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Abstract— In this paper, we propose an algorithm for solving
combinatorial resource allocation problems with mobile sites
and resources. We consider the instantaneous coverage problem,
which is formulated in a Maximum Entropy Principle (MEP)
framework, and identify a metric for optimal coverage between
mobile sites and resources. This metric, referred to as the Free
Energy has been motivated by principles of statistical physics.
The determination of resource locations and velocities is cast
as a control problem to ensure that the time derivative of
Free Energy function is always non-increasing. This guarantees
coverage through the time horizon. The issues of scalability and
localization are also addressed by taking into account inter-
resource interaction levels.

I. INTRODUCTION
In recent years, there has been a considerable amount

of research on problems that address deployment of static
or mobile resources that “cover” a set of sites in a given
region. Most of these problems are intimately related to
a class of combinatorial resource allocation problems that
have been studied extensively in various formulations such
as the minimum distortion problem in data compression [6],
facility location assignments [2], optimal quadrature rules
and discretization of partial differential equations [3], pattern
recognition [18], drug discovery [15], neural networks [9],
and clustering analysis [8]. In contrast, these problems are
relatively recent in the control literature, having arisen in
coarse quantization [4], [12], coverage control, mobile sens-
ing networks, and motion coordination algorithms [1]. These
areas, either directly or indirectly, bring together concepts
from information theory and control theory. Although these
problems focus on seemingly unrelated goals, they have a
number of fundamental common attributes.

The aforementioned combinatorial optimization problems
share the fundamental goal of aiming to determine an opti-
mal partition of the underlying domain in which they are
defined (e.g., a library of compounds for drug discovery,
an unknown area of interest for coverage control), and an
optimal assignment of values, or elements, from a finite
resource set to each cell in the partition. Computationally,
these problems are typically complex and time intensive if
not intractable. For example, in the drug discovery problem,
selecting 25 representative compounds from an array of 1000
compounds results in 4.76 × 1049 possibilities. This rules
out any exhaustive search method over all partitions. The
complexity of such problems is further complicated by their
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inherent non-convex nature, which makes it important to
design algorithms that avoid local minima [7]. Since the
static resource allocation problem is NP-hard, we cannot
expect to find optimal solutions. As a result, the proposed
algorithms are either based on heuristics, or solve a slightly
modified version of the original problem.

The complexity of the resource allocation problems we
consider is further compounded by the addition of dynamics
to the sites. These mobile sites could be moving threat
locations in a battlefield scenario, forest fires, unmanned ve-
hicles, or swarms, depending on the context of the underlying
problem. The task at hand is to design a velocity field for
resources such that coverage is maintained throughout the
time horizon. This class of problems has been studied as
deployment and tracking problems [1], [5], where emphasis
has been given to distributed implementations (i.e. under
limited information). The emphasis on distributed algorithms
is well justified since the underlying computational costs
incurred for centralized schemes are impractical. Addition-
ally, the centralized schemes are not practically viable for
implementation in many application areas, due to the limited
range of sensors. However, the distributed algorithms are
prone to converge to one of the many local minima that
typically riddle the coverage functions. As a result, the
performance of these algorithms (i.e. coverage cost) is very
sensitive to initial placement of the resources.

