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Abstract— The Feedback Error Learning (FEL) algorithm
is examined under the condition of a noisy teaching signal.
The teaching signal, which adaptively adjusts the weights of
the feedforward network, is assumed to be corrupted by a
Signal Dependent Noise (SDN) source. The FEL framework was
originally inspired by the cerebellum as a model for human
motor control. We analyze the robustness properties of the
original system with respect to the SDN noise model. We prove
bounds on the learning rate and feedback gain matrices that
guarantee stochastic stability of the closed loop system.

I. INTRODUCTION

The Feedback Error Learning framework was originally

proposed by Kawato [1] as a first attempt to link the neuro-

anatomical findings in the cerebellum and motor cortex with

components of an adaptive control scheme. Kawato claimed

that the training signal which originates in the inferior olive

in the medula region of brain stem conveys information

of the feedback control signal via its climbing fibers. The

climbing fibers project onto the dendrites of Purkinje cells

and are known to induce Long Term Depression (LTD) which

is the primary mechanism that modulates cerebellar output.

Later, Garwicz [4], showed by microelectrode stimulation

and recording in the inferior olive of a cat that the climbing

fiber input to Purkinje cells may encode a motor command

derived from a spinal feedback loop. In other words, the

teaching signal may simply encode the feedback control

signal. The FEL architecture is depicted in Fig. 1. More

recent theoretical studies of the FEL framework are given

in [2] and [3].

In this note, we will examine the signal dependent noise

(SDN) model that has recently received much attention in the

neuroscience community [5],[6]. It has long been known that

neural signals are highly variable. Whether this variability

is the result of an additive noise source or part of the

signal is unknown [7]. Harris and Wolpert [8] proposed that

variability of neural signals during the control of eye and

arm movements is well accounted for by a neural noise

model in which the standard deviation of the control signal

increases linearly with the mean of the signal. In other words,

the additive noise is signal dependent on the signal being

corrupted. More importantly, this hypothesis is consistent

with empirical observations of the trade off between speed

and accuracy [9]. Using the SDN model, Harris and Wolpert
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were able to predict the bell shaped velocity profiles observed

experimentally. It is still unclear where and what signals in

the nervous system are being corrupted by signal dependent

noise. Potential candidates include higher planning areas in

the brain such as premotor or supplementary motor areas,

motor command signals descending to the spinal level via

the corticospinal tract or rubrospinal tract, or the various

sensory feedback pathways, such as the dorsal column me-

dial lemniscous pathway. In this note, we analyze the case

where signal dependent noise corrupts the teaching signal

of the feedforward network. In the FEL framework, this

corresponds to the signal generated from inferior olive. The

signal dependent noise corruption is indicated by the block

labeled σḂ in Fig. 1. A more detailed description will be

given below.

II. STOCHASTIC SETTING

In this section we define the relevant stochastic terminol-

ogy as well as Ito’s formula. We refer the reader to [11].

Let (Ω,F , {Ft}, P ) be a complete probability space. Let Bt

be an m-dimensional Brownian motion vector adapted to

the filtration, {Ft}. An d-dimensional Ito process, x(t, ω),
is a continuous, {Ft}-adapted stochastic process that is the

solution of the stochastic differential equation denoted by

dx(t, ω) = f(x(t, ω), t)dt + g(x(t, ω), t)dB

or in other words, x(t, ω) satisfies the equality

x(t, ω) = x(0, ω)+

∫ t

0

f(x(s, ω), s)ds+

∫ t

0

g(x(s, ω), s)dB

for all t ∈ [0, T ]. In the following, we will suppress the

dependence of x on ω ∈ Ω and denote x(t, ω) as simply x(t).
It is to be understood that for each fixed t, x is a random

variable. Let Lp(X;Y ) denote the collection of stochastic

processes h : X × Ω → Y such that

∫ T

0

‖h(s)‖p
Y ds < ∞ a.s ∀T > 0

We now state the Ito formula, which is the stochastic version

of the chain rule of ordinary calculus.

