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Abstract— In this paper we develop a novel theoretical framework
for linear quadratic regulator design for linear systems with
probabilistic uncertainty in the parameters. The framework is
built on the generalized polynomial chaos theory, which can
handle Gaussian, uniform, beta and gamma distributions. In
this framework, the stochastic dynamics is transformed into
deterministic dynamics in higher dimensional state space, and the
controller is designed in the expanded state space. The proposed
design framework results in a family of controllers, parameterized
by the associated random variables. The theoretical results are
applied to a controller design problem based on stochastic linear,
longitudinal F16 model. The performance of the stochastic design
shows excellent consistency with the results obtained from Monte-
Carlo based designs, in a statistical sense.

I. INTRODUCTION

Recently there has been a growing interest in combining
robust control approaches with stochastic control methods
to develop the so called field of probabilistic robust control.
In traditional robust control, uncertainty is restricted to
uniform distributions only and robustness is a binary notion.
In probabilistic robust control, the risk adjusted robust
performance of the closed-loop system is of interest, which
is more practical and possibly less conservative. Research on
feedback control of stochastic systems have been focussed
on deterministic systems with stochastic forcing. The system
dynamics is assumed to be perfectly known and is excited by
a noise with certain statistical properties. For linear systems
and Gaussian white noise excitation, methods such as H2

(LQG) optimal control algorithms are quite matured. Previous
work on stochastic control for linear systems haven focussed
on regulating the moment response of stochastic systems with
either stochastic forcing or probabilistic uncertainty on system
parameters. Problems with stochastic forcing have almost
always assumed Gaussian distribution. Non Gaussian forcing
is usually approximated using Gaussian closure. Skelton et
al. [1] have addressed the problem of covariance control with
Gaussian excitation. Barmish et al. [2], [3] and Stengel et al.
[4] have addressed robustness with probabilistic uncertainty
using sampling or Monte-Carlo based approaches. Recently
Polyak et al. [5] and Fujisaki et al. [6] have addressed LQR
design with probabilistic uncertainty for linear and linear
parameter varying systems respectively.
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Till date, methods that address probabilistic uncertainty
in system parameters, use sampling based approaches to
solve the stochastic problem in a deterministic setting,
which results in very large scale problems for sufficiently
accurate representation of uncertainty. The complexity is
reduced if design is restricted to uncertainty with uniform
distribution, and worst-case design philosophy is adopted.
The novelty of the framework presented in this paper is
that non-sampling based methods are used to accurately
capture the evolution of uncertainty in state trajectories due
to uncertainty in system parameters, which can potentially
lead to less conservative designs. The framework is built on
the generalized polynomial chaos theory which translates
stochastic dynamics into deterministic dynamics, in higher
dimensional state space. This increase in dimensionality,
however, is significantly lower than the sampling based
methods for comparably accurate representation of uncertainty.

Polynomial chaos (PC) was first introduced by Wiener [7]
where Hermite polynomials were used to model stochastic
processes with Gaussian random variables. According to
Cameron and Martin [8] such an expansion converges in
the L2 sense for any arbitrary stochastic process with finite
second moment. This applies to most physical systems.
Xiu et al. [9] generalized the result of Cameron-Martin to
various continuous and discrete distributions using orthogonal
polynomials from the so called Askey-scheme [10] and
demonstrate L2 convergence in the corresponding Hilbert
functional space. This is popularly known as the generalized
polynomial chaos (gPC) framework.

The gPC framework has been applied to applications including
stochastic fluid dynamics [11], [12], [13], stochastic finite
elements [14], and solid mechanics [15], [16]. However, appli-
cation of gPC to control related problems has been surprisingly
limited. The work of Hover et al. [17] addresses stability
& control of a bilinear dynamical system, with probabilistic
uncertainty on the system parameters. The controller design
problem considered involved determining a family of propor-
tional gains to minimize a finite time integral cost functional.
In this research work we focus on optimal control in the
L2 sense for linear systems with probabilistic uncertainty in
system parameters. It is assumed that the probability density
functions of these parameters are known and these parameters
may enter the system dynamics in any manner. We generalize
these results for minimum expectation and variance cost, and
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determine appropriate control laws that solves the correspond-
ing stochastic linear optimal control problems.

