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Abstract— In this paper, adaptive neural control is inves-
tigated for a class of SISO unknown non-affine nonlinear
systems with state time-varying delays and unknown hysteresis
input. The non-affine problem is solved by adopting mean
value theorem and implicit function theorem. The unknown
time-varying delay uncertainties are compensated for using
appropriate Lyapunov-Krasovskii functionals in the design. The
effect of the unknown hysteresis with the Prandtl-Ishlinskii
model is also mitigated through the proposed adaptive control.
By utilizing the Lyapunov synthesis, the closed-loop control
system is proved to be semi-globally uniformly ultimately
bounded (SGUUB).

I. INTRODUCTION

Control of nonlinear systems preceded by unknown hys-

teresis nonlinearities has been an active topic, since the

hysteresis nonlinearities are common in many industrial

processes. It is difficult to control a system with hysteresis

nonlinearities, because they are non-differentiable nonlinear-

ities and severely limit system performance such as giving

rise to undesirable inaccuracy or oscillations, even leading

to instability [1]. Due to the nonsmooth characteristics of

hysteresis nonlinearities, traditional control methods are in-

sufficient in dealing with the effects of unknown hysteresis.

Therefore, the advanced control techniques to mitigate the

effects of hysteresis has been called upon and has been

studied for decades.

The most common approach is to construct an inverse

operator to cancel the effects of the hysteresis in [1] and

[2]. However, it is a challenging work to construct the

inverse operator for the hysteresis, due to the complexity

and uncertainty of hysteresis. As an alternative, approaches

combining the hysteresis model with the control technique

without constructing an inverse model have also been de-

veloped in [3], [4], [5] and [6] . However, in the above

works, all the systems are affine in control inputs and

the nonlinear functions are assumed to be known, which

limit the applications of those proposed control. In our

previous work [7], adaptive variable structure neural control

was investigated for a class of unknown nonlinear systems

in a Brunovsky form with state time-varying delays and

unknown hysteresis inputs. To deal with the presence of

function uncertainties, approximation based techniques using
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neural networks was used, since the neural networks has the

universal approximation capabilities, learning and adaptation,

parallel distributed structures [8], [9], and [10]. The unknown

time-varying delay uncertainties were compensated for using

appropriate Lyapunov-Krasovskii functionals in the design.

In this paper, we extend the results of [7] to the class

of unknown non-affine nonlinear systems with state time-

varying delays and unknown hysteresis inputs. To deal with

the non-affine problem in the control variable and virtual

ones, mean value theorem and implicit function theorem are

adopted to transform the system to affine form, motivated by

the works [11] and [12]. The control directions problem is

well dealt with by using Nussbaum functions [13].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a class of SISO non-affine nonlinear time-delay

systems preceded by unknown hysteresis in the following

ẋj = fj(x̄j , xj+1) + hj(x̄τj
), 1 ≤ j ≤ n − 1

ẋn = fn(x, u) + hn(xτ )

y = x1 (1)

where x = [x1, ..., xn]T ∈ Rn is the the vector of delay-free

states; x̄j = [x1, ..., xj ]
T ∈ Rj is the vector of delay-free

states of the first j differential equations; xτj
= xj(t−τj(t))

denotes the delayed states, and τj(t) is the unknown time-

varying state delays; x̄τj
= [x1(t−τ1(t)), ..., xj(t−τj(t))]

T

is the vector of delayed states for the first j differential

equations; xτ = [xτ1 , ..., xτn
]T includes all the delayed

states; fj(·) and hj(·) are unknown smooth functions; y ∈ R
is the output of the system; and u ∈ R is the input of the

system and the output of the hysteresis nonlinearity, which

is represented by the Prandtl-Ishlinskii model as follows

u(t) = p0v(t) − d[v](t) (2)

d[v](t) =

∫ R

0

p(r)Fr[v](t)dr (3)

Fr[v](0) = fr(v(0), 0)

Fr[v](t) = fr(v(t), Fr[v](ti)), for ti < t ≤ ti+1,

0 ≤ i ≤ N − 1

fr(v, w) = max(v − r,min(v + r), w))

with p0 =
∫ R

0
p(r)dr, p(r) is a density function, satisfying

p(r) ≥ 0 with
∫

∞

0
rp(r)dr < ∞, and Fr is called as the

play operator. Since p(r) vanishes for large values of r, the

choice of R = ∞ as the upper limit of integration in the

literature is just a matter of convenience. In addition, the
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function v is monotone on each of the subintervals (ti, ti+1],
0 ≤ i ≤ N − 1, N is a positive integer. See [5] and [6] for

the details.

