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Abstract— The optimal control of a linear system is studied
relative to a periodic unstable trajectory using continuous con-
trol. Gaussian state uncertainties are included, which induces
a statistical cost of controlling the state over a long period of
time. The length of time between control law updates directly
impacts this statistical cost. When uncertainties are present
in a hyperbolically unstable system, the time between control
updates can take an optimal value. We apply these ideas to
study the statistical cost of controlling a spacecraft in the
vicinity of a relative equilibrium point and a Halo orbit in
the Hill three-body problem.

I. INTRODUCTION

In this paper we describe a method to analyze the average

(or ensemble) cost of optimal control near a periodic unstable

trajectory. Specifically, we focus on control of the time-

varying linear system resulting from linearizing the full

dynamics about a nominal periodic trajectory. We consider a

specific control strategy to take into account the finite horizon

of the continuous control and uncertainty in the estimate of

the state. The control force and system dynamics are assumed

to be deterministic, and the state estimates are assumed to

have a Gaussian probability distribution.

Previously, Renault and Scheeres [1] conducted a similar

study of optimal statistical control which considered the

placement of impulsive control maneuvers near an unstable

equilibrium point. The results of this paper serve to reinforce

key results in Renault and Scheeres such as the correlation

between optimal control maneuver timing and the character-

istic time of the instability of a system. Also, trends derived

in [2] concerning the qualitative impact of the update time on

control cost using impulsive maneuvers are developed here

for the continuous thrust case, and shown to be similar.

This paper does not explicitly consider stochastic acceler-

ations in the system dynamics. All uncertainty is assumed to

be adequately described by uncertainties in the estimation of

the state. In addition, it is worthwhile to note that we almost

exclusively focus on optimally updating control laws in the

presence of uncertainty, not optimal control per se.

The procedure is outlined in its general form in the

following sequence.

1) At some time t1, there is uncertainty in the state due

to earlier errors. The uncertainties at this point can be
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viewed as the steady-state uncertainties of the estima-

tion process.

2) Design and implement a controller which would nom-

inally cause the state to converge to the target state at

time t2 based on estimates of the state at t1 (which are

uncertain).

3) At time t2, error exists again due to uncertainties at time

t1.

4) Design and implement a controller which would nom-

inally cause the state to converge at time t3 based on

estimates of the state at t2 (assume same covariance as

at time t1).

This process repeats, and therefore there is a statistical cost

associated with the steady-state control. It is also similar to

the actual process used in spacecraft trajectory control [2].

To estimate this statistical cost, we evaluate the expected cost

of the control from time interval ti to ti+1 due to propagated

uncertainties from interval ti−1 to ti. During each interval,

the control force is continuous, however, at the boundary

between each interval, a discontinuity results from the choice

of a new optimal control for the next control period.

In order to minimize the cost of regulating the system,

we seek to minimize the average cost over time. To achieve

this, one must find the time-between-updates that minimizes

the expected cost per segment divided by the time-between-

updates; E [J]/T , where J is the cost incurred and T is the

time-between-updates. That is, the optimal time-between-

updates, T ∗, is given by

T ∗ = argmin
T

E [J]

T
. (1)

The time-between-updates is assumed to be a constant pa-

rameter over the analysis period of interest for this study,

although that is not a requirement for this method.

We split the control problem into two pieces:

1) Optimal control to target back to a nominal trajec-

tory/state in a finite time.

2) Effect of state uncertainty on the nominal control, and

how we can decrease the overall cost in the presence of

uncertainty.

In problem (1) above, the control time, T , is a free

parameter and, in the absence of noise, cost is reduced by

taking T → ∞, even for unstable systems.

For problem (2), where we do not know what the initial

state is precisely, we find that the error can have a catas-

trophic penalty if our dynamical system is unstable. Hence,

this injects a specific “structure” or “natural time scale”

into our control problem. This optimal time is nominally
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related to the characteristic time scale of the instability. This

relationship will be discussed in more detail later in the

paper.