Theorem 1 (Ito’s Lemma-adapted from [11]): Let

(Ω,F , {Ft}, P ) be a complete probability space, and

x(t, ω) be a d-dimensional Ito process satisfying

x(t, ω) − x(0, ω) =

∫ t

0

f(x, s)ds +

∫ t

0

g(x, s)dB (1)

where f ∈ L1(Rn × R
+ × Ω; Rd), g ∈ L2(Rn × R

+ ×
Ω; Rd×m), and B : R

+ × Ω → R
m is an m dimensional
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Brownian motion. Let V ∈ C2,1(Rd × R
+; R). Then,

V (x(t), t) − V (x(0), 0) =

∫ t

0

f̄ds +

∫ t

0

ḡdB a.s

where f̄ = Vt + Vxf + 1
2Tr
(

gT Vxxg
)

and ḡ = Vxg.

Note the additional term given by

1

2
Tr
(

gT Vxxg
)

(2)

This is the Ito anomaly and is the reason why stability

analysis of stochastic systems is very different than its

deterministic counterpart.

Definition 1 (Stochastic Stability): The equilibrium of (1)

is said to be stochastically stable, or stable in probability

if for every pair of ǫ ∈ (0, 1) and r > 0, there exists a

δ = δ(ǫ, r, t0) such that ‖x0‖ < δ implies

P{‖x(t; t0;x0)‖ < r ∀t ≥ t0} ≥ 1 − ǫ
For brevity, we define the operator L acting on the

Lyapunov function V as

LV := Vt + Vxf +
1

2
Tr
(

gT Vxxg
)

We may now succinctly write Ito’s Lemma for the function

V ∈ C2,1(Rd × R
+; R) as

dV = LV dt + Vxg(x, t)dB

Theorem 2: (Adapted from [11]): Let S ⊂ R
d. If there

exists a positive definite function V ∈ C2,1(S × [0,∞); R)
such that LV ≤ 0 for all (x, t) ∈ S × [0,∞), then the

equilibrium of (1) is stochastically stable.

III. BACKGROUND

In this section, we state the plant dynamics, the feedfor-

ward control, and the FEL algorithm for the deterministic

case originally presented in [1]. We take the plant to be a

serial link manipulator. The dynamics are given as follows:

Plant Dynamics

M(q)q̈ + V (q, q̇) + F (q̇) + G(q) + τd = τ (3)

where M(q) ∈ Rn×n is the inertia matrix, V (q, q̇) ∈ Rnx1

is the corriolis/centripetal matrix, G(q) ∈ Rnx1 is the gravity

matrix, F ∈ R
n denotes friction terms, and τd ∈ Rnx1

represents unknown disturbances. q ∈ Rnx1 is the joint angle

state vector, and τ ∈ Rnx1 is the net torque applied at each

joint. We have the following standard assumptions [14].

Assumption 1: M(q) is symmetric, positive definite and

bounded.

Assumption 2: The corolis/centripetal terms can be writ-

ten asrolis/centripetal terms can be written as Vm(q, q̇)q̇ such

that Ṁ − 2Vm(q, q̇) is skew-symmetric.

Assumption 3: The gravity and disturbance terms are

bounded.

We will neglect friction and disturbance terms in the analysis.

The desired trajectory is denoted by �qd =
[ qd

q̇d

q̈d

]

. The control

input to the plant is denoted by τ = τfb +τff . The feedback

control is given by τfb = Kpq̃ + Kv
˙̃q where q̃ := qd − q,

and Ks for s = p, v denotes a positive definite symmetric

feedback gain matrix. We will use the following notation for

the lower and upper bounds of key terms:

κM
d
= infq∈Rn σmin(M(q)) ωM

d
= supq∈Rn ‖M(q)‖

κv
d
= σmin(Kv) ωv

d
= ‖Kv‖

κp
d
= σmin(Kp) ωp

d
= ‖Kp‖

βp =
ωp

κp
βv = ωv

κv

The feedforward command, τff , is the output of a basis

function network, for example a radial basis function (RBF)

network:

τff = ŴT φ(qd)

=
[

W ∗ − W̃
]

φ(qd)

= τ∗
ff − ǫ(qd) − W̃T φ(qd) (4)

where Ŵ ∈ R
N×n is a matrix of estimated parameters, and

W̃ ∈ R
N×n denotes the matrix of parameter errors defined

by W̃
d
= W ∗−W . Note that we have assumed that there is no

approximation error in the network. In other words, we have

assumed that we have knowledge of the exact basis function

structure (the regressor). An exact basis always exists for

the n-link, rigid, robot manipulator [14]. The case for which

approximation error exists is handled in a forthcoming paper,

and requires the addition of Narendra’s e-modification to the

FEL algorithm.