II. WIENER-ASKEY POLYNOMIAL CHAOS

Let (Ω,F , P ) be a probability space, where Ω is the sample
space, F is the σ-algebra of the subsets of Ω, and P is
the probability measure. Let ∆(ω) = (∆1(ω),⋯,∆d(ω)) ∶
(Ω,F) → (Rd,Bd) be an Rd-valued continuous random
variable, where d ∈ N, and Bd is the σ-algebra of Borel subsets
of Rd. A general second order process X(ω) ∈ L2(Ω,F , P )
can be expressed by polynomial chaos as

X(ω) =
∞

∑
i=0

xiφi(∆(ω)), (1)

where ω is the random event and φi(∆(ω)) denotes the
gPC basis of degree p in terms of the random variables
∆(ω). The functions {φi} are a family of orthogonal basis
in L2(Ω,F , P ) satisfying the relation

E[φiφj] = E[φ2
i ]δij , (2)

where δij is the Kronecker delta and E[⋅] denotes the
expectation with respect to the probability measure
dP (ω) = f(∆(ω))dω and probability density function
f(∆(ω)). Henceforth, we will use ∆ to represent ∆(ω).

For random variables ∆ with certain distributions, the family
of orthogonal basis functions {φi} can be chosen in such a way
that its weight functions has the same form as the probability
density function f(∆). These orthogonal polynomials are the
members of the Askey-scheme of polynomials [10], which
forms a complete basis in the Hilbert space determined by their
corresponding support. Table I summarizes the correspondence
between the choice of polynomials for a given distribution of
∆ [9].

Random Variable ∆ φi(∆) of the Wiener-Askey Scheme
Gaussian Hermite
Uniform Legendre
Gamma Laguerre

Beta Jacobi

TABLE I
CORRESPONDENCE BETWEEN CHOICE OF POLYNOMIALS AND

GIVEN DISTRIBUTION OF ∆(ω).

III. STOCHASTIC LINEAR DYNAMICS AND POLYNOMIAL

CHAOS

To frame the optimal control problem, consider stochastic
linear systems of the form

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t), (3)

where x ∈ Rn, u ∈ Rm. The system has probabilistic
uncertainty in the system parameters, characterized by
A(∆),B(∆), which are matrix functions of random variable

∆ ≡ ∆(ω) ∈ Rd with certain stationary distributions. Due to
the stochastic nature of (A,B), the system trajectory will also
be stochastic. We do not consider stochastic forcing in this
paper, but this framework can be easily extended to include
stochastic forcing and will be addressed in future publications.

Let us represent components of x(t,∆),A(∆) and B(∆) as,

x(t,∆) = [x1(t,∆) ⋯ xn(t,∆)]T , (4)

A(∆) =

⎡⎢⎢⎢⎢⎢⎣

A11(∆) ⋯ A1n(∆)
⋮ ⋮

An1(∆) ⋯ Ann(∆)

⎤⎥⎥⎥⎥⎥⎦
, (5)

B(∆) =

⎡⎢⎢⎢⎢⎢⎣

B11(∆) ⋯ B1m(∆)
⋮ ⋮

Bn1(∆) ⋯ Bnm(∆)

⎤⎥⎥⎥⎥⎥⎦
. (6)

By applying the Wiener-Askey gPC expansion to
xi(t,∆),Aij(∆) and Bij(∆), we get

xi(t,∆) =
p

∑
k=0

xi,k(t)φk(∆) = xi(t)T Φ(∆), (7)

Aij(∆) =
p

∑
k=0

aij,kφk(∆) = aT
ijΦ(∆), (8)

Bij(∆) =
p

∑
k=0

bij,kφk(∆) = bT
ijΦ(∆), (9)

where xi(t),aij ,bij ,Φ(∆) ∈ Rp are defined by

xi(t) = [xi,0(t) ⋯ xi,p(t)]T ,

aij = [aij,0(t) ⋯ aij,p(t)]T ,

bij = [bij,0(t) ⋯ bij,p(t)]T ,

Φ(∆) = [φ0(∆) ⋯ φp(∆)]T .