The control objective is to design an adaptive neural

controller v(t) for system (1) (2) such that all signals in the

closed-loop system are bounded, while the output y follows

the specified desired trajectory yd.

For convenience of analysis, we define gj(x̄j , xj+1) =
∂fj(x̄j , xj+1)/∂xj+1 and gn(x, u) = ∂fn(x, u)/∂u, j =
1, ..., n − 1, which are also unknown nonlinear functions.

To facilitate control design later in Section III, we need

make the following assumptions and useful lemmas.

Assumption 1: The desired trajectory yd, and their time

derivatives up to the nth order, are continuous and bounded.

Assumption 2: There exist constants g
j

and ḡj such that

0 < g
j
≤ |gj(·)| ≤ ḡj < ∞, for j = 1, ..., n. The constants

g
j

and ḡj are used to handle the stability analysis only. In

addition, the signs of gj(·), for j = 1, ..., n−1 are unknown,

and the sign of gn(·) is known. Without loss of generality,

we shall assume that the sign of gn(·) is positive.

Assumption 3: The unknown continuous function hj(x̄τj
)

satisfy the inequality

|hj(x̄τj
)| ≤ ̺j(x̄τj

) (4)

with ̺j(·) being known positive continuous functions.

Assumption 4: The unknown state time-varying state de-

lays τj(t) satisfy the inequality

0 ≤ τj(t) ≤ τmax, τ̇j(t) ≤ τ̄max < 1, 1 ≤ j ≤ n

with the known constants τmax and τ̄max.

Assumption 5: The hysteresis output, u, is not available.

Assumption 6: There exist known constants p0min and

pmax, such that p0 > p0min, and p(r) ≤ pmax for all

r ∈ [0, R].
Lemma 1: (Implicit Function Theorem) For a continu-

ously differentiable function f(x, u) : Rn ×R → R, if there

exists a positive constant δ such that |∂f(x, u)/∂u| > δ > 0,

∀(x, u) ∈ Rn × R. Then there exists a continuous (smooth)

function u∗ = u(x) such that f(x, u∗) = 0 [11].

Lemma 2: (Mean Value Theorem) Assume that f(x, y) :
Rn × R → R has a derivative (finite or infinite) at each

point of an open set Rn × (a, b), and assume also that it is

continuous at both endpoints y = a and y = b. Then there is

a point ξ ∈ (a, b) such that f(x, b)−f(x, a) = f
′

(x, ξ)(b−a)
[14].

B. Nussbaum Function Properties

A function N(ζ) is called a Nussbaum-type function if it

has the following properties:

(i) lim
s→+∞

sup
1

s

∫ s

0

N(ζ)dζ = +∞

(ii) lim
s→+∞

inf
1

s

∫ s

0

N(ζ)dζ = −∞

For clarity, the even Nussbaum function, N(ζ) =
exp(ζ2) cos((π/2)ζ) is used throughout this paper.

Lemma 3: [13] Let V (·), ζ(·) be smooth functions defined

on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N(·) be an even

smooth Nussbaum-type function. If the following inequality

holds:

V (t) ≤ c0 + e−c1t

∫ t

0

g(x(τ))N(ζ)ζ̇ec1τdτ

+e−c1t

∫ t

0

ζ̇ec1τdτ, ∀t ∈ [0, tf )

where c0 represents some suitable constant, c1 is a positive

constant, and g(x(τ)) is a time-varying parameter which

takes values in the unknown closed intervals I = [l−, l+],
with 0 /∈ I , then V (t), ζ(t),

∫ t

0
g(x(τ))N(ζ)ζ̇dτ must be

bounded on [0, tf ).

According to Proposition 2 [15], if the solution of the

resulting closed-loop system is bounded, then tf = ∞.

