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Abstract— This work develops a real-time algorithm to local-
ize a vehicle in the direction of travel without the use of GPS.
The inputs to the algorithm include a terrain map of road
grade and pitch measurements from an in-vehicle pitch sensor.
Localization is achieved in real-time using a particle filter
described in detail in this work. Simulations and experiments at
The Pennsylvania Transportation Institute test track are used
to demonstrate the algorithm, observe the speed of convergence,
and to determine key parameters for practical implementation.
The results indicate that the method can quickly localize a
vehicle with one-meter accuracy or better.

I. INTRODUCTION

For reasons of safety and efficiency, there is a great deal

of interest in localizing road vehicles. Today, the Global

Positioning System (GPS) serves as the primary means

to determine vehicle position. However, due to poor GPS

signal reception in some locations, the ease of jamming

a GPS signal in battlefield operation, and the need for

sensor redundancy in vehicle automation and driver assist

applications, there has been great interest in localization

technologies independent of GPS.

Several methods have been used to localize a vehicle

without GPS or during short GPS outages including fusion

of GPS with odometry [1], inertial measurements, vision

[2], laser scans [3], or using a network of beacons [4].

Of particular relevance to this work is the fusion of GPS

with map data. A demonstration of this capability was

accomplished in real-time [1] where a Kalman filter was

used to combine GPS data with odometry measurements. A

methodology called Belief Theory was used to correlate an

estimated vehicle position to a given digital road map, and

this method is able to correctly map the vehicle’s position

in the absence of GPS if the position was first correlated

correctly before the GPS outage. Many other approaches

to vehicle localization exist, but like this example, most

are designed to improve upon GPS accuracy or maintain

localization during GPS outages and are thus not completely

independent of GPS. The purpose of this research is to study

methods of localizing a vehicle completely without a GPS

device.

Similar to the work done in [5] where an aircraft’s

elevation profile is matched to a digital elevation map, this

work demonstrates the use of a terrain map for real-time

vehicle localization with the goal to obtain sub-meter posi-

tion resolution of a vehicle’s longitudinal position. Similar
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Fig. 1. Measured road grade as a function of time and distance at various
vehicle speeds on a circular handling area [8].

terrain-aided applications include missile guidance systems

[6] and underwater robotics [7].

It is assumed that the lane of travel has been previously

mapped and that on-vehicle storage of the resulting terrain

information is available. The first assumption is quite real-

istic given the large number of ongoing research projects

focused on mapping terrain, whereas the second assumption

is increasingly valid given the exponentially decreasing costs

of data storage and recent integration of similar on-vehicle

map databases into commercial products, for example the

“TomTom” navigation devices.

In this study, several terrain characteristics were con-

sidered for vehicle localization: road height changes, road

road grade changes (derivative of height), and superelevation

changes. The last two are the primary focus of this work
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because road grade correlates very strongly to in-vehicle

pitch measurements [9], and superelevation correlates to ve-

hicle roll. Both measurements are not perfect due to vehicle

dynamics; for example, the vehicle’s pitch response acts as

a low-pass filter to road grade changes [8]. However, as

this work demonstrates, this filtering effect is not significant

enough to filter out measurements of roadway disturbances

useful for determining vehicle position.

To demonstrate that a vehicle’s pitch measurement gives

repeatable terrain-correlated responses, a test vehicle was

driven in a circular trajectory on a handling area of the

Pennsylvania Transportation Institute (PTI) test track, one

of the flattest portions of this vehicle testing facility. In

Figure 1, one can see two plots: first, the pitch measurements

versus time for different velocities, and second, the same data

versus distance traveled using the same starting point. One

can clearly see from the second plot that pitch correlates

to position. Examining the response closely, the changes in

observed pitch are due to the very small slope added to the

handling area to allow water drainage. Also, because similar

responses are measured for a vehicle traveling at various

speeds, one can conclude that the “wheelbase filtering” effect

[10] of the vehicle’s pitch dynamics is relatively minor.

These plots suggest that a vehicle can be localized by

correlating a previously-mapped roadway with a vehicle’s

pitch response history transformed into a spatial pitch mea-

surement. This study tests this localization methodology and

suggests an algorithm for fast localization. The remainder

of this paper is organized as follows: Section 2 presents a

preliminary analysis of feasibility including an analysis of the

terrain features being correlated. Section 3 introduces a par-

ticle filter algorithm to achieve real-time position estimation

from terrain disturbances. Section 4 presents the results of

this filter tested using test-track data. Finally, a Conclusions

section summarizes the main findings of this work.