Furthermore, without loss of generality, define

ui(t,∆) =
p

∑
k=0

ui,k(t)φk(∆) = ui(t)T Φ(∆) (10)

with
ui(t) = [ui,0(t) ⋯ ui,p(t)]T .

When ui(t,∆) is a feedback control, two possibilities exist.
It could be stochastic, the design in that case generates a
family of control trajectories, parameterized by ∆. If control
is chosen to be deterministic, i.e. we are interested in a single
control trajectory for all possible ∆ ∈ D∆ = {∆(ω) ∶ ω ∈ Ω},
ui(t) = ui,0(t) with all other coefficients as zero.

The number of terms p + 1 is determined by the dimension
d of ∆ and the order r of the orthogonal polynomials {φk},
satisfying p + 1 = (d+r)!

d!r!
. The coefficients aij,k and bij,k are

obtained via Gelarkin projection onto {φk}pk=0 given by

aij,k =
⟨Aij(∆), φk(∆)⟩
⟨φk(∆)2⟩ , (11)

bij,k =
⟨Bij(∆), φk(∆)⟩
⟨φk(∆)2⟩ . (12)
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The n(p + 1) time varying coefficients, {xi,k(t)}; i =
1,⋯, n;k = 0,⋯, p, are obtained by substituting the ap-
proximated solution in the governing equation (eqn.(3)) and
conducting Gelarkin projection onto {φk}pk=0, to yield n(p+1)
deterministic linear differential equations, given by

Ẋ =AX +BU, (13)

with X ∈ Rn(p+1); A ∈ Rn(p+1)×n(p+1);B ∈ Rn(p+1)×m and

X = [xT
1 xT

2 ⋯ xT
n ]T , (14)

U = [uT
1 uT

2 ⋯ uT
m]T . (15)

While it is possible to derive many forms for the A and B
matrices, a convenient form can be obtained in the following
manner. Define êijk =

⟨φi,φjφk⟩
⟨φ2

i
⟩ . The linear dynamics can then

be expressed as

ẋi,l =

n

∑
j=1

p

∑
k=0

p

∑
q=0

aij,kxj,q êlkq +

m

∑
j=1

p

∑
k=0

p

∑
q=0

bij,kuj,q êlkq.

Define the matrix Φk as

Φk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ê1k1 ê1k2 ⋯ ê1kp

ê1k2 ê2k2 ⋯ ê2kp

⋮ ⋮ ⋱ ⋮

ê1kp ê2kp ⋯ êpkp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

The matrices A and B can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 ⋯ A1n

A21 A22 ⋯ A2n

⋮ ⋮ ⋱ ⋮

An1 An2 ⋯ Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

Aij =

p

∑
k=0

aij,kΦk, (18)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 ⋯ B1m

B21 B22 ⋯ B2m

⋮ ⋮ ⋱ ⋮

Bn1 Bn2 ⋯ Bnm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

Bij =

p

∑
k=0

bij,kΦk. (20)

More convenient expressions for A and B are given by

A =

p

∑
k=0

Ak ⊗Φk, (21)

B =

p

∑
k=0

Bk ⊗Φk, (22)

where ⊗ is the Kronecker product and Ak, Bk are the projec-
tions of A(∆),B(∆) on {φk(∆)}Pk=0 respectively. Therefore,
transformation of a stochastic linear system with x ∈ Rn, u ∈
Rm, with pth order gPC expansion, results in a deterministic
linear system with increased dimensionality equal to n(p+1).

IV. STOCHASTIC LQR DESIGN

The objective of this work is to determine the conditions
for optimality of systems with probabilistic uncertainty in
their coefficients. This enables us to solve stochastic optimal
control problems in a deterministic framework. In this section,
we derive a standard cost function encountered in stochastic
optimal control problems in terms of the polynomial chaos
expansions. Here we consider minimum expectation cost func-
tion. We will examine the solution to this problem for both
deterministic and stochastic feedback control laws, and discuss
the benefits/limitations of each.