Throughout this paper, (̃·) = (̂·) − (·), ‖ · ‖ denotes the

2-norm, λmin(·) and λmax(·) denote the smallest and largest

eigenvalues of a square matrix (·), respectively.

III. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will investigate the adaptive neural

control for the system (1) (2) using backstepping method

combined with mean value theorem, implicit function the-

orem and neural networks. For clarity, we define zj =
xj −αj−1, j = 1, ..., n, where αj is an intermediate control,

α0 = yd.

Step j (1 ≤ j ≤ n − 1): The derivative of zj is given by

żj = fj(x̄j , xj+1) + hj(x̄τj
) − α̇j−1 (5)

Using Lemma 1 and Lemma 2, there exists a constant

λj (0 < λj < 1) such that

fj(x̄j , xj+1) = fj(x̄j , x
∗

1,i1+1) + gλj
(xj+1 − x∗

j+1)(6)

where gλj
= gλj

(x̄j , ξj+1) =
∂fj(·)
∂xj+1

∣

∣

∣

xj+1=ξj+1

, and ξj+1 =

λjxj+1 + (1− λj)x
∗

j+1. Substituting (6) into (5), we obtain

the tracking error dynamic as follows

żj = gλj
(zj+1 + αj) + fj(x̄j , x

∗

j+1) − gλj
x∗

j+1

+hj(x̄τj
) − α̇j−1 (7)

where

α̇j−1 =

j−1
∑

k=1

∂αj−1

∂xk

[

fk(x̄k, xk+1) + hk(x̄τk
)
]

+ ωj−1

ωj−1 =
∂αj−1

∂ζj−1
ζ̇j−1 +

j−1
∑

k=0

∂αj−1

∂y
(k)
d

ẏ
(k+1)
d

+

j−1
∑

k=1

∂αj−1

∂Ŵ1,k

˙̂
W 1,k
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Define Vzj
= 1

2z2
j , its time derivative along (7) is

V̇zj
= zj

[

gλj
(zj+1 + αj) + fj(x̄j , x

∗

j+1) − gλj
x∗

j+1

−ωj−1 −

j−1
∑

k=1

∂αj−1

∂xk

fk(x̄k, xk+1)
]

+zj

[

−

j−1
∑

k=1

∂αj−1

∂xk

hk(x̄τk
) + hj(x̄τk

)
]

(8)

Applying Assumption 3 and using Young’s Inequality, we

have

V̇zj
≤ zj

[

gλj
(zj+1 + αj) + fj(x̄j , x

∗

j+1) − gλj
x∗

j+1

−ωj−1 −

j−1
∑

k=1

∂αj−1

∂xk

fk(x̄k, xk+1)
]

+
z2
j

2

j−1
∑

k=1

(∂αj−1

∂xk

)2

+
z2
j

2
+

1

2

j
∑

k=1

̺2
k(x̄τk

) (9)

Consider the following Lyapunov-Krasovskii functional

VUj
(t) =

1

2(1 − τ̄max)

j
∑

k=1

∫ t

t−τk(t)

̺2
k(x̄k(τ))dτ (10)

Its time derivative is

V̇Uj
(t) =

1

2(1 − τ̄max)

j
∑

k=1

̺2
k(x̄k(t)) −

1

2(1 − τ̄max)

j
∑

k=1

̺2
k(x̄τk

(t))(1 − τ̇k(t))(11)

Combining (9) and (11), we have

V̇zj
+ V̇Uj

(t)

≤ zj

[

gλj
(zj+1 + αj) + Qj(Zj)

]

+
1

2(1 − τ̄max)

[

1 −
z2
j

c2
zj

]

j
∑

k=1

̺2
k(x̄j(t)) (12)

where

Qj(Zj)

= fj(x̄j , x
∗

j+1) − gλj
x∗

j+1 − ωj−1

−

j−1
∑

k=1

∂αj−1

∂xk

fk(x̄k, xk+1) +
zj

2

j−1
∑

k=1

(∂αj−1

∂xk

)2

+
zj

2
+

zj

2(1 − τ̄max)c2
zj

j
∑

k=1

̺2
k(x̄k(t)) (13)

with Zj = [x̄j , αj−1, ωj−1,
∂αj−1

∂x1
,

∂αj−1

∂x2
, ...,

∂αj−1

∂xj−1
] ∈

ΩZj
⊂ R2j+1 and czj

is a positive design constant that can

be chosen arbitrarily small.

