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Abstract— This paper considers stability of stochastic systems
with nonlinear uncertainties and time-varying delays. By intro-
ducing some slack matrix matrices, a delay-dependent stability
criterion is obtained based on Lyapunov-Krasovskii theory. The
proposed condition, which is formulated in terms of linear ma-
trix inequalities (LMIs), is constructed without using the model
transformation and cross term bounding techniques. Some term
which was ignored in previous methods is considered in our
result. Two numerical examples are provided to demonstrate
the less conservatism of the method.

I. INTRODUCTION
Since there are many practical systems can be modeled as

stochastic differential equations with time delays, increasing
efforts have been devoted to the study of stochastic time-
delay systems in the past years [1-12]. Based on Lyapunov-
Krasovskii method, many stability conditions for stochastic
time-delay systems have been provided by means of LMIs,
for examples [2], [3], [4], [5], [6], [7], [8], and the references
therein. [2] is delay-independent, and the others are delay-
dependent. Delay-independent controller and filter synthesis
problems for uncertain stochastic delay systems have been
addressed in [9], [10], [11].

Most recently, input-output method has been applied to
develop delay-dependent H∞ controller and filter for uncer-
tain time-delay systems with state-multiplicative noises [12].
By this approach, the system is transformed into a uncertain
deterministic one without delay. The result of [12] shows less
conservative than those of [7], [8], [9]. However, for time-
varying delays, the approaches of [9], [10], [11], [12] require
that the upper bounds of delay-derivative should be strictly
small than one. It is well known that this requirement is very
unrealistic and will restrict the applications. This motivates
us to find new criterion without this restriction.

The results of [4], [5], [7] are obtained by model transfor-
mation and cross term estimation techniques, which may lead
to conservatism. While [6], [8] are derived by introducing
some slack matrices. For deterministic systems with time-
varying delays, the slack matrix (free-weighting matrix)
method of [15] is less conservative than the existing ones
(for instances [13], [14]), because they consider some terms
which were ignored previously. We hope to extend the
method of [15] to stochastic delay system such that the
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conservatism of stability conditions could be reduced. This
is the second motivation of this paper.

In this paper, the attention is focused on stability analysis
for a class of uncertain stochastic systems with nonlin-
ear uncertainties and time-varying delays. A new delay-
dependent condition is obtained by employing Lyapunov-
Krasovskii functional approach together with introducing
some slack matrices. We avoid the use of any model trans-
formations and bounding techniques for cross terms. The
presented condition is formulated in the forms of LMIs. Sim-
ilar to [15], the term −∫ t

t−h yT (α)Z1y(α)dα is partitioned
into −∫ t

t−h(t) yT (α)Z1y(α)dα−∫ t−h(t)
t−h yT (α)Z1y(α)dα . This

helps us to retain the term −∫ t−h(t)
t−h yT (α)Z1y(α)dα to re-

duce the conservatism. Finally, the advantage of our approach
is verified by two illustrative examples.

Notations: Throughout this paper, the notations are stan-
dard. ‖ · ‖ denotes the Euclidean norm; Rn is n-dimensional
Euclidean space; Rn×m stands for the set of all n × m
real matrices; P > 0 (P < 0) means that the matrix P is
positive (negative) definite and symmetric; E {·} represents
the expectation operator. trace{·} is the trace of a matrix.
(Ω,F ,P) is a probability space, where Ω is the sample
space, and F is a σ -algebra of subsets of Ω. The symmetric
term in a symmetric matrix is denoted as ∗.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following uncertain stochastic delay system:




dx(t) =[(A+∆A)x(t)+(A1 +∆A1)x(t−h(t))]dt

+g(t,x(t),x(t−h(t)))dw(t)
x(θ) =ψ(θ), ∀θ ∈ [−h,0],

(1)

where x(t) ∈ Rn is the state; h(t) is a time-varying scalar
indicating the delay, which satisfies 0 ≤ h(t) ≤ h, ḣ(t) ≤
µ < ∞; ψ(·) is the initial condition for all t ∈ [−h,0];
g(t,x(t),x(t−h(t)))∈Rn×m is a nonlinear function satisfying

trace{gT (t,x(t),x(t−h(t)))g(t,x(t),x(t−h(t)))}
≤ ‖ G1x(t) ‖2 + ‖ G2x(t−h(t)) ‖2,

(2)

where G1, G2 ∈ Rn×n are matrix functions; A,A1 ∈ Rn×n

are known real constant matrices, ∆A, ∆A1 are time-varying
parametric uncertainties, which can be described by

[
∆A ∆A1

]
= LF(t)