A. Minimum Expectation Control

Minimum expectation optimal trajectories are obtained by
minimizing the following cost function, analogous to the Bolza
form,

min
u

E [∫
∞

0
(xT Qx + uT Ru)dt] , (23)

where x ≡ x(t) ∈ Rn, u ≡ u(t) ∈ Rm, Q = QT
> 0,R = RT

>

0, S = ST
> 0. For scalar x, the quantity E[x2] in terms of

its gPC expansions is given by

E[x2] =
p

∑
i=0

p

∑
j=0

xixj ∫
D∆

φiφjfd∆ = xT Wx, (24)

where D∆ is the domain of ∆ , xi are the gPC expansions
of x, f ≡ f(∆) is the probability distribution of ∆; W ∈

R(p+1)×(p+1) = {wij}, with wij = ∫D∆
φiφjfd∆; and x =

(x0 ⋯ xp)T . The expression E[x2] can be generalized for
x ∈ Rn where E[xT x] is given by

E[xT x] =XT (In ⊗W )X, (25)

In ∈ Rn×n is the identity matrix and ⊗ is the Kronecker
product, and X is given by eqn.(14). The cost function in
eqn.(23) can now be written in terms of the gPC expansions
as

min
u

J =min
u
∫
∞

0
(XT Qx̄X +E [uT Ru])dt, (26)

where Qx̄ = Q⊗W . The expected value of uT Ru will depend
upon the control implementation discussed in section IV-B.

B. Feedback Solutions

In this section, we will discuss conditions for optimality for
various feedback structures as they apply to a quadratic cost
of the form developed in the previous section.
1) Augmented Deterministic State Feedback with Constant
Gain: The first implementation we will discuss involves the
assumption that the control is probabilistic and augmented
state vector X is used for feedback. If we assume u =

∑p
k=0 ui,k(t)φk(∆)

E [uT Ru] =UT RūU, (27)

where Rū = R⊗W .
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Proposition 1: The cost function in eqn. (26) is minimized
with a control of the form

U = −R−1ū BT PX, (28)

where P is the solution to the Riccatti equation

AT P + PA − PBR−1ū BT P +Qx̄ = 0. (29)
Proof: As per the usual solution to the LQR problem,

we can write the cost function as J = XT PX. From Euler-
Lagrange (by substituting for the Lagrange multiplier), we
obtain 0 = RūU +BT PX, giving

U = −R−1ū BT PX,

where U is defined by eqn.(15). Substituting this into the cost
function and taking the derivative of both sides gives

Ṗ +AT P − PBR−1ū BT P + PA − PBR−1ū BT P =

−Qx̄ − PBR−1ū BT P.

For the infinite horizon problem Ṗ = 0, completing the proof.

Remark 1: The solution to this expression yields a constant
gain matrix, but implementation requires knowledge of gPC
expansions of the states. The control vector U = −R−1ū BT PX
defines u(t,∆), a family of control laws, parameterized by ∆.
Appropriate u(t) can be determined based on the knowledge
of ∆, as a result ∆ must also be known during implementation.
2) Stochastic State Feedback with Constant Gain: In this
formulation, the state trajectory x(t,∆) is used to generate
the control law that is not explicitly parameterized by ∆. This
approach does not require estimation of the gPC expansions
of the state and hence doesn’t require the knowledge of ∆.
We propose feedback of the form

u(t,∆) =Kx(t,∆). (30)

Once again the control is stochastic, due to stochastic state
trajectory, and enters the cost function as E [uT Ru]. The
control vector in gPC framework then becomes

U = (K ⊗ Ip)X. (31)

In this manner, we are selecting a feedback structure that
results in a problem similar to the output feedback problem
in traditional control, for the system in eqn.(13). The modified
cost function becomes

J = ∫
∞

0
XT (Qx̄ + (KT

⊗ Ip)Rū (K ⊗ Ip))Xdt. (32)

Proposition 2: For a feedback law of the form in eqn.(30), the
cost function in eqn.(32) is minimized for a matrix K ∈ Rm×n

solving

AT P + PA + PB(K ⊗ Ip) + (KT
⊗ Ip)BT P+

Qx̄ + (KT
⊗ Ip)Rū(K ⊗ Ip) = 0, (33)

subject to P = P T
> 0. Furthermore, a solution exists for some

Qx̄ and Rū if the feasibility condition

AT P + PA + (KT
⊗ Ip)BT P + PB(K ⊗ Ip) < 0, (34)

is satisfied.
Proof: Let J =XT PX. Taking the derivative of the cost

function gives rise to the matrix equation

Ṗ + PA + PB(K ⊗ Ip) +AT P + (KT
⊗ Ip)BT P =

−Qx̄ − (KT
⊗ Ip)Rū(K ⊗ Ip).

