}, κi represents the stabilizing

controller for the node Ai,j with a estimate of its basin

of attraction for ẋ = f(x, κi(x)) given by Dc
i and

with a recovery set given by Dr
−i, where κ2 = κr,

Dc
2 := LVr

(cr), Dr
2 := R4 \ LVr

(ĉr), κ3 = κu, Dc
3 :=

LVu
(cu), and Dr

3 := R4 \ LVr
(ĉu); see Section III-B

regarding the construction of the sets LVr
and LVu

.

• For each (i, j) ∈ ∪k∈{1,2}((1, k)∪(2, k)), α(i,j)→(i+1,j)

represents an open-loop controller that is capable of

steering the trajectories defined by (2) from the set

Si,j to an open set Ei,j within τi,j ≥ 0 seconds.Thus,

α(1,1)→(2,1) = αur→r, α(1,2)→(2,2) = αru→r, and

α(2,1)→(3,1) = α(2,2)→(3,2) = αr→u; τ1,1 = τur→r,

τ1,2 = τru→r, and τ2,1 = τ2,2 = τr→r. In addition,

for X = S and X = E define X1,1 = Xur→r,

X1,2 = Xru→r, and X2,1 = X2,2 = Xr→u, which

implies, e.g., S1,1 = Sur→r and E1,1 = Eur→r. See

Section III-C regarding the construction of these sets.

Let P := {1, 2} , Qc := {−3,−2}, Qt := {1, 2}, Q :=
Qc ∪ Qt ∪ {0}, and X := R

4 × Q × P × R. We denote the

logic variables by q and p, which take value in q ∈ Q and

p ∈ P , respectively, and define the mode of operation as

follows: throw mode occurs at the qth node of the pth path

when q ∈ Qt, p ∈ P ; catch mode occurs at the |q|th node

when q ∈ Qc; and recovery mode occurs when q = 0. We

also denote by τ ∈ R the timer state and define the closed-

loop state to be ξ := [xT q p τ ]T. The main ingredients of a

control logic implementing tasks A-E are the following.

• Tasks A and C: When at a point from where the open-

loop controls are applicable, that is, when x ∈ S|q|,p for

some q and p, then switch to throw mode and apply the

corresponding open-loop control. Such a condition is true

when ξ is in Dt := {ξ ∈ X | x ∈ S|q|,p}. At such event, the

controller updates (q, p) so that x ∈ Sq+,p+ , τ to zero, and

sets the system’s input u to α(q+,p+)→(q++1,p+).

• Tasks B and D: When at a point from where the local

stabilizers are applicable, that is, when x ∈ Dc
|q| for some

q, then switch to catch mode and apply the corresponding

local stabilizer. Such is the case when ξ is in Dc := {ξ ∈
X | x ∈ Dc

|q|}. At such event, the controller updates (q, p)
so that x ∈ Dq+ , τ to zero, and sets u to κq .

• Task E: When the time spent in throw mode is larger

or equal than the expected amount of time or when while

in catch mode the state leaves the estimate of the basin of

attraction of the local stabilizer currently applied, then switch

to recovery mode and apply the bootstrap controller. Such a

condition is true when ξ is in the set Dr := {ξ ∈ X | q ∈
Qt, τ ≥ τq,p}∪{ξ ∈ X | q ∈ Qc, x ∈ Dr

|q|}. At such event,

the controller updates (q, p) to (0, p), τ to zero, and sets the

system’s input u to κ0.

From the logic above, the output of the hybrid controller,

which is connected to the system’s input u and is denoted

by the function κc, is given by

κc(ξ) :=







κ|q|(x) if q ∈ Qc

α(q,p)→(q+1,p)(τ) if q ∈ Qt, p ∈ P
κ0(x) if q = 0 .

(9)
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t=0

t=0.5

t=1.2

t=1.8

q = 0

(a) “Recovery”

t=4.9

q = −2

(b) “Catch”

t=6.9

t=7

t=7.2

q = 2

(c) “Throw”

t=8.8

q = −3

(d) “Catch”

Fig. 2. Snap shots of link 1 (red line) and link 2 (blue line) from a frontal
view while the different controllers are applied. (a) κ0 is active while q = 0.

(b) κr is active while q = −2. (c) αr→u is active while q = 2. (d) κu is

active while q = −3.

The sets Dt, Dc, and Dr build the jump sets of a hybrid

controller, that is, the sets capturing the conditions at which

the control variables are updated. Note that the construction

of Dc and Dr are such that, while in catch mode with

q = −3, a switch to another control mode would only

occur if the trajectory enters the set Dr. Such a hysteresis

mechanism confers robustness to the closed-loop system. A

demonstration of the pendubot’s motion while the controllers

κ0, κr, αu→r, κu are being applied is depicted in Figure 2.

Each of the update laws described above are captured by

a function of the state ξ, which defines the jump map of the

hybrid controller. The implementation discussed in the next

section only employs the conditions in the sets Dt, Dc, and

Dr as well as their associated update laws. For this reason

and due to space constraints, we do not reproduce the details

of the hybrid controller itself here, but refer the reader to [7]

for a detailed presentation and construction of the pieces

building it. In fact, the hybrid controller for the pendubot

system defined here follows the construction in [7] and, as

stated in [7, Theorem 3.4], accomplishes the robust global

stabilization task.