The FEL algorithm [1] is given as

˙̂
W = Γφ(qd)τ

T
fb (5)

where Γ ∈ R
N×N is a symmetric, positive definite matrix

of learning rates. This algorithm can be interpreted as a

continuous least mean square algorithm with respect to the

inverse dynamics of the plant assuming that the desired

output is the actual control input to the plant. We do not

go into details here.

IV. MAIN RESULTS

In this section, we consider signal dependent noise on the

signal that trains the feedforward network. In physiological

terms, this may apply to climbing fiber excitation of Purkinje

cells in lateral cerebellum. With respect to the FEL control

system, this noise source is modeled as shown in Fig. 1.

Here, we assume that the training signal to the network

is corrupted by signal dependent noise, in which each com-

ponent of the signal is multiplied by 1 + σiḂi, where σi

represents the noise intensity of the ith component of the

Brownian motion.

Before proceeding with the system above, we consider a

somewhat general SDE and derive an expression for the Ito

anomaly. To this end, consider an SDE of the form:

ẋ = F (x, t) + G(x, t)Ḃ (6)
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Fig. 1. FEL block diagram with signal dependent noise corrupting the
training signal to the feedforward neural network.

where

x =







x(1)

...

x(d)






F (x, t) =







F1(x, t)
...

Fd(x, t)







G(x, t) =







G1(x, t)
...

Gd(x, t)






B(t) =







B1(t)
...

Bm(t)







and the dimensions of the components are x(i) ∈ R
ni , Fi ∈

R
ni , Gi ∈ R

ni×m and
∑

ni = n̄. As before, the components

of B are scalar Brownian motions.

We now consider the Ito anomaly given in (2). Due to

symmetry, the Ito anomaly is equivalent to 1
2Tr
(

VxxGGT
)

.

It can be shown that

Tr
(

VxxGGT
)

=
d
∑

i,j=1

Tr
(

Vx(j)x(i)GiG
T
j

)

(7)

where

Vx(k)x(j) :=











∂

∂x
(k)
1

∂V

∂x
(j)
1

· · · ∂

∂x
(k)
1

∂V

∂x
(j)
nj

...
. . .

...
∂

∂x
(k)
nk

∂V

∂x
(j)
1

· · · ∂

∂x
(k)
nk

∂V

∂x
(j)
nj











∈ R
nk×nj

We now consider the learning dynamics corrupted by SDN

on the training signal. Each component of the feedback,

τfbi
is corrupted by a signal dependent brownian motion

with noise intensity, σi. The resulting stochastic differential

equation is given by

˙̃W = −γφ(qd)τ
T
fb − γφ(qd)(ΛḂ)T (8)

where W̃ = W ∗ − Ŵ denotes the N × n matrix of

weight errors and φ(qd) ∈ R
N denoted the RBF network

with the desired trajectory as the input. The stochastic

terms are defined as Λ = diag{σiτfbi
} ∈ R

n×n and

B = [B1B2 . . . Bm]T denotes an m-dimensional Brownian

motion.

Closed Loop System Dynamics: We now vectorize the

plant (3) and learning (8) dynamics. Let x(1) := q̃ and

x(2) = ˙̃q. Vectorizing the weight matrix, we let

x(3) =
[

W̃[1,:] W̃[2,:] · · · W̃[N,:]

]T

∈ R
N ·n

where W̃[i,:] denotes the ith row of matrix W̃ . Hence, the

closed loop system is described by

ẋ(1) = F1(x, t) + G1(x, t)Ḃ

ẋ(2) = F2(x, t) + G2(x, t)Ḃ

ẋ(3) = F3(x, t) + G3(x, t)Ḃ

(9)

where

F1(x, t) = x(2)

F2(x, t) = q̈d − M−1(x(1))
(

τ − Vmx(2) − G
)

F3(x, t) = −Γ











φ1(qd)τfb

φ2(qd)τfb

...

φN (qd)τfb











G3(x, t) = −Γ











φ1(qd)Λ
φ2(qd)Λ

...

φN (qd)Λ











and G1 = G2 = 0. Before stating the main theorem, we

define a key constant that is used throughout the paper.

Define the constant

b0 := σ2
B
φ2

B
(10)

where σB is the maximum component of the noise intensity

vector defined by

σB := max
i∈[1,n]

{|σi|} (11)

and φB is the supremum norm of the basis function network

over all possible desired trajectories defined by

φB := sup
qd∈K

‖φ(qd)‖ (12)

Theorem 3: Consider the closed loop system given in (9).