This combined control and measurement strategy is a

periodic update procedure where the optimal control problem

is solved using a finite-horizon time span equal to the time

between control updates. This can be viewed as an extreme

case of receding horizon control (RHC, or model predictive

control, MPC) where the execution horizon is equal to the

planning horizon. In RHC, the execution horizon is typically

much shorter than the planning horizon [3], [4], however,

spacecraft state estimates are made using data from ground-

based radar tracking stations, which perform measurements

infrequently compared to typical RHC applications. This

necessitates a relatively long execution horizon. Additionally,

extending the planning horizon does not lead to significant

differences in the statistical cost of control, and taking the

execution horizon equal to the planning horizon is not a lim-

itation. This is mainly due to the insensitivity of the optimal

open-loop control law for an unstable system to the length

of the planning horizon (i.e. the optimal open-loop control

law acts quickly to control the instability of the system, so

increasing the planning horizon doesn’t significantly change

the control). To further clarify, the typical application of RHC

is to approximate a feedback control law, which is not the

goal here. Instead, we are interested in optimizing the time

between control law updates, which is the key parameter to

our overall optimization process.

This paper is split into two main sections. The first reviews

optimal design of statistical correction maneuvers and the

second applies these results to the optimal statistical control

of a libration point orbiter.

II. OPTIMAL CONTROL LAW UPDATE TIMING

In our analysis of the timing of the control law updates, the

state is assumed to be a Gaussian random vector (GRV), with

the mean and covariance taken as outputs of an independent

estimation process. The multivariate Gaussian probability

distribution function with mean, ~m, and covariance matrix,

P is defined as [5]

p(~x) =
1

√

(2π)n detP
exp

(

−1

2
(~x−~m)TP−1(~x−~m)

)

.

The expected value of a function is

E
[

~f (~x)
]

=

∫

∞

~f (~ξ )p(~ξ ) d~ξ

and the mean, ~m, and covariance, P, of a random variable

are then

~m = E [~x] =

∫

∞

~ξ p(~ξ ) d~ξ

P = E
[

~x~xT
]

−~m~mT.

Let the control vector be ~u(t). The cost function during

each interval between state updates is

J =
1

2

∫ t f

t0

~uT(t)~u(t) dt,

and the optimization problem to be solved during this interval

is to find ~u(t) such that ~u(t) minimizes E [J] subject to given

initial and final states.

When the linear-Gaussian assumptions are followed, we

can conclude that if optimal control is applied from time t0
to time t1, with the following initial conditions,

E [δ~x0] =~0 (2)

Var [δ~x0] = P0. (3)

the expectation and covariance describing the state at time

t1 are given by

E [δ~x1] =~0 (4)

Var [δ~x1] = P1 = Φ(t1 − t0)P0Φ
T(t1 − t0). (5)

The optimal control is computed using the sweep method

as outlined in [6]. This produces an open-loop control

scheme as in common in spacecraft control. This is also

practical for the purpose of simulation, because the open-

loop control law avoids the singularity present in time-

varying gains of feedback control at the end of the execution

horizon.

A. Statistical Cost

For convenience, we partition the initial state, ~x0, into

[~rT
0 ~vT

0 ]T, where~r0 is the initial position vector and~v0 is the

initial velocity vector. This yields the following expression

for the deterministic cost:

J = J∆(Jr|~r0|2 +2Jrv~r0 ·~v0 + Jv|~v0|2), (6)

where J∆, Jr, Jrv, and Jv are functions of the linear dynamics

and the update time.

Once the deterministic cost is known, the expected value

and variance of the cost can be computed. Taking the

expectation, E [·], of (6) yields

E [J] =J∆

(

JrE
[

|~r0|2
]

+2JrvE [~r0 ·~v0]+ JvE
[

|~v0|2
])

=J∆

(

Jr

(

σ2
r (t0)+E [|~r0|]2

)

+2Jrv

(

σ2
rv(t0)+E [~r0]

T
E [~v0]

)

+ Jv

(

σ2
v (t0)+E [|~v0|]2

))

, (7)

where σ denotes the (co)variance of the given quantity at

the beginning of the update interval.