[
E1 E2

]
, (3)

where L,E1,E2 are constant matrices with compatible dimen-
sions, and F(t) is an unknown matrix function with Lebesgue
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Γ =




Γ11 Γ12 Γ13 AT X hN1 hS1 hM1 PL
∗ Γ22 Γ23 AT

1 X hN2 hS2 hM2 0
∗ ∗ Γ33 0 hN3 hS3 hM3 0
∗ ∗ ∗ Γ44 0 0 0 XT L
∗ ∗ ∗ ∗ −hZ1 0 0 0
∗ ∗ ∗ ∗ ∗ −hZ1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hZ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI




< 0 (5)

measurable elements and such that ‖F(t) ‖≤ 1; w(t) is an m-
dimensional Wiener process defined on the probability space
(Ω,F ,P) satisfying E {dw(t)}= 0,E {dw2(t)}= dt.

Definition 1: The uncertain stochastic system (1) is said
to be robustly stable in mean-square sense for all admissible
uncertainties (2) and (3), if for any scalar ε > 0 there exists
a scalar σ(ε) > 0 such that

E {| x(t) |2}< ε,∀t > 0

when
sup

−h≤s≤0
E {|ψ(s)|2}< σ(ε).

Additionally, system (1) is said to be robustly asymptotically
stable in mean-square sense, if for all admissible uncertain-
ties (2) and (3)

lim
t→∞

E {‖ x(t) ‖2}= 0

holds for any initial conditions.

III. MAIN RESULTS
In this section, the standard LMI approach is employed to

address the delay-dependent stability of system (1).
Theorem 1: System (1) is robustly asymptotically stable

in mean-square sense, if there exist positive definite sym-
metric matrices P, Q, R ∈ Rn×n, matrices X , Mi, Ni, Si(i =
1,2,3) ∈ Rn×n and positive scalars ε,δ such that

P < δ I (4)

and LMI (5) (shown at the top of this page), where

Γ11 =PA+AT P+Q+R+M1 +MT
1

+N1 +NT
1 +δGT

1 G1 + εET
1 E1,

Γ12 =PA1 +MT
2 +NT

2 −N1 +S1 + εET
1 E2,

Γ22 =− (1−µ)Q−N2−NT
2 +S2 +ST

2

+δGT
2 G2 + εET

2 E2.

Γ13 =−M1−S1 +MT
3 +NT

3 ,

Γ23 =−M2−S2−NT
3 +ST

3 ,

Γ33 =−R−M3−MT
3 −S3−ST

3 ,

Γ44 =h(Z1 +Z2)−X−XT .
Proof: First, if denote

y(t)dt = dx(t), (6)

then system (1) becomes to

0 = [−y(t)+A(t)x(t)+A1(t)x(t−h(t))]dt +g(t)dw(t). (7)

where g(t) = g(t,x(t),x(t − h(t))), A(t) = A + ∆A, A1(t) =
A1 +∆A1.
According to Newton-Leibniz formula, we have

0 =x(t)− x(t−h)−
∫ t

t−h
y(α)dα,

0 =x(t)− x(t−h(t))−
∫ t

t−h(t)
y(α)dα,

0 =x(t−h(t))− x(t−h)−
∫ t−h(t)

t−h
y(α)dα.

(8)

Choose the Lyapunov-Krasovskii functional as

V (t,xt) =
4

∑
i=1

Vi(t,xt) (9)

where

V1(t,xt) = xT (t)Px(t),

V2(t,xt) =
∫ t

t−h(t)
xT (α)Qx(α)dα,

V3(t,xt) =
∫ t

t−h
xT (α)Rx(α)dα,

V4(t,xt) =
∫ 0

−h

∫ t

t+β
yT (α)(Z1 +Z2)y(α)dαdβ ,

with P > 0, Q > 0, R > 0, Z1 > 0, Z2 > 0.
By Itô differential formula [1], the stochastic differential
dV (t,xt) along the trajectories of system (1) is

dV (t,xt) = LV (t,xt)dt +2xT (t)Pg(t)dw(t). (10)

LV (t,xt) =2xT (t)P
[

A(t)x(t)+A1(t)x(t−h(t))
]

+ tr{gT (t)Pg(t)}+
4

∑
i=2

LV
(11)

with

LV2 =xT (t)Qx(t)− (1− ḣ(t))xT (t−h(t))Qx(t−h(t))

≤ xT (t)Qx(t)− (1−µ)xT (t−h(t))Qx(t−h(t)),

LV3 =xT (t)Rx(t)− xT (t−h)Rx(t−h),

LV4 =hyT (t)(Z1 +Z2)y(t)−
∫ t

t−h
yT (α)(Z1 +Z2)y(α)dα

=hyT (t)(Z1 +Z2)y(t)−
∫ t

t−h
yT (α)Z2y(α)dα

−
∫ t

t−h(t)
yT (α)Z1y(α)dα−

∫ t−h(t)

t−h
yT (α)Z1y(α)dα.