In this paper, we consider a coverage problem with
mobile sites and resources. Our emphasis is on developing
algorithms that are designed to avoid local minima and are
insensitive to initial placement of the resources. An entropy
term that quantifies the randomness in the choice of the
initial resource allocations and corresponding partitions is
introduced in the problem formulation in order to monitor the
sensitivity of the solution to the initial allocation. This term
and an associated averaging operation is used to smoothen
the coverage function, and thus ensures that the algorithm
successfully avoids the local minima, albeit at a higher com-
putational expense than distributed algorithms. The relative
importance of the coverage function with respect to the
entropy term is controlled using a parameter, temperature, so
named to emphasize the analogy to the annealing problem
in statistical physics [13]. Consequently, an algorithm is
developed which seeks to minimize an adjusted coverage
function (termed free energy) that includes the coverage cost
as well as the entropy term designed to avoid local minima.
The probability distribution on the space of partitions for
computing the entropy is determined using the maximum
entropy principle (MEP) [10].
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The free energy is analogous to a control Lyapunov func-
tion where the velocity field on resources is sought to make
the time derivative of the free energy non-positive. Computa-
tional complexity of the resulting algorithm is then addressed
by exploiting the structure of this time derivative. This
algorithm becomes more local (i.e. the resource locations
becomes less sensitive to far off sites) as the temperature
value is reduced. This feature is exploited to make this algo-
rithm scalable and computationally efficient. Computational
expense is included as a cost term in the MEP formulation,
resulting in an algorithm that seeks minimization of a mix
of coverage, computational cost and sensitivity to initial
placement. Results are presented to demonstrate the ability
of the algorithm to successfully avoid local minima. Results
are also presented to show the progressively distributed
implementation of the algorithm, and its comparison to the
centralized scheme. As expected, such an implementation is
computationally efficient, and can be used to address the
issue of scalability associated with large datasets.

This paper is organized as follows. We present a math-
ematical formulation of the dynamic resource allocation
problem in Section II. The solution for the instantaneous
coverage problem is sought under the MEP framework. We
then present the solution for the dynamic coverage problem
in a control systems framework. The implementation of the
algorithm is discussed in Section III. Simulation results are
presented in Section IV. Finally we conclude the paper by
revisiting the important results and identifying future goals.

II. DYNAMIC PROBLEM
Consider a problem where the task is to track the motion

of a group of sites/objects in a given area. The motion of
these sites is such that they may move in different clusters,
change associations, split and rejoin clusters. Alternatively,
this problem can also be posed as a coverage problem, where
the aim is to successively identify representative objects
in the area such that they “cover” the moving sites at all
times. The number of these representative objects is far
less than those of the moving sites. This class of problems
is closely related to the problem of video segmentation
often encountered in medical imaging, military tracking and
reconnaissance, surveillance and other applications.

Let us consider an illustrative example where we have
video data for movement of people in a given area, and
our task is to identify each cluster and track it over time.
This scenario is depicted in Fig. 1. It is assumed that the
background does not change. Since video data is a time
indexed series of still images, one obvious solution is to
cluster the image data in each frame. Any of the standard
clustering algorithms (for static data) can be used for this
purpose. This is a very time intensive process and is usually
not viable. In order to address this issue, we pose this as a
coverage problem, where the optimization task is to identify
representative locations (denoted by crosses) such that they
track each cluster over time. A mathematical formulation for
such a class of coverage problems is provided below. In the
rest of the paper, we have used the term “mobile sites” to

Fig. 1. Tracking movement of people in a given area. Red squares: initial
position of people (sites), pink squares: final position. Blue crosses: initial
location of resources, black crosses: final position of the resources. Splitting
of some clusters has resulted in an increase in the number of resources.

refer to the people movement and “mobile resources” to refer
to the representative locations which identify each cluster.
A. Problem Formulation

Consider a domain consisting of mobile sites xi(t) with
known velocities. Our goal is to determine the locations
and velocities of mobile resources yj(t), such that they
“cover” the mobile sites at any instant of time. For notational
convenience, we will sometimes use x in place of x(t),
and time dependence will inherently be assumed, if not
mentioned otherwise. We have a domain with N sites xi =
[ξi ηi]

T ∈ R
2 and M resource locations yj = [ρj ωj ]

T ∈
R

2, whose dynamics are given by

ẋ = φ(x, r), x(0) = x0 (1)
ẏ = u, y(0) = y0 (2)

Our task is to determine the dynamics for the M mobile
resources (ẏ = u(t)), and their initial locations (y0), such
that adequate coverage is maintained. This dynamic resource
allocation problem (at time t) can be stated as:

Given a distribution p(x) of the elements x(t) in a space
Ω, find the set of M resource locations yj(t) that solves the
following minimization problem (at time t):

min
yj , 1≤j≤M

∑

Ω

p(x)

{

min
1≤j≤M

d(x, yj)

}

dx. (3)

Here d(x, yj) represents an appropriate distance metric
between the resource location yj and the element x. The
most natural choice of the distance metric is the Euclidean
distance. Modified versions of this metric can also be
used in specific scenarios. One such metric is d(xi, yj) =
‖xi − yj‖

2
+ ‖φi − uj‖

2
, where velocity as well as location

terms, are included. Minimizing (3) is akin to finding a
velocity field for resources such that coverage condition
is satisfied at time t. Alternatively, this problem can also
be formulated as finding an optimal partition of the de-
scriptor space Ω at time t into M cells Rj and assigning
to each cell Rj a resource location yj which minimizes
∑

j

∑

Rj
d(x, yj)p(x)dx. Solving the above optimization

problem at a fixed time (t) is equivalent to solving a static
resource location problem. Deterministic annealing (DA)
algorithm [13] has been successfully implemented in a host
of areas to tackle such problems. The DA algorithm can
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be viewed as a modification of Lloyd’s algorithm [11],
in which the initial step consists of randomly choosing
resource locations and then successively iterating between
the steps: (1) forming Voronoi partitions, and (2) moving
the resource locations to the respective centroids of the
cells till the sequence of resource locations converge. Note
that the Lloyd’s algorithm solution depends substantially
on the initial allocation, as in the successive iterations, the
locations are influenced only by ‘near’ sites in the domain
and are virtually independent of ‘far’ sites. As a result, the
solution ‘typically’ gets stuck to local minima. As in the DA
algorithm, we can diminish this local influence of domain
elements by allowing each x ∈ Ω to be associated with every
resource location yj through a weight p(yj |x). Introducing
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Fig. 2. Dimnishing local influence p(ym|xi) >> p(yj |xi)

these weights eliminates the hard partitions of Lloyd’s Al-
gorithm. Under this formulation, we have a distortion term

D =
∑

i

p(xi)
∑

j

d(xi, yj)p(yj |xi), s.t.
∑

j

p(yj |xi) = 1

Note that the instantaneous weighting term (at time t)
p(yj |xi) can alternatively be viewed as a probability of as-
sociation between the mobile site xi and the mobile resource
yj . This enables us to address the problem of determining
these weighting parameters under MEP.

The MEP deals with ascribing a probability mass func-
tion for a vector valued random variable such that given
constraints are satisfied. In the MEP framework, these con-
straints are such that the expected values of a given set
of functions (of the random variable) are equal to known
constants. The MEP states that the probabilities should be
such that they maximize the Shannon entropy [14] and at
the same time satisfy the expected value constraints.

Consider the space of partitions Q of Ω. For any instance
q = {Y,P} ∈ Q, with the partition P = {Ωj} and the
resource locations Y = {yj}, the coverage cost in (3) is

D(q) =
∑

i

∑

j

χijd(xi, yj), (4)

where χij is the indicator function, i.e. χij = 1, if xi ∈
Ωj and 0 otherwise. Now consider a probability distribution
P (q) on the space of partitions Q. Under this distribution,
the average coverage cost is given by

∑

P (q)D(q), where
the summation is over all possible elements in the set Q (i.e.
all possible partitions). Since we have no prior information
on the distribution over Q, we use MEP to determine this
probability distribution. Such a distribution thus maximizes
the entropy under the constraint that it achieves the average

cost, and is given by a Gibbs distribution over partitions

P (q) =
e−βD(q)

∑

q′∈Q e−βD(q′ )
,

where β can be determined from the value of the average
cost [10]. The most probable set of resource locations can be
determined by maximizing the marginal probability P (Y) =
∑