Let ŴT
j S(Zj) be the approximation of the function

Qj(Zj) (13) on the compact set ΩZj
, then we have

Qj(Zj) = ŴT
j S(Zj) − W̃T

j S(Zj) + ǫj(Zj) (14)

where the approximation error ǫj(Zj) satisfies |ǫj(Zj)| ≤ ǫ∗j
with positive constant ǫ∗j .

Consider the following fictitious control law αj :

αj = N(ζj)
[

kj(t)zj + ŴT
j S(Zj)

]

(15)

ζ̇j = kj(t)z
2
j + ŴT

j S(Zj)zj (16)

kj(t) = kja + kjb(t)

where N(ζj) = eζ2
j cos((π/2)ζj), kja is a positive constant

and kjb(t) is chosen as

kjb(t) =
kjc

2(1 − τ̄max)z2
j

j
∑

k=1

∫ t

t−τ̄max

̺2
k(x̄k(t))dτ (17)

with kjc a positive constant specified by the designer.

The adaptive tuning law is defined as

˙̂
W j = Γwj [S(Zj)zj − σwjŴj ] (18)

where Γwj = ΓT
wj > 0, σwj is a positive design constant.

Consider the following Lyapunov function candidate

Vj = Vzj
+ VUj

+
1

2
W̃T

j Γ−1
wj W̃j (19)

Its derivative with respect to time t is

V̇j = V̇zj
+ V̇Uj

+ W̃T
j Γ−1

wj
˙̃W j (20)

Substituting (12) into (20), noting (14) and using control

laws (15) and (16), it follows that

V̇j ≤ gλj
zjzj+1 + gλj

N(ζj)ζ̇j + W̃T
j Γ−1

wj
˙̃W j

+zj [Ŵ
T
j S(Zj) − W̃T

j S(Zj) + ǫj(Zj)]

+
1

2(1 − τ̄max)

[

1 −
z2
j

c2
zj

]

j
∑

k=1

̺2
k(x̄k(t)) (21)

Adding and subtracting ζ̇j on the right hand side of (21) and

using adaption law (18), we have

V̇j ≤ gλj
zjzj+1 + gλj

N(ζj)ζ̇j + ζ̇j

−kj(t)z
2
j + |zj |ǫ

∗

j − σwjW̃
T
j Ŵj

+
1

2(1 − τ̄max)

[

1 −
z2
j

c2
zj

]

j
∑

k=1

̺2
k(x̄k(t)) (22)

By completion of squares and using Young’s inequality, the

following inequalities hold:

−σwjW̃
T
j Ŵj ≤ −

σwj‖W̃j‖
2

2
+

σwj‖W
∗

j ‖
2

2
(23)

|zj |ǫ
∗

j ≤
kjaz2

j

2
+

ǫ∗2j

2kja

(24)

gλj
zjzj+1 ≤

kjaz2
j

4
+

ḡjz
2
j+1

kja

(25)

For the last term in (22), if |zj | > czj
, then it is less than

zero; if |zj | ≤ czj
, then it is bounded. Therefore, we have

1 −
z2

j

c2
zj

2(1 − τ̄max)

j
∑

k=1

̺2
k(x̄k(t)) ≤

̺j max

2(1 − τ̄max)
(26)
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where ̺j max = max
∑j

k=1 ̺2
k(x̄k(t)) as |zj | ≤ czj

.

Substituting (23)-(26) to (22), we have

V̇j ≤ −cjVj + gλj
N(ζj)ζ̇j + ζ̇j + µj +

ḡjz
2
j+1

kja

(27)

where

cj = min
{kja

2
, kjc,

σwj

λmax(Γ
−1
wj )

}

µj =
σwj‖W

∗

j ‖
2

2
+

ǫ∗2j

2kja

+
̺j max

2(1 − τ̄max)
(28)

Multiplying (27) by ecjt and integrating it over [0, t], we

have

0 ≤ Vj ≤ Cj + e−cjt

∫ t

0

[gλj
N(ζj) + 1]ζ̇je

cjτdτ

+e−cjt

∫ t

0

ḡjz
2
j+1

kja

ecjτdτ (29)

with Cj = Vj(0) + µj/cj .

