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Abstract— This paper presents a formal axiomization of the
notion that (proof) complexity implies (property) fragility and
illustrates this framework in the context of the stability of both
discrete-time and continuous-time linear systems.

I. INTRODUCTION

Understanding the robustness of systems with respect
to a certain property plays a fundamental role in design
and analysis; when systems are robust they tend to behave
properly in both foreseen and unforseen circumstances. It
is, moreover, often the case that the lack of robustness, or
fragility, of a system is indicated when trying to prove that
the system has a certain property. That is, that the complexity
of a proof relates directly to—and in fact implies—the
fragility of the property being proven. Yet this connection
has, for the most part, remained anecdotal.

Taking the idea that complexity implies fragility beyond
the anecdotal level has important practical consequences.
On a general level, when using automated proof techniques
to verify properties, e.g., stability of dynamical systems, it
would be very useful to know that when such algorithms
are producing longer and longer “proofs,” or are unable to
terminate altogether, that it is indicative of certain fragilities
in the system being considered. On a more concrete level,
it is typically easier to check that a proof is becoming
more complex as opposed to verifying that a system is
fragile with respect to a certain property; in the former
case, a proof is already being constructed in order to prove
the desired property. Therefore, establishing that complexity
implies fragility in a formal and general context will have
far-reaching ramifications.

The goal of this paper is to take the first steps toward
providing a formal framework in which to understand how
complexity affects fragility. In order to do so, it is necessary
to first formalize the notation of property, proof and complex-
ity, which is done through specifications intended to capture
each of these notions. In particular, we introduce property
specifications which consist of the set of problems being
considered and the subset of properties displaying the desired
property (this allows one to define the fragility of a problem),
proof specifications which view proofs as certificates that are
verified functionally, and (proof) complexity specifications
which are functions from the set of proofs to the real numbers
satisfying the property that as the complexity diverges, so
must the fragility. Combining a property specification, proof
specification and complexity specification yields a proof-
property-complexity (PPC) specification. In this framework,
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we say that complexity implies fragility for a given PPC
specification if the complexity of a proof that a problem has
a property lower bounds the fragility of that problem.

To illustrate our framework for complexity and fragility,
we begin by considering the stability of discrete-time linear
systems. In this case, the property specification consists of
linear systems and the subset of stable systems, the proof
specification consists of the set of Hermitian positive definite
matrices which are verified as proofs of stability through
the discrete-time Lyapunov equation and the complexity
specification is a function of the norm of the proof. Using
the results presented in [4] and [16], we note that complexity
implies fragility for this PPC specification; the simplicity of
this result illustrates the concepts involved in a transparent
manner.

Having motivated our framework for complexity and
fragility in the context of discrete-time linear systems, we
proceed to present a complexity implies fragility result in
the context of the stability of continuous-time linear systems.
In this case, the property specification again consists of
linear systems and the subset of stable systems and the proof
specification consists of the set of Hermitian positive definite
matrices which are verified as proofs of stability through
the continuous-time Lyapunov equation. Unlike the discrete-
time case, we adopt a somewhat unorthodox complexity
specification related to the reciprocal of the norm of the
inverse of a proof. Through the techniques outlined in [1],
we are able to prove that complexity implies fragility for the
PPC specification; as far as the authors are aware, this is a
novel result.

The ideas introduced in this paper have drawn their
inspiration from a wide variety of sources. For example, the
results in [15] aided in the present formulation of complexity
implies fragility, and [1] and [8] contributed to the view
of fragility taken in this paper. The literature studying the
fragility and sensitivity of linear systems in both discrete-
time (cf. [4], [12] and [16]) and continuous-time (cf. [2], [5],
[6], [7], [10], [11], [14] and [17]) also has played a central
role in providing a coherent and meaningful formulation of
complexity and fragility in the context of linear systems. The
exact way in which the aforementioned work has influenced
this work will be made clear throughout the rest of the paper.

II. COMPLEXITY AND FRAGILITY: THE AXIOMS

This section introduces an axiomatic approach to the
notion of proof complexity and property fragility. These
axioms are not meant to be all-encompassing, but rather
lay the groundwork for the development of a systematic
approach to understanding complexity and fragility.
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We refer the reader to the next section for a detailed
example illustrating the definitions presented in this section.
Property Specification. Given a set of problems in the
form of a metric space, a property is specified through the
use of a subset of the problems that display this property. In
particular, there is the following:

Definition 2.1: A property specification is a tuple:

(X , dX ,G)

where
• (X , dX ) is a metric space, consisting of the problems

of interest,
• G ⊂ X is the set of problems that display a specific

property.
Note that B := Gc = X\G is the set of problems that do not
display a specific property.
Fragility. With the notion of a property specification in
hand, given a problem displaying the property, i.e., an
element of G, one can define how “fragile” that problem
is, i.e., how far the property is from not being true.