P P (Y,P). In order to compute it, we note from (4) that
∑

P

e−βD(Y,P) =
∏

x

∑

k

e−βd(x,yk) := Z, (5)

where Z is the partition function (as it has parallels in
statistical physics [13]). Next, we define the free energy,

F := −
1

β
log Z = −

1

β

∑

i

log
∑

k

e−βd(xi,yk). (6)

Now, the marginal probability P (Y) can be rewritten as

P (Y) =
Z

∑

Y′ Z
=

e−βF

∑

Y′ e−βF
. (7)

Thus the most probable resource location set Y is the one
that minimizes the Free Energy We now consider the entropy
associated with a specific q, given by

H = −
∑

Ω

p(x)
∑

j

p(yj |x) log p(yj |x)dx, (8)

which measures the randomness of the distribution of the
associated weights p(yj |x). This entropy term is the largest
when the distribution of weights over each resource location
is identical, i.e. (p(yj |x) = 1/M ) for each x, i.e., when all
x have the same influence over every resource location.
B. Solution

Using the MEP, we have demonstrated that minimizing
the instantaneous Free Energy can be used as a criteria for
solving the coverage problem of mobile sites and resources.
Thus, maximizing the instantaneous coverage can be viewed
as solving the following optimization problem

min
yj

min
p(yj |x)

F := D − TkH (9)

at the kth iteration where Tk := 1
βk

is the temperature
parameter which tends to zero as k tends to infinity. Clearly
for large values of Tk, we mainly attempt to maximize the
entropy. As Tk is lowered we trade entropy for the reduction
in distortion, and as Tk approaches zero, we minimize D
directly to obtain a hard solution. Minimizing F with respect
to p(yj |x) is straightforward and gives a Gibbs distribution

p(yj |x) =
e−d(x,yj)/T

∑

i e−d(x,yi)/T
. (10)

The corresponding minimum of F (denoted by F̂ ) is ob-
tained by substituting for p(yj |x) from (10). Next we mini-
mize F̂ with respect to the resource locations {yj}, by setting
the corresponding gradients equal to zero i.e., ( ∂F̂

∂yj
= 0),

giving implicit equations for the locations,

yj =
∑

Ω

p(x|yj)xdx 1 ≤ j ≤ M, (11)
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where p(x|yj) denotes the posterior probability calculated
using Bayes’s rule. The above equations clearly convey the
centroid aspect of the solution.

Thus the instantaneous coverage problem can be addressed
by minimizing the Free Energy with respect to resource
locations (yj) starting at high values of temperature and
tracking its minimum while lowering the temperature value
steadily. Solving this instantaneous problem at each point in
time should give us the solution for the coverage problem
over a finite horizon. However, in most of the applications,
this frame-by-frame approach is not viable as it is extremely
time-consuming. This is due to the fact that it requires us to
solve multiple MEP problems at each instant of time.

The MEP based algorithm for solving the static problem
has iterations dictated by the temperature values as per a
cooling law. An exponential cooling rate (i.e. decreasing
temperature exponentially) is often used for implementing
the algorithm [13]. Now with the added dynamics of sites
and resources, choosing a cooling law becomes an additional
design issue. For example, we can design the rate of cooling
to be much faster than the given dynamics of the sites,
to have an algorithm which is similar to the frame-by-
frame approach. One of the key features of the MEP based
algorithm is its phase transition property. Even in the static
case, there are critical values of temperature at which the
resource locations split and between these critical values, a
change in temperature does not have an appreciable effect on
the resource locations. The fact that the resource locations do
not continuously depend on temperature, but exhibit a phase
transition property enables us to design an efficient algorithm
that includes dynamics of the sites and resources. Under
these added dynamics, we can explore similar phase tran-
sition behavior at critical temperatures and design cooling
laws that are much faster than the frame-by-frame approach.
Phase transition effectively takes into account the dynamics
due to the given velocity field and the inherent dynamics
induced by the change in temperature value, and successively
identifies and tracks the natural clusters in the site domain.