II. PRELIMINARY FEASIBILITY ANALYSIS

Because the pitch of a vehicle responds differently with

respect to speed over the same terrain, the so-called wheel-

base filtering effect, it was initially unclear whether terrain

disturbances in pitch would be repeatable across different

speeds and for roadways other than a circular track section.

To test repeatability, we drove a test vehicle - a 1992 Mercury

Tracer station wagon - at 2.2, 17.9, and 29 m/s (5, 40, and

65 mph) on the roadway section of the test track, recording

pitch. By comparing the Power Spectral Density (PSD) of

the pitch responses in spatial frequencies, shown in Figure

2, one observes the similarity of low-frequency content with

frequency measured in cycles-per-distance. It is clear that

the low-speed data has a higher power density than high

frequency data. Further, the correlation between signals is

poor at oscillations faster than 0.1 cycles per meter, but

matches quite well for lower frequencies. This not only

demonstrates the vehicle’s speed-dependant filtering effects,

but also shows that speed-independent correlation between

multiple traversals of a path can be achieved if low-frequency

pitch data is used.
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Fig. 2. Power Spectral Density (PSD) of the vehicle’s pitch response at
various speeds [8].

When explaining this research, we are often asked what

road “features” are used for correlation in the algorithm.

Possible pitch disturbance sources can be differentiated by

their different spatial distance and hence frequency range:

roadway surface texture has variations on the order of

centimeters (100 cycles/meter); potholes on the order of

10 centimeters (10 cycles per meter); step changes surface

elevation would cause pitch changes on the order of 1

meter (1 cycle per meter); imperfect surface leveling during

roadway construction creates undulations between 10 and

100 meters in length (0.1 and 0.01 cycles per meter); and,

due to sighting-distance requirements, roadway elevation

changes are designed to change on the order of 100 meters

or longer (lower than 0.01 cycles per meter). The PSD in

Figure 2 shows that the most likely source of correlation

is the low-frequency undulation caused by uneven road-

surfacing during construction. Thus, if one were finding

vehicle position by correlation of a pre-mapped profile, one

would thus not expect any fundamental failure in localization

from a simple pothole. Only a major roadway resurfacing

event or rerouting would produce errors sufficiently large as

to require reconstruction of the roadway map.

Further, the large-scale undulations also explain why the

correlation is largely insensitive to lateral position, a fact im-

plied by Figure 2 where no attempts were made to maintain

exact lane position. Road construction and surface finishing

tend to produce undulations in the longitudinal direction that

are invariant to lateral position changes on the size scale of

the vehicle width, e.g. the width of a steam roller or concrete

slab pour. Additional experiments, discussed in [8], show that

the longitudinal position estimation error indeed increases

with larger errors in lateral lane-keeping error, and that the

relationship is approximately linear for small lane deviations

and modern roadways. While formal relationships were not

established, a 0.5 meter RMS lane-keeping error resulted in

approximately a 1 meter additional longitudinal localization

error.
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Hereafter, the pitch response of the map and in-vehicle

pitch measurement are both filtered using a second-order

low-pass spatial filter with a cutoff frequency of 0.1 cy-

cles/meter. The roadway map features are recorded at 50 Hz

using a vehicle traveling at 5 m/s to produce pitch readings at

0.1 meter intervals. This combination of extreme low speeds

and high sampling rates at 100 times the period of correlation

is intended to avoid any aliasing effects that could later bias

the estimator.

To test whether terrain-based localization is feasible, ex-

periments were conducted comparing a low-speed (5 m/s)

pitch-map of the PTI test track to samples of pitch data taken

at high speeds (20 m/s). Truth estimates of vehicle position

during all runs were determined by a NovAtel “Span” Dif-

ferential Global Positioning System (DGPS) that is factory-

integrated with a Honeywell HG1700 ring-laser gyro Inertial

Measurement Unit (IMU), with positioning accuracy of 2

cm. Off-line correlation was attempted using correlation

windows of approximately 300 data points and a Pearson-

product correlation metric. Comparison across 5 test trials

with DGPS showed that the roadway correlation method was

successful in localizing the vehicle along the mapped track

in longitudinal position. The resulting localization accuracy

ranged from 1 meter to 10 cm [8]!

Although this estimation accuracy is excellent, the off-

line correlation algorithm is not fast enough for real-time,

in-vehicle applications. Further, there are no obvious mech-

anisms to include vehicle dynamics or multiple, simultane-

ous sources of roadway terrain measurements, for example

correlation from simultaneous in-vehicle pitch and roll mea-

surements. This work solves these issues using advanced

filtering methods, specifically the use of a particle filter. The

roll correlation work is not shown because roll disturbance

measurements are strongly coupled with vehicle steering

inputs, and thus a lengthy discussion of vehicle roll dynamic

models would be necessary to include such analysis. The fo-

cus hereafter on correlation just using pitch measurements is

adequate to succinctly demonstrate the localization algorithm

with little loss in generality.