Definition 2.2: Given a property specification (X , dX ,G),
the fragility of a problem x ∈ G ⊂ X is given by:

F (x) :=
1

dX (x,B)

where d(x,B) = infy∈B dX (x, y). Note that we have thus
defined a function F : G → R+ = (0,∞).

Remark 1: The quantity d(x,B), and more generally
property specifications (although they were not called such),
has been studied in a variety of situations. For example,
[8] considers numerous property specifications related to the
matrix nearness problems, [1] studies d(x,B) in the context
of functions that play the role of “condition numbers” and
[15] considers d(x,B) in the context of linear programming.
Proof specification. Having established how to specify
properties through the use of subsets, we present an ax-
iomatic notion of “proofs” or “certificates” that can be
“verified” functionally.

Definition 2.3: A proof specification is a tuple:

(P,R, V )

where
• P is a set, consisting of proofs or certificates,
• R is a vector space, termed the verification space,
• V : X × P → R is a function, termed the verification

function, which must satisfy the property:

V (x, p) = 0 ⇒ x ∈ G.

Remark 2: It is certainly possible to consider more elab-
orate verification functions or collections thereof. For ex-
ample, one could require that R is a partially ordered vector
space (with the partial ordering denoted by ≥) and that there
exists a collection of verification functions Vi : X ×P → R,
i ∈ {0, 1, . . . ,m}, satisfying the property:

Vi(x, p) ≥ 0 ∀ i ∈ {0, 1, . . . ,m} ⇒ x ∈ G.

The motivation for opting for a single verification function
as given in Definition 2.3 is simplicity of exposition. Of
course, in settings different than the one considered in the
rest of this paper—the stability of linear systems—it may be
desirable to utilize the more elaborate notion of verification
functions. For example, in the context of proofs produced
by sum-of-squares techniques [13], is seems likely that
inequalities would be desirable. Similarly, when considering
linear programs [15], inequalities also would be desirable.
Complexity specification. With the notions of property
specification and proof specification in hand, we are able
to define “proof complexity” or just “complexity.” This will
serve to tie together property and proof specifications, while
allowing for the formalization of the notion that “complexity
implies fragility.”

Definition 2.4: Let (X , dX ,G) be a property specification
and (P,R, V ) be a proof specification. A proof complexity
specification or just complexity specification is a function:

C : P → R+

satisfying the property that for any pair of sequences {xi}∞i=0

and {pi}∞i=0 with xi ∈ G, pi ∈ P and V (xi, pi) = 0 for all
i ∈ N, if

lim
i→∞

C(pi) = ∞ ⇒ lim
i→∞

F (xi) = ∞.

In order to distinguish between complexity specifications
and “potential” complexity specifications, we refer to an
arbitrary function C : P → R+ as a candidate complex-
ity specification. A candidate complexity specification is a
complexity specification if it satisfies the conditions given in
Definition 2.4.
Property-Proof-Complexity (PPC) specification. The
main objective of this paper will be to study all of the
aforementioned concepts together as pieces of a whole. This
motivates the following definition.

Definition 2.5: A Property-Proof-Complexity specifica-
tion (or just PPC specification) is a tuple

(X , dX ,G,P,R, V, C)

where (X , dX ,G) is a property specification, (P,R, V ) is a
proof specification and C is a complexity specification.
Complexity implies fragility. The motivation for consider-
ing PPC specifications lies in their usefulness in formalizing
the notion that “complexity implies fragility.”

Definition 2.6: Let (X , dX ,G,P,R, V, C) be a PPC
specification. Complexity implies fragility if for all (x, p) ∈
G × P such that V (x, p) = 0,

C(p) ≤ F (x).

III. COMPLEXITY AND FRAGILITY IN STABILITY:
THE DISCRETE-TIME CASE

In order to illustrate the concepts introduced in the pre-
vious section, we will consider the stability of discrete-time
dynamical systems of the form:

xk+1 = Axk,
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where A ∈ Cn×n. In this context, we will introduce a
PPC specification and demonstrate how preexisting results,
namely [16], can be used to show that complexity implies
fragility.

Property specification: discrete-time stability. Since we
are considering the stability of discrete-time linear systems,
we are interested in the following property specification:

(Cn×n, dF ,STDT)

where dF is the metric obtained from the Frobenious norm,
‖ ‖F , on Cn×n and

STDT = {A ∈ Cn×n : |λi(A)| < 1 for i = 1, . . . , n},

where λi(A) is the ith eigenvalue of A, i.e., STDT is
the set of stable discrete-time linear systems. Similarly, let
USTDT = STDTc be the set of unstable discrete-time linear
systems.