By carefully examining the extra term

e−cjt
∫ t

0

ḡjz2
j+1

kja
ecjτdτ in (29), we have the following

inequality

e−cjt

∫ t

0

ḡjz
2
j+1

kja

ecjτdτ ≤
ḡj

kjacj

sup
τ∈[0,t]

[z2
j+1(t)](30)

From (30), if zj+1 can be regulated as bounded, then the

extra term e−cjt
∫ t

0

ḡjz2
j+1

kja
ecjτdτ in (29) is also bounded.

Then, from Lemma 3, the boundedness of zj and Ŵj can be

guaranteed. The boundedness of zj+1 will be proved in the

following steps.

Step n: This is the final step. In this step, we will design

the control input v(t). Since zn = xn − αn−1, its derivative

is given by

żn = fn(x, u) + hn(xτ ) − α̇n−1 (31)

Similarly, by implicit function theorem in Lemma 1 and

mean value theorem in Lemma 2, and using (2) lead to

żn = gλn
p0v(t) − gλn

d[v](t) + fn(x, u∗)

−gλn
u∗ + hn(xτ ) − α̇n−1 (32)

where

gλn
= gλn

(x, ξn+1) =
∂fn(·)

∂u

∣

∣

∣

u=ξn+1

ξn+1 = λnu + (1 − λn)u∗, 0 < λn < 1

α̇n−1 =
n−1
∑

k=1

∂αn−1

∂xk

ẋk + ωn−1

=
n−1
∑

k=1

∂αn−1

∂xk

[

fk(x̄k, xk+1) + hk(x̄τk
)
]

+ωn−1

ωn−1 =
∂αn−1

∂ζn−1
ζ̇n−1 +

n−1
∑

k=0

∂αn−1

∂y
(k)
d

ẏ
(k+1)
d

+
n−1
∑

k=1

∂αn−1

∂Ŵk

˙̂
W k

Define Vzn
= 1

2p0
z2
n, its time derivative along (32) is

V̇zn
= zngλn

v(t) −
1

p0
zngλn

d[v](t)

+
1

p0
zn

[

fn(x, u∗) − gλn
u∗ − ωn−1

−
n−1
∑

k=1

∂αn−1

∂xk

fk(x̄k, xk+1)
]

+
1

p0
zn

[

−
n−1
∑

k=1

∂αn−1

∂xk

hk(x̄τk
) + hn(xτ)

]

Applying Assumption 3 and using Young’s Inequality, we

have

V̇zn

≤ zngλn
v(t) −

1

p0
zngλn

d[v](t) +
1

p0
zn

[

fn(x, u∗)

−gλn
u∗ − ωn−1 −

n−1
∑

k=1

∂αn−1

∂xk

fk(x̄k, xk+1)
]

+
z2
n

2p2
0

n−1
∑

k=1

(∂αn−1

∂xk

)2

+
z2
n

2p2
0

+
1

2

n
∑

k=1

̺2
k(x̄τk

) (33)

Similarly, we consider the following Lyapunov-Krasovskii

functional

VUn
(t) =

1

2(1 − τ̄max)

n
∑

k=1

∫ t

t−τk(t)

̺2
k(x̄k(τ))dτ

Its time derivative is

V̇Un
(t) =

1

2(1 − τ̄max)

n
∑

k=1

̺2
k(x̄k(t)) −

1

2(1 − τ̄max)

n
∑

k=1

̺2
k(x̄τk

(t))(1 − τ̇k(t))(34)

Combining (33) and (34), we have

V̇zn
+ V̇Un

(t)

≤ zn

[

gλn
v(t) −

1

p0
gλn

d[v](t) + Qn(Zn)
]

+
1

2(1 − τ̄max)

[

1 −
z2
n

c2
zn

]

n
∑

k=1

̺2
k(x̄k(t)) (35)

where

Qn(Zn)

=
1

p0

[

fn(x, u∗) − gλn
u∗ − ωn−1

−
n−1
∑

k=1

∂αn−1

∂xk

fk(x̄k, xk+1)
]