Now, since the control law was chosen so that the expected

values of the state is the zero vector
(

E [~r0] = E [~v0] =~0
)

, (7)

simplifies to

E [J] = J∆

(

Jrσ
2
r (t0)+2Jrvσ2

rv(t0)+ Jvσ2
v (t0)

)

. (8)

It is worthwhile to note that this expected cost is only a

function of the time-between-updates, T , and the initial co-

variances, P0, because the coefficients J∗ and the covariances

σ2
∗ are determined completely by T and P0.

The variance of J, Var [J], is given by

Var [J] = E
[

J2
]

− (E [J])2 . (9)
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Computing E
[

J2
]

using the Gaussian joint characteristic

function yields

E
[

J2
]

=J2
∆

{

3J2
r (σ2

r )2 +4J2
rv

(

2(σ2
rv)

2 +σ2
rvσ2

v

)

+3J2
v (σ2

v )2 +4JrJrv(2σ2
r σ2

rv +σ2
rvσ2

r )

+2JrJv(σ
2
r σ2

v +2(σ2
rv)

2)+12JrvJvσ2
rvσ2

v

}

. (10)

Substituting (8) and (10) into (9) yields the variance of J:

Var [J] =J2
∆

{

2J2
r (σ2

r )2 +4J2
rv

(

(σ2
rv)

2 +σ2
rvσ2

v

)

+2J2
v (σ2

v )2 +4JrJrv(σ
2
r σ2

rv +σ2
rvσ2

r )

+4JrJv(σ
2
rv)

2 +8JrvJvσ2
rvσ2

v

}

. (11)

As with the expected value of J, the variance of J is only a

function of T and P0.

B. System Stability

To determine whether a given periodic orbit is stable or

not, we define the Lyapunov characteristic exponent using

the associated monodromy matrix, similar to the definition

in [2]:

α =
ln[maxeigenvalue(Φ(T,0))]

T
.

The characteristic exponent gives an idea of how quickly the

state of the system will grow in time (on the order of eαt ).

If α > 0, the system is unstable. The characteristic time is

then 1/α , which gives a time scale on which the exponen-

tial effects develop. For linear time-invariant systems, this

simplifies to the usual condition on the eigenvalues of the

dynamics matrix, i.e., the system is unstable if any of the

eigenvalues have a real part greater than zero.

C. Steady-State Minimum Expected Cost

Due to the complicated form of the expression for E [J]/T

(even for simple time-invariant systems), (1) cannot typically

be solved for T ∗ in closed-form. Some statements can be

made, however, about the behavior of T ∗, depending on the

dynamics of linear systems under study. For any double-

integrator and oscillatory type dynamics, it can be shown

that E [J]/T achieves its minimum by letting T → ∞ and

that the actual value of E [J]/T approaches zero. This is

analogous to the impulsive control result obtained in [2]

and implies that maneuver execution errors dominate the

uncertainty. The behavior is different for a hyperbolically

unstable system. As T → ∞, the hyperbolic instability of

the system causes E [J] to grow exponentially and drives

E [J]/T → ∞. Thus, in general, there exists an optimum

finite value, T ∗, which minimizes E [J]/T . The value of

T ∗ is strongly dependent on the characteristic time of the

unstable mode (1/α). In fact, the value of T ∗ is on the

order of the characteristic time, although it also depends

more weakly on the initial values of the covariance matrix.

This is also analogous to impulsive control results obtain in

[1]. For an ideal one degree of freedom unstable system,

it can be shown that the optimal update time for impulsive

control equals the characteristic time [2]. For our continuous

control, time-varying systems, the relationship is not exact,

but numerical simulations support the extension as a “rule

of thumb.” This relationship breaks down when applied to

periodic trajectories that are too far from their initial origin,

as shown in the example implementation.