III. PARTICLE FILTER ESTIMATION

Particle filters are Monte-Carlo estimators that are known

to be quite robust to non-Gaussian variance distributions

similar to what would occur in this work due to similarities

in the road profile along different segments. A Kalman filter

couldn’t be used to estimate the vehicle position because

the vehicle can start anywhere along the map, hence the

initial probability distribution is uniform whereas a Kalman

filter requires a gaussian probability distribution. Due to

the rapid advances in computing power, particle filters have

recently been demonstrated to be fast enough for real-time

applications [11] [12]. As a result, this method is gaining

wide use for localization [13] [14] [15] [5], tracking [16],

and even vehicle localization during GPS outages [17].

The particle filter algorithm used in this work was im-

plemented off-line using data previously recorded using an

instrumented vehicle equipped with the previously described
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Fig. 3. Overhead view and pitch data of the terrain map and highlighted
test fragment.

IMU and DGPS system at the test track at the Pennsylvania

Transportation Institute. At various speeds, pitch and position

data sets were recorded separately over small fragments of

the test track and a complete map was recorded separately

over the entire track at a constant speed. Figure 3 shows the

map and fragment data demonstrating that there are visible

variations in pitch between the data sets due to differences

in speed and inexact path tracking. The pitch data were

filtered using a low-pass filter at the cutoff frequency of 0.1

cycles/meter as discussed above.

The algorithm begins by converting the time-dependant

data to the spatial domain, or more plainly as a function

of distance from the starting point. Other than wheelbase

filtering which is dependant on velocity, this removes ve-

locity dependence on the pitch data. A set of N equally

weighted and randomly distributed particles are located along

the terrain map. The pitch estimate of each particle location

is determined from the pitch map; particles that lie between

the discretely mapped locations are determined via nearest-

neighbor linear interpolation.

The particle filter algorithm is based off of Algorithm 3

in [16] and begins to iterate through the fragment data by

repeating the following: First, the position estimates, denoted
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by X , at time interval k are updated from the previous

estimate by

Xk = Xk−1 + dX + dO, (1)

where dX is the distance the vehicle travels between time

steps as inferred from odometry and dO is gaussian white

noise of variance RO , equal to the variance of the odometry

measurement.

Second, the weights of the position particles are updated

by measuring the actual vehicle pitch and comparing it to the

particle’s pitch estimate using a standard particle weighting

function. The importance density is assumed to be the prior

density and the pdf is assumed to be gaussian:

qk
i =

exp
(

− 1

2·R
· (φa − φp,i)

2

)

∑N

i=1

(

exp
(

− 1

2·R
· (φa − φp,i)

2

)) , (2)

Here R is the measurement noise variance on pitch, φa

is the measured pitch, and φp,i is the ith particle’s pitch

corresponding to its position along the terrain map.

Third, the particles are resampled following Algorithm 2

described in [16] where the number of effective position

particles Neff is calculated as

Neff =
1

∑N

i=1

(

qk
i

)2
(3)

and when Neff is below a threshold of NT , the position

particles are re-sampled by

c = cumsum
(

qk
)

u1 = rand(1) · N−1

i = 1
for j = 1...N

uj = u1 + (j − 1) · N−1

while uj > ci

i = i + 1
end

Xk
j = Xk

i

qk
j = N−1

end

(4)

where rand(1) is an evenly distributed random number in

[0, 1] and cumsum is the cumulative sum.

Fourth, at every time step the vehicle’s position is esti-

mated as the mean of the position particles. The position

error estimate is also calculated as the standard deviations

of the position particles. This use of the entire population

to characterize the estimate is fairly conservative since the

position estimate of the “best” particle is in general far better

than that of the population mean. However, for this study

on the feasibility of the algorithm itself, convergence of the

population to the correct solution is a far better indicator of

algorithm performance than is analysis of the best particle

estimate.

IV. RESULTS

The particle filter described above was implemented with

N equal to 1000 particles, NT = 0.9 · N , and the vehicle

traveling about 15 m/s. The value of the pitch noise variance,

R, was relaxed to a value of 0.1 degrees2, much greater then

the variance in the IMU pitch measurement of 0.000169

degrees2 [8]. R enters Eq. 2 as a variance term, but it is

actually an indicator of the amount of confidence placed

in the accuracy of the measurement; a small R means

the measurement is trusted to be highly accurate. In this

case, R is larger than the actual variance to account for a

mean offset likely due to different loading conditions in the

vehicle between the data sets. Without this modification, the

algorithm could converge too quickly to another portion of

the map where the pitch value is similar to the biased pitch

measurement, resulting in an erroneous solution.