For an infinite time interval, let Ṗ → 0, giving the first
condition. Now, we must show the second part of the proposi-
tion. The feasibility condition implies that we can select some
stabilizing gain, K and that we can select some M =MT

> 0,
and find a P = P T

> 0 such that

AT P + PA + (KT
⊗ Ip)BT P + PB(K ⊗ Ip) = −M.

Select M = M̂ ⊗W . Let M̂ = Q+KT RK. Because K make
the system Hurwitz, use of Lyapunov’s theorem guarantees the
existence of a P . This completes the proof.
Remark 2: The bilinear matrix inequality (BMI) in eqn.(34)
does not have any analytical solution and must be solved
numerically to obtain K and P . The BMI can be solved using
solvers such as PENBMI [18].
Remark 3: Unlike, in the previous design, the variation in the
state trajectories directly maps to a corresponding deterministic
control and does not require explicit knowledge of ∆. This
can lead to computational benefits during implementation.
This feedback structure mimics the traditional robust control
approach where a single controller guarantees robust perfor-
mance for the entire range of parameter variation. The advan-
tage here is that it admits any arbitrary distribution, where
traditional robust control is limited to uniform distribution
only.
3) Stochastic State Feedback with Stochastic Gain: This sec-
tion deals with the optimality of a control law that involves
feedback of the form u = K(∆)x(t,∆). This feedback
structure is also analogous to output feedback control, but with
increased degree of freedom. Implementation of this control
law requires knowledge of ∆. To determine the values ui,j ,
we project the control onto the polynomial subspace

ui,l =
1

⟨φ2
l ⟩

n

∑
j=1

p

∑
k=0

p

∑
q=0

kij,kxj,q⟨φl, φkφq⟩,

giving

U = (
p

∑
k=0

Kk ⊗Φk)X =KX. (35)

When the control K is not a function of ∆, this corresponds
to Kij,k = 0 for k ≥ 1. The matrix Φ0 = Ip, so the previous
case is recovered. The cost function is written in terms of this
feedback strategy as

J = ∫
∞

0
XT (Qx̄ +KT RūK)Xdt. (36)

Proposition 3: The feedback law in eqn.(35) optimally drives
the system to the origin with respect to the cost function in
eqn.(36) for K(∆) solving

AT P + PA + PBK +KT BT P+

Qx̄ +KT RūK = 0, (37)
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subject to P = P T
> 0. Furthermore, a solution exists for some

Qx̄ and Rū if the feasibility condition

AT P + PA +KT BT P + PBK < 0, (38)

is satisfied.
Proof: The proof is similar to the previous proposition

and is therefore omitted.
Remark 4: This control strategy provides more flexibility for
solving the necessary condition for optimality at the expense
of more complexity in implementation, i.e. the necessity for
knowledge of ∆.
4) Deterministic Control with Augmented State Feedback:
In this feedback structure, the augmented gPC states of the
stochastic system is used to derive a deterministic control. This
corresponds to a control with ui(t,∆) = ui,0. As a result, the
system B matrix becomes

B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11,1 b12,1 ⋯ b1m,1

b11,2 b12,2 ⋯ b1m,2

⋮ ⋮ ⋮

b11,p b12,p ⋯ b1m,p

b21,1 b22,1 ⋯ b2m,1

⋮ ⋮ ⋮

bn1,p bn2,p ⋯ bnm,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

or B̂ can be written in the form of eqn.(19), where

B̂ij =

p

∑
k=0

bij,kδ1k.

where δ1k is a vector of zeros with a 1 at the kth position.
Since u is a deterministic control,

E[uT Ru] = uT Ru. (39)

Unlike previous cases, the dimension of B̂ is n(p + 1) ×m
instead of n(p + 1) ×m(p + 1). The optimal control problem
for this case involves selecting a control structure of the form

u =KX, (40)

where K ∈ Rm×n(p+1).
Proposition 4: Assume the matrix pair (A, B̂) is controllable.
The control law in eqn.(40) with a gain given by

K = −R−1B̂T P, (41)

where P = P T
> 0 is the solution of the algebraic Riccatti

equation

AT P + PA − P B̂R−1B̂T P +Qx̄ = 0, (42)

and optimizes the performance index in eqn.(26) for a deter-
ministic feedback law.