In order to circumvent the problems faced by frame-by-
frame approach, different optimization criterion (involving
Free Energy) can be considered. In an optimal control setting,
the coverage goal is defined as: minu

∫ ∞

0
F (x, u, φ, u, t)dt.

Another criterion is to determine u such that dF (x,u,φ,u,t)
dt <

0, which provides continuously improved coverage of the
clusters over time. We used the latter criterion as the former
is effectively intractable.

We have formulated the problem in a control systems
framework, where the task is to determine the control (u)
such that Free Energy is non-increasing. Consider the sites-
resources system defined by (1)-(2) again. Free Energy for
this sites-resources combination is given by

F = −
1

β

∑

i

p(xi) log
∑

j

e−βd(xi,yj)

Differentiating, we get the partial derivatives

Fx
T = 2 [(I2 ⊗ P1)x − (I2 ⊗ P12)y] (12)

Fy
T = 2

[

(I2 ⊗ P2)y − (I2 ⊗ PT
12)x

]

(13)

where P1 = diag(p(xi)), P2 = diag(p(yj)), P12 = [p(xi, yj)] .

The time derivative of Free Energy is given by

Ḟ = Fxẋ + Fy ẏ = ζT ΓΨ, where

ζ =

[

x
y

]

,Ψ =

[

φ
ν

]

,Γ =

[

I2 ⊗ P1 −I2 ⊗ P12

−I2 ⊗ PT
12 I2 ⊗ P2

]

Introducing new transformed variables gives us: ȳ = y−(I2⊗
Q2

T )x, ū = (I2⊗P2)(u−(I2⊗QT
2 )φ), φ̄ = (I2⊗P1)φ where

Q1 = [p(yj |xi)] ∈ R
N×M and Q2 = [p(xi|yj)] ∈ R

M×N

Thus we have the relation P1Q1 = Q2P2 = P12. In the
transformed coordinates, dF

dt is given by

dF

dt
=

[

x
ȳ

]T [

I2 ⊗ (I − Q2Q
T
1 P1) 0

0 I

] [

φ̄
ū

]

= xT Rφ̄+ ȳT ū = xT Sφ+ ȳT ū, where R = (I −Q2Q
T
1 P1)

Any ū that will make Ḟ < 0 will provide us with
consistent coverage at all times. For the case when ȳT ū 6= 0,
we use Sontag’s formula [17] to prescribe one such velocity
field for the mobile resources,

u = (I2⊗QT
2 )φ−(I2 ⊗ P2)

−1





Sφ +

√

(Sφ)
T
Sφ + ȳȳT

ȳȳT



 ȳT

(14)
Whenever the term ȳT ū = 0, we lose “controllability”, and
thus no control u exits that guarantees Ḟ < 0. At this
point, we change the temperature value and recompute the
association probabilities and resource locations. With these
new values, we verify whether the phase transition condition
is satisfied; this is discussed further in the next paragraph.

C. Phase Transitions
For the implementation of the algorithm, we start at a very

high value of temperature (T ) and reduce it as the algorithm
proceeds. To begin, we have just one resource location at
the centroid of the dataset, i.e. y = (I2 ⊗ Q2

T )x. As the
temperature is reduced, the system undergoes a series of
phase transitions [13], where as before phase transition refers
to the splitting of resource locations and the identification
of natural clusters in the data. Successive phase transitions
identify finer clusters.