The vehicle used in this study could not be equipped to

measure odometry, however GPS measurements were avail-

able at all time samples. The odometry measurement was

instead reconstructed from GPS by calculating the distance

between data samples and adding a variance. The value of the

odometry measurement variance, RO, was calculated using

the results of an effective tire radius study [18], where a

tire with a specified radius of 321.65 mm was measured to

have a nominal effective radius of 310.4 mm. Under different

loading and tread conditions the effective radius was shown

to vary by as much as 0.8%, so a dead-reckoning odometry

measurement could vary by 0.8%. Thus, to be conservative,

the variance in the odometry measurement was chosen to be

RO = (0.01 · dX)2 m2.

The convergence results on the track are shown in Figures

4 and 5. Figure 4 is an overhead view of the test track with

the position estimates as dots, the mean estimate as a circle,

and the actual “true” position measured from differential

GPS shown as a box. It can be seen that as the vehicle

travels, the position estimates converge to the measured

vehicle location. Figure 5 demonstrates the convergence on

the pitch response map where the dots represent the pitch at

each position estimate along the map and the mean position

estimate as the circle. Convergence is clearly seen within

about 150 meters of forward roadway travel.

At every 10 meters the vehicle’s position is predicted by

the mean of the particle’s position estimates and the error in

the prediction is calculated. Because a driver is not capable

of driving over the exact same position around the track

at every pass, a path error is introduced called the lane-

keeping error. An estimate of error between the predicted

position to the actual vehicle position as measured by DGPS

would include the lane-keeping error. In order to remove the

lane-keeping error the measured vehicle position is projected

to the nearest position on the map. The corrected error is

calculated as the distance from the predicted position to the

corrected measured position as

Ek = |X̄ − xk
c |, (5)

where X̄ is the mean location of the position estimates and

xc is the vehicle’s DGPS measured location projected to the

map. The lane-keeping error is calculated as

Ek
l = |xk

c − xk
m|, (6)
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where xm is the vehicle’s actual DGPS measured location.

An example of the projection and error measurement is

shown in Figure 6.

The standard deviation of the population of particle posi-

tion estimates is also calculated at every 10 meters. These

results are shown in Figure 7 and demonstrate the algorithm

converged to an accuracy of about 1 meter after moving over

150 meters. Also shown in this figure and the following

is a line representing the mapping interval of the terrain

map, 10 cm, a value which places a lower-limit on the

achievable estimator accuracy. Compared to the off-line

correlation method mentioned earlier[8], the on-line particle
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Fig. 7. Position estimate error as a function of the distance traveled.

filter algorithm estimate is similar in accuracy.

One disadvantage of particle filters is the computational

burden imposed by using a large number of particles to

achieve an accurate yet robust prediction. To determine the

relationship between particle population size and estima-

tor accuracy, the same algorithm was tested using various

numbers of particles N distributed randomly across the one

mile map. The converged estimate error was inferred by

examining the standard deviation of the population averaged

over the final 100 meters. This was repeated 10 times, each

time with a different random initial population, and averaging

the results. The plot of population size versus estimator
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error is graphed in Figure 8. It can be seen that, as the

numbers of particles increases to 1000 per mile, the accuracy

improves greatly. It can also be seen that the algorithm

resulted in about the same accuracy with N = 1, 000 as

when 1, 000 < N ≤ 10, 000. This suggests that the position

of the vehicle can be estimated most efficiently at about

1,000 particles per mile and further particles are unnecessary.

This can also be used to estimate the computational cost of

using a particle filter to estimate vehicle position over large

area maps for a given measure of initial uncertainty. These

preliminary estimates suggest that, for each mile of locational

uncertainty within a mapped roadway, 1000 particles would

be needed.

V. CONCLUSIONS

This work shows that a vehicle’s longitudinal position can

be estimated given a terrain map and pitch measurements.

To achieve on-line estimation, a particle filter algorithm is

presented. The convergence of the estimate is seen to occur

within approximately 150 meters of driving, with converged

longitudinal positioning error of consistently achieving ac-

curacies of about 1 meter or better as compared to a DGPS

system. By examining population size, a particle density of

1,000 particles per mile of unknown roadway has been shown

to be sufficient for position estimation and can be used as a

basis for larger maps covering greater distances.
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