Let the ideal feedforward component be defined by

τ∗
ff = M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) = W ∗T φ(qd)

for all
[ qd

q̇d

q̈d

]

∈ K, where K is a known compact set. Let the

control input to the plant be denoted by τ = τfb + τff ∈ R
n

where τfb = Kpq̃ + Kv
˙̃q, and τff = ŴT φ(qd). Let the

network be trained according to the FEL algorithm with SDN

corrupting the training signal as given in (8). Let cγ be an

arbitrary positive real number. Let the triple (κp, κv, γ) be

selected in accordance with following bounds:

κp >
1

2

(

v3 +
√

v2
3 + α2

2

)

κv > max

(

d2 +
√

d2
2 + 4d1d3

2d1
, ωpωM

√

1

2κMκp

)

γ ≤
cγ

max{κp, κv}
(13)
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where α2 is given in the appendix and the constants, di, are

given in the proof below in equation (20). Then, the closed

loop system is stochastically stable.

Proof: Consider the following Lyapunov function can-

didate.

V (q̃, ˙̃q, W̃ ) = V0 + 1
2Tr
[

W̃T Γ−1W̃
]

where V0 = 1
2

˙̃qT KvM(q) ˙̃q + 1
2 q̃T KvKpq̃ + 1

2 q̃T KpKv q̃ +

q̃T KpM(q) ˙̃q. It can be shown that there exists positive

constants c1, c2, c3, c4 > 0 such that

c1‖q̃‖
2 + c2‖ ˙̃q‖2 ≤ V0 ≤ c3‖q̃‖

2 + c4‖ ˙̃q‖2

We note that the methods employed are similar to that in

presented in [15] and [14]. The condition for which c1, c2 >
0 [13] is given by

κv > ωpωM

√

1

2κMκp

(14)

It can also be shown that
[

∂V

∂x

]T

F (x) ≤ −

[

‖q̃‖

‖ ˙̃q‖

]T

A0

[

‖q̃‖

‖ ˙̃q‖

]

+W(‖q̃‖, ‖ ˙̃q‖,KpKv)

where F and x are defined in (9), and

W = ωp

(

‖ ˙̃q‖2‖q̃‖ξ2

)

+ ωv

(

‖ ˙̃q‖3η2

)

Before proceeding, we implement some assumptions that

will simplify the forthcoming analysis. First, we set βp =
βv = 1. These quantities denote the ratio of the maximum

and minimum singular values of the feedback gain matrices.

In other words, we will take Kp = κpI and Kv = κvI .

Let the learning rate, Γ = γI . With these assumptions, the

matrix A0 is given as

A0 =

[

κ2
p − κpα2 −

κp(α3+ξ1)+κvα2

2

−
κp(α3+ξ1)+κvα2

2 κ2
v − κpωM − κv(α3 + η1)

]

The constants ξi, ηi and αi are defined in the appendix.

We now compute the Ito anomaly. Using (7), we get

1

2
Tr
(

VxxGGT
)

=
1

2
Tr
(

Vx(3)x(3)G3G
T
3

)

≤
γ

2
‖φ‖2σ2

B‖τfb‖
2

where σB and φB were defined previously in (11) and (12),

respectively. Let γ ≤
cγ

max{κp,κv}
.

Then, we have

1
2Tr
(

VxxGGT
)

≤
φ2

Bσ2
Bcγ

2 max{κp,κv}
‖τfb‖

2

≤
cγb0

2

(

κv‖ ˙̃q‖2 + 2κp‖q̃‖‖ ˙̃q‖ + κp‖q̃‖
2
)

We can now bound LV as follows:

LV ≤ −

[

‖q̃‖

‖ ˙̃q‖

]T

A

[

‖q̃‖

‖ ˙̃q‖

]

+ W(‖q̃‖, ‖ ˙̃q‖,Kp,Kv) (15)

where

A =
[

κ2
p − κp(α2 +

b0cγ

2 ) −
κpf1+κvα2

2

−
κpf1+κvα2

2 κ2
v − κpωM − κv(α3 + η1 +

cγb0
2 )

]

and f1 = α3 + ξ1 + cγb0. For the symmetric matrix A to

be positive definite, we have the following two conditions:

b2 < ad and 0 < a + d where a = κ2
p − κp(α2 +

b0cγ

2 ),

b = −
κpf1+κvα2

2 and d = κ2
v −κpωM −κv(α3 +η1 +

cγb0
2 ).