+
zn

2p2
0

n−1
∑

k=1

(∂αn−1

∂xk

)2

+
zn

2p2
0

+
zn

2(1 − τ̄max)c2
zn

n
∑

k=1

̺2
k(x̄k(t)) (36)

with Zn = [x, αn−1, ωn−1,
∂αn−1

∂x1
, ∂αn−1

∂x2
, ..., ∂αn−1

∂xn−1
] ∈

ΩZn
⊂ R2n+1 and czn

is a positive design constant that

can be chosen arbitrarily small.
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Let ŴT
n S(Zn) be the approximation of the function

Qn(Zn) (36) on the compact set ΩZn
, then we have

Qn(Zn) = ŴT
n S(Zn) − W̃T

n S(Zn) + ǫn(Zn) (37)

where the approximation error ǫn(Zn) satisfies |ǫn(Zn)| ≤
ǫ∗n with positive constant ǫ∗n.

Choose the following Lyapunov function candidate

Vn = Vzn
+ VUn

+
1

2
W̃T

n Γ−1
wnW̃n +

1

2η

∫ R

0

p̃2(t, r)dr

Its derivative along (35) is

V̇n = V̇zn
+ V̇Un

+ W̃T
n Γ−1

wn
˙̃Wn

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ zn

[

gλn
v(t) −

1

p0
gλn

d[v](t) + Qn(Zn)
]

+
1

2(1 − τ̄max)

[

1 −
z2
n

c2
zn

]

n
∑

k=1

̺2
k(x̄k(t))

+W̃T
n Γ−1

wn
˙̃Wn +

1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

(38)

The following control laws are proposed:

v = N(ζn)
[

kn(t)zn + ŴT
n S(Zn)

]

−sign(zn)

∫ R

0

p̂(t, r)

p0 min
|Fr[v](t)|dr (39)

ζ̇n = kn(t)z2
n + ŴT

n S(Zn)zn (40)

kn(t) = kna + knb(t)

where N(ζn) = eζ2
n cos((π/2)ζn), kna is a positive constant

and knb(t) is chosen as

knb(t) =
knc

2(1 − τ̄max)z2
n

n
∑

k=1

∫ t

t−τ̄max

̺2
k(x̄k(t))dτ (41)

with knc a positive constant specified by the designer.

The adaptive tuning laws are defined as

˙̂
Wn = Γwn[S(Zn)zn − σwnŴn] (42)

∂

∂t
p̂(t, r)

=

{

0, if p̂(t, r) = pmax

η|zn|g
n

p0 min
|Fr[v](t)|, if 0 ≤ p̂(t, r) < pmax

(43)

with Γwn = ΓT
wn > 0, σwn and η are positive design

constants.

Substituting (37), (39) and (42) into (38) , and add and

subtracting ζ̇n on the right hand side of (38) lead to

V̇n ≤ gλn
N(ζn)ζ̇n + ζ̇n − kn(t)z2

n + |zn|ǫ
∗

n

−σwnW̃T
n Ŵn −

gλn
|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr

−
zn

p0
gλn

d[v](t) +
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

+
1

2(1 − τ̄max)

[

1 −
z2
n

c2
zn

]

n
∑

k=1

̺2
k(x̄k(t)) (44)

By completion of squares and using Young’s inequality,

the following inequalities hold:

−σwnW̃T
n Ŵn ≤ −

σwn‖W̃n‖
2

2
+

σwn‖W
∗

n‖
2

2
(45)

|zn|ǫ
∗

n ≤
knaz2

n

2
+

ǫ∗2n

2kna

(46)

Notice

−
gλn

|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr −
zn

p0
gλn

d[v](t)

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −
gλn

|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr

+
|zn|

p0 min
gλn

∫ R

0

p(r)|Fr[v](t)|dr

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −
gλn

|zn|

p0 min

∫ R

0

p̃(t, r)|Fr[v](t)|dr

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (47)

Case(i): When r ∈ Rmax = {r : p̂(t, r) = pmax}, and

Rmax ⊂ [0, R], according to (43), we have

p̃(t, r) ≥ 0,
∂

∂t
p̂(t, r) = 0 (48)

Substituting (48) into (47), we obtain

−
gλn

|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr −
zn

p0
gλn

d[v](t)

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr ≤ 0 (49)