At the instant when a split occurs, the Hessian of mini-
mized F loses positive definiteness. To analyze this tempera-
ture value, we place coincident resources at a single location
yk and perturb it by an amount εΨk. The necessary condition
for optimality is ∂

∂εFε|ε=0 = 0. We also need to ensure that
the second partial derivative is positive ( ∂2Fε

∂ε2 > 0). This
happens when twice the maximum eigenvalue of the poste-
rior covariance matrix, defined by Cx|yj

=
∑

i p(xi|yj)(xi−
yj)(xi − yj)

T becomes greater than the temperature value.
The temperature at which the split occurs is called the critical
temperature (Tc), and is given by Tc = 2λmax[Cx|yj

].
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D. Scalability
One of the major problems with combinatorial optimiza-

tion algorithms is that of scalability, i.e. the number of
computations scales up combinatorially with an increase in
the amount of data. This property is a deterrent to using
this algorithm for large (complex) problems. One of the
features of the MEP based algorithm is that it becomes
more local (that is the computation of a resource location
becomes less sensitive to far off terms) as the temperature
variable is successively reduced. We have exploited this
feature to incorporate the distributed aspect in the problem
formulation, thereby improving the computational efficiency
of the algorithm. It is clear that as temperature is decreased,
the association probability of a mobile site x(t) with distant
resources decreases exponentially to zero. Thus a very small
error will be incurred if we do not consider these negligible
interactions. This tradeoff between error in resource locations
and computation time has been characterized.

In [16], we present a scalable resource allocation problem
based on the MEP. We use a similar framework to address
the distributed computation aspect herein. As is discussed
in [16], the association probabilities can be expressed as a
modified Gibbs-type distribution,

p(yj |xi) =
e−β1dij−β2dijMij−β3N2

j

Z(β1, β2, β3;σj)
(15)

where the partition function Z is defined by

Zi(β1, β2, β3;σj) =
∑

j

e−β1dij−β2dijMij−β3N2

j (16)

Next, the resource locations are computed as follows:

yj =

∑

i pij

{

Wijxi −
2β3Nj

σj

[

∑

k e
−dkj

σj xk

]}

∑

i pij

{

Wij −
2β3

σj
N2

j

} (17)

The phase transition phenomenon is further compounded by
the fact that we have three different temperature variables
for incorporating additional constraints. We have explicitly
computed the condition for splitting [16], taking into account
the change of all three temperatures. Simulation results for
scalable algorithms are included in Section IV

III. IMPLEMENTATION
We have summarized below the steps that the algorithm

traces in order to solve the coverage problem.
• 0: Initialize the algorithm at T = ∞ (i.e. β = 0).
• 1: Determine the resource locations (11) together with

the association probabilities (10).
• 2: Simulate the site movement under (1) and determine

the resource velocities (14) to maintain coverage.
• 3: If ȳT ū = 0, decrease the temperature, go to Step 1.
• 4: If the phase transition condition is satisfied, split the

resources, re-distribute their weights, go to Step 1.
• 5: Stop if the stopping criterion (e.g. number of re-

sources, time horizon) is met, otherwise go to Step 1.

IV. SIMULATION RESULTS
In this section, we have provided simulation results for

both scalable and non-scalable version of the algorithm.
A. Basic Algorithm

For the purpose of simulation, we chose a scenario with
10 mobile sites. Random velocities were chosen for each of
the mobile sites, with the constraint that natural clusters be
preserved. To begin, the dataset had four natural clusters (Fig.
3). The blue colored rhombuses show the initial location of
the sites. The algorithm begins by placing one resource at the
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Fig. 3. Snapshots showing locations of mobile sites and resources

centroid of the site positions (at t = 0) (shown by red cross).
As the sites move (direction shown by arrows), the algo-
rithm progressively updates the association probabilities and
resource locations, and determines the control value (i.e. the
resource velocities). We have shown the movement of sites
by magenta colored lines. Temperature is steadily decreased
until phase transition occurs, whereby a single resource splits
into two distinct resources (with lower weights). The 2 blue
crosses denote the resource locations after the first split.
Similarly, the 3 green crosses and the 4 black crosses denote
the location of the mobile resources after further splits. We
have not shown the resource locations computed at every
time step, so as not to obscure the main stages of progression
of the algorithm. The resource locations maintain coverage at
all times and track the natural clusters. The velocity field is
designed such that coverage metric is always non-increasing.