(12)
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Thus, there arrives at

dV (t,xt) =LV (t,xt)dt +2xT (t)Pg(t)dw(t)+
4

∑
i=1

vi(t) (13)

where 0 = vi(i = 1,2,3,4),

v1(t) =2ξ T (t)M[x(t)− x(t−h)−
∫ t

t−h
y(α)dα],

v2(t) =2ξ T (t)N[x(t)− x(t−h(t))−
∫ t

t−h(t)
y(α)dα],

v3(t) =2ξ T (t)S[x(t−h(t))− x(t−h)−
∫ t−h(t)

t−h
y(α)dα],

v4(t) =2yT (t)XT{g(t)dw(t)
+ [A(t)x(t)+A1(t)x(t−h(t))− y(t)]dt},

(14)

and ξ T (t) = [xT (t) xT (t−h(t)) xT (t−h)],

M =




M1
M2
M3


 ,N =




N1
N2
N3


 ,S =




S1
S2
S3


 . (15)

From (4), the following is true

tr{gT (t)Pg(t)}<δxT (t)GT
1 G1x(t)

+δxT (t−h(t))GT
2 G2x(t−h(t)).

(16)

Then, (13) can be rewritten as

dV (t,xt) =L Ṽ (t,xt)dt +2xT (t)Pg(t)dw(t)

+2yT (t)Xg(t)dw(t),
(17)

where

L Ṽ (t,xt)
=LV (t,xt)+ v1(t)+ v2(t)+ v3(t)

+2yT (t)XT [A(t)x(t)+A1(t)x(t−h(t))− y(t)]

<2xT (t)P
[

A(t)x(t)+A1(t)x(t−h(t))
]

+δxT (t)GT
1 G1x(t)+δxT (t−h(t))GT

2 G2x(t−h(t))

+xT (t)Qx(t)− (1−µ)xT (t−h(t))Qx(t−h(t))

+xT (t)Rx(t)− xT (t−h)Rx(t−h)
+v1(t)+ v2(t)+ v3(t)

+2yT (t)XT [A(t)x(t)+A1(t)x(t−h(t))− y(t)]

+hξ T (t)MZ−1
2 MT ξ (t)

+hξ T (t)NZ−1
1 NT ξ (t)+hξ T (t)SZ−1

1 ST ξ (t)

−
∫ t

t−h
[ξ T (t)M + yT (s)Z2]Z−1

2 [MT ξ (t)+Z2y(s)]ds

−
∫ t

t−h(t)
[ξ T (t)N + yT (s)Z1]Z−1

1 [NT ξ (t)+Z1y(s)]ds

−
∫ t−h(t)

t−h
[ξ T (t)S + yT (s)Z1]Z−1

1 [ST ξ (t)+Z1y(s)]ds.

(18)

Obviously, the last three terms of the above inequality
are negative definite, so L Ṽ (t,xt) < 0 is guaranteed by
[ξ T (t) yT (t)]Φ[ξ T (t) yT (t)]T < 0, where Φ < 0 is equiv-
alent to Γ < 0 by following the routine techniques to handle
the norm-bounded uncertainties (see Ref. [11]).

Therefore, if Γ < 0, which implies L Ṽ (t,xt) < 0, then the
stochastic system (1) is robustly asymptotically stable in
mean-square sense by Definition 1 and the stochastic stability
theory in [1]. This completes the proof. ¥

Remark 1: Model transformation and cross term bound-
ing techniques are both avoided in Theorem 1. Moreover,
in some existing reports, the term −∫ t

t−h yT (α)Z1y(α)dα
is bounded as −∫ t

t−h(t) yT (α)Z1y(α)dα , and the negative

definite one −∫ t−h(t)
t−h yT (α)Z1y(α)dα is ignored, which may

result in some conservatism [15]. Inspired by [15], in order to
reduce the conservatism, −∫ t

t−h yT (α)Z1y(α)dα in Theorem
1 is decomposed as

−
∫ t

t−h
yT (α)Z1y(α)dα =

−
∫ t

t−h(t)
yT (α)Z1y(α)dα−

∫ t−h(t)

t−h
yT (α)Z1y(α)dα,

such that −∫ t−h(t)
t−h yT (α)Z1y(α)dα can be retained by intro-

ducing some slack matrices.
Remark 2: The existence of the positive definite symmet-

ric term hyT (t)(Z1 +Z2)y(t), which is shown as hẋT (t)(Z1 +
Z2)ẋ(t) in the deterministic delay systems ([14], [15]), drives
us to introduce the free matrix X in (14). In Theorem 1, the
cross relationships among x(t), xT (t−h(t)), x(t−h) and y(t)
are involved by some slack matrices.