Case (ii): When r ∈ Rc
max, which is the complement set of

Rmax in [0, R], i.e., 0 ≤ p̂(t, r) < pmax, according to (43),

we have

∂

∂t
p̂(t, r) =

η|zn|gn

p0 min
|Fr[v](t)| (50)

Substituting (50) into (47), we obtain

−
gλn

|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr −
zn

p0
gλn

d[v](t)

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr ≤ 0
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Combining Case (i) with Case (ii), we have

−
gλn

|zn|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr −
zn

p0
gλn

d[v](t)

+
1

η

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr ≤ 0 (51)

For the last term in (44), if |zn| > czn
, then it is less than

zero; if |zn| ≤ czn
, then it is bounded. Therefore, we have

1 −
z2

n

c2
zn

2(1 − τ̄max)

n
∑

k=1

̺2
k(x̄k(t)) ≤

̺n max

2(1 − τ̄max)
(52)

where ̺n max = max
∑n

k=1 ̺2
k(x̄k(t)) as |zn| ≤ czn

.

From Assumption 6 and the adaptation law (43), we know

the boundedness of |p̃(t, r)| ≤ pmax, which leads to the

boundedness of
σp

2η

∫ R

0
p̃2(t, r)dr ≤

σpR

2η
p2
max, where σp

is a positive design constant. Adding and subtracting the

term
σp

2η

∫ R

0
p̃2(t, r)dr on the right hand side of (44), and

substituting (45), (46), (51) and (52) into (44), we have

V̇n ≤ −cnVn + gλn
N(ζn)ζ̇n + ζ̇n + µn (53)

where

cn = min
{kna

2
, knc,

σwn

λmax(Γ
−1
wn)

, σp

}

µn =
σwn‖W

∗

n‖
2

2
+

ǫ∗2n

2kna

+
̺n max

2(1 − τ̄max)
+

σpR

2η
p2
max

Multiplying (53) by ecnt and integrating it over [0, t], we

have

0 ≤ Vn ≤ Cn + e−cnt

∫ t

0

[gλn
N(ζn) + 1]ζ̇necnτdτ

with Cn = Vn(0) + µn/cn. According to Lemma 3, we can

conclude that Vn(t), ζn(t), hence zn(t), Ŵn are SGUUB on

[0, tf ). From the boundedness of zn, the boundedness of the

extra term
ḡn−1

k(n−1)acn−1
supτ∈[0,t][z

2
n(t)] at Step (n − 1) is

readily obtained. Applying Lemma 3 backward (n−1) times,

we can guarantee that Vj , zj , Ŵj and hence xj are SGUUB

on [0, tf ). Therefore, no finite time escape phenomenon

may happen and tf = ∞. Let C0j be the upper bound of

e−cjt
∫ t

0
[gλj

N(ζj) + 1]ζ̇je
cjτdτ +

ḡj

kjacj
supτ∈[0,t][z

2
j+1(t)],

j = 1, 2, ..., n − 1, and C0n be the upper bound of

e−cnt
∫ t

0
[gλn

N(ζn) + 1]ζ̇necnτdτ , then there exists T , such

that for all t > T , we have |zi| ≤
√

2(Cj + C0j), ‖W̃j‖ ≤
√

2(Cj + C0j)/λmin(Γ−1
wj ), for j = 1, 2, ..., n.

Theorem 1: Consider the closed-loop system consisting of

the plant (1), preceded by unknown hysteresis nonlinearities

(2) and (3), and the control laws (39) (40) and adaptation

laws (42) (43). Under Assumptions 1-6, for bounded initial

conditions, the overall closed-loop neural control system is

SGUUB in the sense that all of the signals in the closed-

loop system are bounded, and the tracking error remains in

a compact set.

Proof: The proof can be easily completed by following the

above design procedures from Step 1 to Step n.

IV. CONCLUSION

Adaptive neural control has been proposed for a class of

unknown SISO non-affine nonlinear systems with state time-

varying delays and unknown hysteresis input. The non-affine

problem has been solved using mean value theorem and

implicit function theorem. The unknown time-varying delay

uncertainties have been compensated for using appropriate

Lyapunov-Krasovskii functionals in the design. The closed-

loop control system has been theoretically shown to be

SGUUB using Lyapunov synthesis method.
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