As expected, the MEP based algorithm is much faster than
the frame-by-frame approach. The MEP based algorithm
took 424 seconds to solve the above problem over the com-
plete time horizon (on an Intel 1.5 GHz Centrino processor),
while the frame-by-frame approach had solved only 25% of
the time horizon in the same amount of computation time.
B. Scalable Algorithm

In order to demonstrate the scalable version of the al-
gorithm, we chose a scenario with 16 mobile resources.
Random velocities were chosen for each of the mobile
sites,with the constraint that some of the clusters did not
interact with one another. At t = 0, the dataset had four
natural clusters, as seen in Fig. 4. The scalable algorithm
begins by placing one resource at the centroid of the site
positions (shown by the red cross). As the sites move (as
shown by the arrows), the algorithm progressively updates
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the association probabilities (15) and resource locations (17),
and determines the control value (i.e. the resource velocities).
After the first split, two distinct resource locations (shown
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Cluster 4

Fig. 4. Snapshots showing locations of mobile sites and resources

by blue crosses) are identified and the parameter σj pre-
scribes two separated regions (roughly shown by the green
dotted lines). Further computations are truncated in these
regions, and thus only local influence of the mobile sites
is accounted for. Computations for Cluster 1 and Cluster
2 do not take into account the interactions from Cluster 3
and Cluster 4 (and vice-versa). As temperature is decreased
further, resource locations split, denoted successively by
black and green crosses. At this instance, the parameter σ
identifies three invariant regions to be used for truncated
computation (shown by black dashed lines). The resource
locations maintain coverage at all times and track the natural
clusters formed by the mobile sites.

The scalable algorithm is computationally more efficient
than the basic version. As shown in Table 1, it takes just one-
fourth of the time taken by the basic algorithm to solve the
coverage problem on the same dataset. For the purpose of this

Algorithm Coverage Cost Computation Time (sec)
Basic Algorithm 181.3 784

Scalable Algorithm 194.1 208

TABLE I
COMPARISON OF THE COMPUTATION TIMES

comparison, the coverage cost was determined at t = tfinal.

V. ANALYSIS AND DISCUSSION
We have successfully used the MEP framework to define a

coverage metric for the mobile sites-resources problem. One
of the main features of the MEP is that it provides a solution
that is based only on the available information (i.e. least
biased) and not on any other factors. This ‘fairness’ criterion
is exemplified in the Gibbs distribution for the association
probabilities. Problems in statistical physics often encounter
such distributions.

The complexity of the coverage problem can be gauged
from the fact that even the static resource allocation problem
is a NP-hard problem and thus we cannot expect to achieve
optimal solutions that minimize the coverage cost. Hence
the algorithms are either based on heuristics or solve a
modified cost function. Our algorithm is closely aligned with

principles of statistical physics and exploits those inherent
properties to successfully avoid locally optimal solutions.
We also exploit the fact that the computations become
successively “local”, thereby making the algorithm amenable
for solving problems on large datasets. In order to implement
the localized version of the algorithm, we add some compu-
tational complexity (by introducing additional constraints),
which diminishes as the algorithm proceeds. This addition
is minuscule when compared to the computational efficiency
extracted by the distributed implementation of the algorithm.

As was discussed earlier, the distance function and the
coverage metric can be suitably modified to account for addi-
tional constraints or address specific scenarios. During some
simulations, we observed that when the multiple natural
clusters tended to move towards one another, their respective
resources also began to converge towards each other. This
natural coalescence of resources indicates that a ’reverse
phase transition’ phenomenon is naturally occurring in the
algorithm. We are presently investigating this further and
trying to devise rules for fusing multiple resources in such
a scenario. Additionally, we are also working on designing
estimators for determining the velocity of the mobile sites.
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