The first condition (b2 < ad) yields:

1
4 (κvα2 + κp(α3 + ξ1 + cγb0))

2
<

(κ2
p − κp(α2 +

b0cγ

2 ))(κ2
v − κv(α3 + η1 +

b0cγ

2 ) − κpωM )
(16)

The second condition (a + d > 0) yields:

κ2
p − κp(α2 +

b0cγ

2 )

+κ2
v − κv(α3 + η1 +

b0cγ

2 ) − κpωM > 0
(17)

Suppose that (16) holds. Then, the left hand side of (19)

satisfies

κ2
p − κp(α2 +

b0cγ

2 ) + κ2
v − κv(α3 + η1 +

b0cγ

2 ) − κpωM

> κ2
p − κp(α2 +

b0cγ

2 ) + 1
4

(κvα2+κp(α3+ξ1+cγb0))
2

κ2
p−κp(α2+

b0cγ
2 )

Setting the right hand side of the above inequality to be

positive we get

κp > α2 +
b0cγ

2
(18)

Hence, it remains to establish the conditions for which (16)

holds. After some manipulation, (16) is equivalent to

d1κ
2
v − d2κv − d3 > 0 (19)

where

d1 = 4(κ2
p − κpv3) − α2

2 v1 = α3 + ξ1 + cγb0

d2 = 4v2(κ
2
p − κpv3) + 2κpα2v1 v2 = α3 + η1 +

b0cγ

2

d3 = 4(κ2
p − κpv3)κpωM + v2

1κ2
p v3 = α2 +

b0cγ

2
(20)

If we require that d1, d2, d3 > 0 then we can set κv to

be greater than right most zero of the left hand side. Setting

d1 > 0, we get

κp >
1

2

(

v3 +
√

v2
3 + α2

2

)

(21)

Choosing κp to satisfy (21) automatically satisfies (18). It

also ensures that d2 and d3 are positive. Hence, we have

κv >
d2 +

√

d2
2 + 4d1d3

2d1
(22)

The above two inequalities establish the conditions for the

feedback gain matrices stated in the theorem. Let x1 = ‖q̃‖,

x2 = ‖ ˙̃q‖ and x =
[

x1
x2

]

. Then,

LV ≤ A1‖x‖
3 − A2‖x‖

2

where A1 =
κpξ2

2 +κvη2 and A2 = λmin(A). Hence LV ≤ 0
if ‖x‖ < A2

A1
. By Theorem 2.2 in [11], it follows that the

closed loop system is stable in probability.

Remark 1: In the case of SDN on the training signal, the

resulting Ito anomaly derived in (15) results in a quadratic

term in the performance error. This, in general is not a

problem since the derivative of the Lyapunov function is

usually bounded by a negative definite quadratic function.
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The difficulty arises due to the fact that the coefficients of the

quadratic term involve the square of the feedback gain terms.

Since this Ito term always increases the energy of the system,

we see that increasing the feedback gain will now destabilize

the system. This is intuitively clear since increasing the

magnitude of the feedback control signal will increase the

noise applied to the system. In the deterministic case, there

are negative definite terms with coefficients that involve the

square of the feedback gain terms. Hence, increasing the

feedback gain sufficiently results in a stable system. Thus,

in this case, given a fixed bound on the magnitude of the

noise intensities, we choose a learning rate that does not

amplify the SDN more than the stabilizing feedback control

signal. Note also that the Ito term involves the magnitude of

the basis function network squared. We note however, that in

our case, we use a basis function network that depends only

on the desired states. Hence, we can always bound this term

for any basis network. On the other hand, if the inputs to the

basis network consisted of actual states, then the Ito anomaly

would result in a quartic term in the errors complicating the

analysis. This illustrates another advantage of using a purely

feedforward network.

Remark 2: Note that in the theorem, we simplified the

analysis by setting Kv = κvI . This results in η1 = η2 = 0.

This follows from a skew-symmetric property of the robot

arm dynamics and is a common technique employed in the

adaptive control of robots [14].