IV. EXPERIMENTAL SETUP AND RESULTS

The experiments described in this paper are executed on

the Mechatronic Systems Inc. pendubot model P-1. The im-

plementation of the hybrid controller was carried out on a PC

running The MathWorks, Inc. MATLAB, SIMULINK, and

Real-Time Workshop. The interface between the PC and the

pendubot consists of a Quanser MultiQ 3 I/O board running

at a sampling frequency of 2 kHz.3 The implementation setup

3MATLAB’s legacy code() function was used to create specialized
SIMULINK blocks for the hybrid control algorithm, which were written
in C code and embedded into a SIMULINK model.

can be seen in Figure 3.

Pendubot

Encoders

PC

Quanser MulitQ 3 I/O boards

Simulink

Fig. 3. Illustration of the pendubot’s interface with I/O boards and PC.
The pendubot has two digital encoders, which are the inputs to the hybrid

controller running on the PC in SIMULINK. The PC outputs a digital

signal from the hybrid controller which is converted to analog signal for
the Pendubot’s motor by the Quanser MultiQ 3.

Three different experiments of the pendubot illustrate

the capabilities of our hybrid control strategy. In all the

experiments (Figure 4(a), 4(b), 4(c)) the first plot (red curve)

represents φ1, the second plot (blue curve) represents φ2, and

third plot (black curve) represents q. 4

A. Experiment 1

Figure 4(a) depicts an experiment that demonstrates the

pendubot’s robustness to small and large disturbances. In this

experiment, the pendubot starts from an arbitrarily chosen

point not close to Ar ∪ Au ∪ Aur ∪ Aru. From this initial

condition, the hybrid controller applies κ0 bringing the

trajectory towards a neighborhood of the union of the four

equilibria. In this case, the trajectory reaches a neighborhood

of Ar. The trajectory enters the jump set Dc where a “catch”

is performed (at around 2 sec.) to bring it to a neighborhood

of Ar . The trajectory enters the jump set Dt where a “throw”

is performed to it from the resting configuration Ar to a

neighborhood of the upright configuration Au. Then, the

trajectories re-enters the jump set Dc, where it is caught by

κu (at around 8 sec.), and consequently, locally stabilized to

Au. The motion of the links up to this point is similar to

the one depicted in Figure 2. Then, while the trajectory is in

the neighborhood of Au, three small disturbances are applied

and rejected by κu (between t = 11 and t = 17 sec.). At

around 18 sec. a large disturbance is applied, which the local

stabilizer κu is not able to reject. The trajectory enters the

jump set Dr and the system jumps to recovery mode. From

this condition, the normal catch-throw-catch sequence takes

the system first to a neighborhood of Ar (at around 25 sec.)

and then to Au (at around 27 sec.). The plots in Figure 4(a)

show that under the presence of small and large disturbances

the system can recover and stabilize back to Au.

B. Experiment 2

Figure 4(b) depicts an experiment that demonstrates

the pendubot’s robustness to a large disturbance during a

4A video of the pendubot using hybrid control strategy can accessed at
http://www.scivee.tv/node/2721.
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“throw”. In this experiment, the pendubot starts at a random

initial condition, a point not close to Ar ∪Au ∪Aur ∪Aru.

As in Experiment 1, κ0 is applied followed by κr and

αr→u. But while αr→u is being applied, a large disturbance

obstructs the pendubot from reaching a neighborhood of the

upright configuration Au (at around 5.5 sec.). However, the

hybrid controller is capable of detecting that the throw has

failed by using the timer state. After bringing the links to

a neighborhood of Ar, attempts the throw again (at around

11 sec.). This “throw” is successful, and is followed by the

application of κu (at around 12 sec.) to steer the trajectory

toward Au. Since throws are an open-loop maneuver, the

recovery feature of our hybrid control algorithm under per-

turbations is needed to have a robust closed-loop system.

C. Experiment 3

Figure 4(c) depicts an experiment that demonstrates the

pendubot’s ability to start near the equilibrium point of Aur

and be stabilized to Au. Starting from a small neighborhood

of Aur, the controller jumps to throw mode bringing the

trajectory to a neighborhood of Ar by applying αur→r. Then,

the normal catch-throw-catch sequence takes the system first

to a neighborhood of Ar (at around 1.5 sec.) and then to Au

(at around 5.5 sec.).

V. CONCLUSION

Using a novel control strategy for robust global stabi-

lization of nonlinear systems, we design and validate ex-

perimentally a hybrid controller to globally swing up the

pendubot with robustness to exogenous disturbances. We

introduced our control strategy and provided a step-by-step

design procedure. Experimental results prove the efficacy of

the algorithm, even under the presence of large disturbances

that are practically impossible to reject by any local stabilizer

for the swing-up configuration.
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Fig. 4. (a) Experiment 1: results of using the hybrid controller to stabilize

the pendubot from a random initial condition in spite of small and large
disturbances. (b) Experiment 2: results of using the hybrid controller to

stabilize the pendubot from a random initial condition and in spite of a

large disturbance during a “throw” from Ar to Au . (c) Experiment 3:

results of using the hybrid controller to stabilize the pendubot from initial
condition near the Aur equilibrium.
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