III. EXAMPLE IMPLEMENTATION

In this section we will study two cases of spacecraft con-

trol in the Hill three-body problem (H3BP) using continuous

thrust. In the first case, we limit ourselves to the planar

motion of a spacecraft in the vicinity of one of the relative

equilibrium points, and in the second, we study a spacecraft

perturbed from a nominal halo orbit. A previous study of the

equilibrium point control problem in [1] considered control

using impulsive maneuvers. In addition, we show that the

results obtained for the linear time-invariant case (both in

this study, and in the previous study) can be extended to

linear time-varying systems.

The equations of motion for a spacecraft’s position in the

H3BP are [1]

ẍ−2ω ẏ = − µ

r3
x+3ω2x+ax (12)

ÿ+2ω ẋ = − µ

r3
y+ay (13)

z̈ = − µ

r3
y−ω2z+az, (14)

where x, y, and z are the positions of the spacecraft in the

rotating frame relative to the secondary body, ax, ay, and

az are the spacecraft control accelerations, ω is the angular

velocity of the secondary body about the primary, µ = GM,

M is the mass of the secondary body, and r is the radius (r =
√

x2 + y2 + z2). These equations may be nondimensionalized

using the length scale l = (µ/ω2)1/3 and time scale τ = 1/ω .

For the Earth-Sun system, µ = 3.986 × 105 km3/s2, ω =
1.991× 10−7 rad/s, l = 2.159× 106 km, and τ = 5.023×
106 s.

The dimensional covariance matrix associated with the

state estimates is assumed to be a 4 × 4 diagonal matrix

(typical of spacecraft state estimation) with entries Pr and

Pv,

Pd =

[

Pr · I2 02×2

02×2 Pv · I2

]

.

This covariance matrix may be nondimensionalized to obtain

P =

[

Pr/l2 · I2 02×2

02×2 Pv/(ωl)2 · I2

]

= Pr/l2

[

I2 02×2

02×2 Pv/(Prω
2) · I2

]

.

This may be parameterized to yield further insight into

how the uncertainties affect the optimal update time and

cost using the parameters σr =
√

Pr/l and λ = ω
√

Pr/Pv.

This nondimensionalization and parameterization yields the

following form for P:

P = σ2
r

[

I2 02×2

02×2 1/λ 2 · I2

]

. (15)
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Typical values of Pr = (10 km)2 and Pv = (10−6 km/s)2

relating to usual spacecraft uncertainties are used for the

simulations, resulting in the nondimensional parameters σr =
4.633×10−6 and λ = 1.991.

A. Planar Equilibrium Point Control

When the system is nondimensionalized by setting µ =
ω = 1 in (12) and (13), the system has two equilibrium points

using no control at x = ±3−1/3, y = 0. Linearizing about

either of these points and defining the perturbed state δ~x =
[δx δy δ ẋ δ ẏ]T yields the linear system

δ~̇x =









0 0 1 0

0 0 0 1

9 0 0 2

0 −3 −2 0









δ~x+









0 0

0 0

1 0

0 1









[

ax

ay

]

.

This system has an unstable mode, a stable mode,

and an oscillatory mode, associated with the eigen-

values +
√

1+2
√

7 ≈ 2.5, −
√

1+2
√

7 ≈ −2.5, and

± j
√

2
√

7−1 ≈ ±2.1 j, respectively. The unstable mode’s

characteristic time is then 1/
√

1+2
√

7 ≈ 0.4, leading us

to expect the optimal update time to be approximately 0.4

time units.

In this example, the cost function, J, being minimized

during each update interval is the “energy” used,

J =
1

2

∫ t f

t0

(

a2
x +a2

y

)

dt.

The optimal control law, and hence the trajectories them-

selves, depend on the final time and are plotted in Figure 1

for three different final times and various initial conditions.

In this deterministic analysis, the cost uniformly decreases

as the final time increases, however, in the following section

when uncertainties are included in the analysis, this is not

the case. We will show that using an update time of 0.5

time units, corresponding to Figure 1b, is optimal. Note this

optimal update time of 0.5 is near the characteristic time of

the unstable mode, 0.4.

A plot of the expected cost as a function of update

time is shown in Figure 2, using the uncertainty parameters

given above. Due to the hyperbolically unstable dynamics,

an optimal value of Tu clearly exists which minimizes the

expected cost.