Proof: This is the solution to the standard LQR problem.

Remark 5: The solution to this control problem maps X, the
gPC expansions of the states, directly to deterministic control
u(t). Hence, knowledge of ∆ is necessary to compute X
during implementation.

V. EXAMPLE: STOCHASTIC CONTROL OF AN F-16
AIRCRAFT MODEL

As a simple example, consider the following model of an F-16
aircraft at high angle of attack

ẋ = Ax +Bu,

with states x = [V α q θ T ]T where V is the velocity, α the
angle of attack, q the pitch rate, θ its angle, and T is the thrust.
The controls, u = [δth δe]T , are the elevator deflection, δe,
and the throttle δth. Note that these values are all perturbation
from trim. The A and B matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1658 −13.1013 (−7.2748) −32.1739 0.2780
0.0018 −0.1301 (0.9276) 0 −0.0012

0 −0.6436 −0.4763 0 0
0 0 1 0 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0706
0 −0.0004
0 −0.0157
0 0

64.94 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similar to the analysis of Lu[19], the terms in parenthesis in

the A matrix are assumed to be stochastic and are functions
of a single random variable, ∆. The uncertainty in these
terms is assumed to be distributed uniformly by ±20% about
the nominal values −7.2748 and 0.9276 respectively. This
uncertainty corresponds to the uncertainty in the damping term
Cxq . The control design problem is to keep the aircraft at
trim, given some perturbation in the initial condition, in the
presence of parametric uncertainty. This is accomplished with
an LQR design, using the control law in eqn.(28). This design
generates a family of controllers, parameterized by ∆. We
compare the performance of the stochastic LQR design with
Monte-Carlo designs, where LQR designs were performed for
a large sample of uniformly distributed ∆. The cost function
for the Monte-Carlo designs is kept identical to that in the
stochastic design, i.e. matrices Q and R were same for all the
designs. Figure 1 shows the performance of the Monte-Carlo
LQR designs, represented in gray, as well as the performance
of the probabilistic design. The variance and mean of the state
trajectories, computed from the gPC expansions, are shown as
dashed and solid line respectively. We observe that the statis-
tics obtained from stochastic LQR design is consistent with
the Monte-Carlo simulations. The key is that the stochastic
control design problem is solved deterministically and by a
single design. The controller obtained is statistically similar
to the family of LQR designs over the sample set of ∆. An
implementation of such a control design in practice would
require knowledge of the parameter, ∆. Additional research
is required to determine methodologies for estimating ∆.
The polynomial chaos based framework can also be used for
statistical verification of the robustness of the controller with
probabilistic uncertainty in system parameters.

VI. LIMITATIONS OF POLYNOMIAL CHAOS

The gPC framework is well suited for evaluating short term
statistics of dynamical systems. However, their performance
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Fig. 1. Probabalistic response of α.

degrades upon long term integration. This degradation arises
due to finite dimensional approximation of the probability
space (Ω,F , P ). Several methods have been proposed to
reduce this degradation, including adaptive [20] and multi-
element approximation techniques [21]. We will incorporate
them in our future work on stochastic LQR design.

VII. SUMMARY

In this paper we have presented a framework for design-
ing linear quadratic regulators for systems with probabilistic
parametric uncertainty. The framework is built on the gen-
eralized polynomial chaos theory and can handle Gaussian,
uniform, beta and gamma probability distribution functions.
The framework is different from other research performed in
this area, in the characterization of parametric uncertainty and
its propagation due to the dynamics of the system. From a
single design, the proposed framework generates a family of
controllers, parameterized by the associated random variables.
The design process is validated on a simplified longitudinal
linear F16 model, and the results were consistent with the
Monte-Carlo based designs in the statistical sense.
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