Remark 3: Due to the slack matrices N2,S2 and their
transposes introduced in (5), the constraint that the upper
bound of delay derivative is less than one (i.e. µ < 1), is
removed in Theorem 1.

If the uncertainty g(t) is restricted to be g(t) = ∆Cx(t)+
∆Dx(t−h(t)), with

[
∆C ∆D

]
= LF(t)

[
E3 E4

]
, (19)

where L,E3,E4 are constant matrices with compatible di-
mensions, and F(t) is an unknown matrix function satisfying
‖ F(t) ‖≤ 1, then system (1) reduces to




dx(t) =[(A+∆A)x(t)+(A1 +∆A1)x(t−h(t))]dt

+[∆C(t)x(t)+∆D(t)x(t−h(t))]dw(t)
x(θ) =ψ(θ), ∀θ ∈ [−h,0].

(20)

Following the similar lines as in the proof of Theorem 1,
we can obtain the result as follows.

Corollary 1: System (20) is robustly asymptotically stable
in mean-square sense, if there exist positive definite sym-
metric matrices P, Q, R ∈ Rn×n, matrices X , Mi, Ni, Si(i =
1,2,3)∈Rn×n and positive scalars ε1,ε2 satisfying LMI (21)
(shown at the top the next page), where

Π11 =PA+AT P+Q+R+M1 +MT
1

+N1 +NT
1 + ε1ET

1 E1 + ε2ET
3 E3,

Π12 =PA1 +MT
2 +NT

2 −N1 +S1 + ε1ET
1 E2 + ε2ET

3 E4,

Π22 =− (1−µ)Q+M1 +MT
1 +N1 +NT

1

+ ε1ET
2 E2 + ε2ET

4 E4.
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Π =




Π11 Π12 Γ13 AT X hN1 hS1 hM1 PL 0 0
∗ Π22 Γ23 AT

1 X hN2 hS2 hM2 0 0 0
∗ ∗ Γ33 0 hN3 hS3 hM3 0 0 0
∗ ∗ ∗ Γ44 0 0 0 XT L 0 0
∗ ∗ ∗ ∗ −hZ1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −hZ1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hZ2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P PL
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I




< 0, (21)

TABLE I
THE UPPER BOUNDS OF DELAY OF EXAMPLE 2 FOR DIFFEREN µ

µ 0 0.5 0.9
Yue[6] 1.1812 0.8502 0.4606

Chen [16] 2.1491 1.2956 0.8180
Theorem 1 2.1491 1.3224 0.9748

IV. ILLUSTRATIVE EXAMPLES

In this section, we will present numerical examples to
illustrate the effectiveness of our method.

Example 1: Consider the uncertain stochastic time-delay
system (1) with

A =
[ −2 0

1 −1

]
,A1 =

[ −1 0
−0.5 −1

]
,

L = I,E1 = E2 = 0.1I,G1 = G2 =
√

0.1I,

µ = 0.

(22)

The upper bounds of delay for system (22) given by [6],
[7], [8], [12] are 1.1812, 1.3640, 1.5270 and 1.56, respec-
tively. However, the maximal allowable delay by Theorem 1
is 2.1491.

Example 2: Consider system (22) with time-varying delay
(i.e. µ 6= 0).

Table I lists the maximal admissible delays for different µ
of this example. When µ = 0, Theorem 1 and [16] can obtain
the same result. However, if the delay is time-varying, The-
orem 1 is less conservative than [16], since Theorem 1 con-
siders the negative definite term “−∫ t−h(t)

t−h yT (α)Z1y(α)dα”
which is ignored by [16].

Therefore, the advantage of our method is obvious by
Examples 1 and 2.

V. CONCLUSIONS

A new delay-dependent stability condition for uncertain
stochastic delayed systems with nonlinear uncertainties has
been presented in terms of linear matrix inequalities (LMIs).
The result has been derived based on Lyapunov-Krasovskii
method and slack matrix technique. Some term which has
been ignored in the previous reports has been retained in this
paper, thus our result is less conservative than those existing
ones. Two illustrative examples have been provided to show
the superiority of the new method.

In (14), an auxiliary vector y(t) is introduced, which
plays an important role in the derivation of Theorem 1.
The proposed method based on an additional vector can
be extended to the controller and filter design problems for
stochastic systems with time-delays.
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