Figure 3 shows the effect of the nondimensional parameter

λ on the optimal update time for the H3BP using the

parameters described above. The variation in the optimal

update time over the range of λ shown is about 1.75 days for

the Earth-Sun system. It is important to note that the optimal

update time does not depend on σr itself, only the ratio λ . For

reference, a nondimensional time value of 0.5 corresponds

to about 29 days in the Earth-Sun H3BP and 2.2 days in

the Earth-Moon HR3BP. Interestingly, this continuous thrust

result is consistent with the impulsive results in [1].

Figures 4 and 5 show the effect of λ on the value of the

cost incurred over an update interval divided by the optimal

update time, i.e.

min
~u,Tu

E [J(~u,Tu)]/Tu.

−0.1−0.05 0 0.05 0.1
−0.1

−0.08
−0.06
−0.04
−0.02

0
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0.08
0.1

x

y

(a) t f = 0.1

−0.1−0.05 0 0.05 0.1
−0.1

−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

x

y

(b) t f = 0.5

−0.1−0.05 0 0.05 0.1
−0.1

−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

x

y

(c) t f = 2.0

Fig. 1. Example trajectories with varying transfer times. Dots are placed
every 0.05 time units.

As can be seen in Figure 4, if σr is fixed, it is optimal to let λ
go to infinity, which is equivalent to letting Pv approach zero,

i.e., low uncertainty in the velocity components. However,

if |P| is held constant as λ varies, note the presence of

an optimal value of λ in Figure 5, λ ≈ 0.34, indicating

that given a certain amount of uncertainty (measured by

a constant |P|), there is an optimal way to distribute the

position and velocity uncertainties. For the Earth-Sun system,

λ = 0.34 corresponds to a ratio between 1-σ uncertainties
√

Pr/Pv ≈ 1.7 × 106, which is surprisingly close to the

actual ratio between these measurement uncertainties. For

the Earth-Moon system, the optimal ratio of uncertainties is

approximately 1.3×105. For a position uncertainty of 1 km,

the “optimal” velocity uncertainty is about 0.75 cm/s This

aspect of the problem will be investigated in the future.

The curve in Figure 5 scales with |P|, so that the value of

λ yielding the minimum value does not change with |P|. If

the optimal cost divided by the optimal update time is plotted

against |P| on a log-log graph, the curve is a straight line with

slope 0.25, indicating that
(

min~u,Tu
E [J(~u,Tu)]/Tu

)

∼ |P|0.25.

B. Halo Orbit Control

From the two oscillatory modes mentioned in the previous

section, we see that near the equilibrium point, the linearized

system is capable of producing planar periodic orbits. These

orbits can also be found in the full nonlinear dynamics.

As the amplitude of these periodic orbits is increased, the

eigenvalues of the monodromy matrix bifurcate and a new

family of periodic orbits is produced. This new family is

called the family of “halo orbits”, which are no longer in

the plane and cannot be predicted using the equilibrium point

linearization. One of the halo orbit used for this example is

shown in Figure 6.

In the previous time-invariant example, each segment of

control had the same statistical cost. Therefore, we only

needed to consider the cost of one segment of control
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Fig. 2. Expected cost divided by Tu as a function of Tu
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Fig. 3. Optimal nondimensional update time as a function of λ , for fixed
σr
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Fig. 4. Optimal nondimensional cost as a function of λ , σr fixed

in order to draw conclusions about the long-term average

cost. However, in this time-varying case, each segment will

generally have a different cost. We may still determine the

long-term average cost by considering only a finite length of
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Fig. 5. Optimal nondimensional cost as a function of λ , |P| fixed

time, due to the periodic nature of our system. We simply

need to consider a period of time long enough such that the

cost associated with all segments of the nominal trajectory

are included. A natural choice for this type of analysis is to

choose two positive integers, n and m, such that the update

time is approximated by Tu ≈ n
m

T , where T is the period

of the system. We then only need to include the cost of

segments up to time nT because any segments after that will

have already been included in the average long-term cost.