Remark 3: Note the effect of the parameter cγ on the

stability curves. As can be observe from (21), increasing

cγ increases linearly the bound on κp. The κv bound (22)

dependence on cγ is more complicated but increases as well

with increasing cγ .

V. SIMULATION EXAMPLES

In this section we simulate the 2-link manipulator under

the condition of signal dependent noise corrupting the train-

ing signal. The 2-link is described by [14].

M(q)q̈ + Vm(q, q̇)q̇ + G(q) = τ

where

M(q)=
[

(m1+m2)a
2
1+m2a2

2+2m2a1a2 cos(q2) m2a2
2+m2a1a2 cos q2

m2a2
2+m2a1a2 cos q2 m2a2

2

]

Vm(q,q̇)=





−q̇2m2a1a2 sin q2 −(q̇1+q̇2)m2a1a2 sin q2

q̇1m2a1a2 sin q2 0





G(q)=





(m1+m2)ga1 cos q1+m2ga2 cos (q1+q2)

m2ga2 cos (q1+q2)





All examples to follow will be with respect to the two-link

manipulator dynamics described above with the parameters:

m1 = 0.8 kg, m2 = 2.3 kg, a1 = 1 m, a2 = 1 m, and

g = 9.8 m/s2.

Example 5.1 (Maximizing the Learning Rate): In Theo-

rem 3., γ is chosen according to (13). To maximize γ, we

set

γ =
cγ

max{κp, κv}
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Fig. 2. Example 5.1: Maximizing the Learning Rate

and given an arbitrary cγ , select the feedback gains (which

depend on cγ) such that the denominator is minimized. This

occurs when κp = κv . In Fig. 2, we plot the stability curves

for various cγ . To maximize γ, we choose the points on the

stability curves where κp = κv . This is indicated by a star. In

the bottom panel, we plot the corresponding learning rate that

maximizes (13). In the simulation, the noise intensity vector

is taken to be σ = [σ1 σ2]
T with σi = 0.1, for i = 1, 2.

Example 5.2: Instability due to Noisy Teacher: Here we

show an example where SDN in the training signal destabi-

lizes the system. We let the noise σ = [σ1 σ2]
T with σ1 =

0.7 and σ2 = 0.5. We choose the feedback gains according to

the nominal stability curve. In this case, we set κp = 100 and

κv = 120. The learning rate, γ was set to unity. In Fig. 3., we

plot the norm of the combined error, ‖x‖ =
√

‖q̃‖2 + ‖ ˙̃q‖2.

We observe the resulting destabilizing effect of the noisy

teaching signal.

Example 5.3: Stable Learning and Control with SDN:

In the previous example, the feedback gains were chosen

according to the nominal stability curve which did not take

into account the noise on the training signal. In this example,

we will show that selecting the feedback gains and learning

rate according to Theorem 3 results in stable learning and

control of the 2-link manipulator. We take the noise to be

σ = [σ1 σ2]
T with σi = 0.1, for i = 1, 2. We choose the

third point in Fig. 2., which corresponds to cγ = 150, and

κp = κv = 119.0355. Using (13), we compute γ = 1.2601.

In Fig. 4., we simulate the teaching signal. In this case

stable behavior is observed. In Fig. 4. we also simulate the

combined performance error, ‖x‖ =
√

‖q̃‖2 + ‖ ˙̃q‖2.
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Fig. 4. Example 5.3: Stable Learning and Control with SDN

APPENDIX

In this section, we define the bounding constants used in

Theorem 1. For a detailed description, see [13]

ξ1 = CV ‖q̇d‖ α2 = CM‖q̈d‖ + CVq
‖q̇d‖

2 + CG

α3 = CVq̇
‖q̇d‖ CVq̇

= max
j

sup
q

n
∑

i=1

‖ωij(q)‖

η1 = CV CV = max
j

sup
q

n
∑

i=1

‖ωij(q)‖

ωij(q) = [Vi(q)][:,j] CM = max
j

n
∑

i=1

sup
q

∥

∥

∥

∥

∂mij(q)

∂q

∥

∥

∥

∥

CVq
= max

j
sup

q

n
∑

i=1

√

√

√

√

n
∑

k=1

∥

∥

∥

∥

∂ωij

∂qk

∥

∥

∥

∥

2

CG = max
j

sup
q

∑

i

∣

∣

∣

∣

∣

[

∂G

∂q

]

ij

∣

∣

∣

∣

∣

(23)
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