An additional complication is that for each update time, the

average cost per unit time will vary with the starting point of

the algorithm along the orbit. Therefore, in order to obtain

a statistical result that is independent of an arbitrary starting

time, an average is performed with respect to the starting

time.

The primary result of this analysis is that an optimal

control law update time exists for unstable time-varying

systems, just as in the time-invariant case, as shown in Figure

7. For the example halo orbit with x0 = 0.769 using the same

levels of uncertainty, the characteristic time of the instability

was 0.42 time units, with the actual value occurring at about

0.61 time units (about 35 days for the Earth-Sun system

and about 2.7 days for the Earth-Moon system). The cost

associated with using the characteristic time as the update

time is only 10% higher than the true minimum cost for this

orbit, showing a correlation between the characteristic time

of the instability and the actual optimal update time.

As seen in Figure 7, the structure of the cost bifurcates

into a double minimum case. This is due to the interesting

dynamics of the halo orbits; as the orbits move farther out

of plane, they make a closer approach to the secondary

body, resulting in dynamics that are very strong compared

to the rest of the orbit. Combining (12) through (14) into

standard first-order form with state ~x = [x y z ẋ ẏ ż]T

and linearizing about the periodic orbit, we find δ~̇x = A(t)δ~x.

The induced norm of A(t) gives an indication of how the

eigenvalues of A(t) vary along the orbit, which in turn

make the trajectory sensitive to uncertainties. The larger the

norm, the stronger the sensitivity. Figure 8 shows a plot of

5202



0.2 0.4 0.6 0.8 1

−0.2

0

0.2

x

y

0.5 0.6 0.7 0.8

−0.1

0

0.1

x

z

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

y

z

Fig. 6. Nominal halo orbit trajectory
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Fig. 7. Expected cost divided by Tu as a function of Tu (scaled by the
characteristic time of the uncertainty) near several halo orbits. The halo
orbits are parameterized by the initial value of their x coordinate. The lower
the value of x0, the more out-of-plane the orbit.

log ||A(t)|| and log ||Φ(t,0)|| for two halo orbits; one highly

out-of-plane, the other more in-plane. Note that for the highly

out-of-plane orbit, the sensitivity varies by up to 1.5 orders

of magnitude throughout the orbit, whereas in the more in-

plane orbit, it varies by less than 0.3. Due to this variation,

the cost of control along a halo orbit varies depending on

where measurements are taken. For example, consider a

control segment where ||A|| is large initially, then decreases

quickly. In this case, a measurement is taken when ||A|| is

large, and the unstable effect on the probability distribution

is greatly enhanced, resulting in a higher control cost for the

next segment. For a given update time, if the segments are

structured such that ||A|| is large when measurements are

made, the cost is much higher than if ||A|| were only large

between measurements. This behavior is strong enough to

hold even through the orbit average, and is clearly visible in

Figure 7, particularly the orbits with x0 = 0.45 and x0 = 0.5.

Each local maxima occurs just before the halfway point of

the corresponding orbit, where ||A|| is large, as in Figure 8.
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Fig. 8. Plots of log ||A(t)|| and log ||Φ(t,0)|| for the halo orbit with x0 = 0.5
(solid) and x0 = 0.769 (dashed), plotted against a fraction of their respective
orbit periods, T .

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper describes a method to analyze the average cost

of controlling a linear system near an unstable trajectory.

In particular, we show that for unstable systems, there is

an optimal control law update time, which is related to the

system characteristic time. Additionally, if the total level of

uncertainty is fixed, there is an optimal way to distribute

uncertainty between the position and velocity states. These

concepts are applied to spacecraft control in the vicinity of

a halo orbit in the Hill Three-Body Problem (H3BP) as well

as one of the relative equilibrium points.

B. Future Work

An interesting topic for future work is to further study the

relation between the optimal update time and the system’s

characteristic time. Future goals also include extending the

analysis to nonlinear stochastic systems, and to explain the

relationship between position and velocity uncertainty.
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