Fragility in stability. Given a discrete-time linear system
A, the fragility of this system is given by:

F (A) =
1

dF (A,USTDT)
.

The quantity dF (A,USTDT) has been well-studied (cf. [4],
[12] and [16]), and is commonly referred to as the distance
to instability or the (complex) stability radius. In particular, it
can be shown that the distance to instability can be expressed
alternatively as follows1

dF (A,USTDT) = min
θ∈[0,2π]

σmin(ejθI −A),

which implies that the fragility is given by:

F (A) = max
θ∈[0,2π]

σmax((ejθI −A)−1),

It can be easily seen that computing the fragility F is
not intractable, and there are a variety of polynomial time
algorithms to do so. On the other hand, the complexity
specification that will yield a complexity implies fragility
result at the end of this section is a function of the solution
to the Lyapunov equation, which is a linear equation and thus
easily solved, i.e., the complexity specification can be very
easily computed and only uses quantities that are involved
in proving that a system is stable. This is indicative of a
more general phenomenon that is one of the motivations
for complexity implies fragility results—if in the process
of proving a property one encounters complexity, it would
be beneficial to know that this implies something about
the fragility of the system being considered (since distance
problems are often intractable).

Proof specification: Lyapunov functions. In the context
of discrete-time linear systems, our proofs will consist of
quadratic Lyapunov functions, i.e., Lyapunov functions of
the form xHPx where P = PH > 0 is a Hermitian positive

1We denote the singular values of an n × n matrix M by σi(M),
i = 1, . . . , n, the minimum singular value by σmin(M) and the maximum
singular value by σmax(M).

definite matrix. A proof is verified to be proof of stability of
A if it satisfies the discrete-time Lyapunov equation:

P −AHPA = I

That is, to prove stability a Hermitian positive definite matrix
P is provided; this is a valid proof if it satisfies the Lyaponov
equation.

The notion of Lyapunov functions as proofs can be thus
used to define a proof specification of the form:

(PD(n, C), Cn×n,Ω),

where PD(n, C) is the set of n×n Hermitian positive definite
matrices, i.e., the set of proofs, and the verification function
Ω : Cn×n × PD(n, C) → Cn×n is given by:

Ω(A,P ) = P −AHPA− I.

Remark 3: Proof specifications are not unique as can be
seen by considering the discrete-time Lyapunov equation.
That is, for every Hermitian positive definition matrix Q,
there is a proof specification (PD(n, C), Cn×n,ΩQ) where
ΩQ(A,P ) = P−AHPA−Q. We restrict our attention to the
proof specification where Q = I for the sake of simplicity,
but in some situations it may be desirable to consider families
of proof specifications. More generally, picking the “correct”
proof specification is an important component of obtaining
complexity implies fragility results.
Complexity specification: norm. To complete the PPC
specification for discrete-time linear systems with respect
to stability, we need to define the complexity of a proof
P ∈ PD(n, C). There are many possible choices for such
a specification, but here we will consider the candidate
complexity specification C : PD(n, C) → R+ given by:

C(P ) :=
√
‖P‖2, (1)

where ‖P‖2 = σmax(P ) is the 2-norm or spectral norm.
The following lemma indicates that this is a valid complex-
ity specification in that it satisfies the properties given in
Definition 2.4; note that this lemma follows easily from [4].

Lemma 3.1: For the property and proof specifications
(Cn×n, dF ,STDT) and (PD(n, C), Cn×n,Ω), the candi-
date complexity specification C : PD(n, C) → R+ given
in (1) is a complexity specification.

Complexity implies fragility. Combining the formulations
introduced in this section, we have thus defined a PPC
specification:

(Cn×n, dF ,STDT,PD(n, C), Cn×n,Ω, C).

Moreover, it has been demonstrated that this specification
captures all of the concepts being considered: the systems
(discrete-time linear systems), the property (stability), the
proof methodology (Lyapunov functions) and the complexity
of proof (norm).

Now that a meaningful PPC specification has been defined,
the goal is to use this specification to say something useful
about the systems being considered. This is done through the
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Fig. 1. C(P (ε)) (gray) and F (A(ε)) (black) versus ε.

following complexity implies fragility result (which is just a
reformulation of Corollary 4.7 of [16]).

Theorem 1 ([16]): For the PPC specification

(Cn×n, dF ,STDT,PD(n, C), Cn×n,Ω, C)

complexity implies fragility, i.e., for any stable discrete-time
linear system A ∈ Cn×n and P ∈ PD(n, C) such that
Ω(A,P ) = P −AHPA− I = 0,

C(P ) =
√
‖P‖2 ≤ F (A).

This theorem demonstrates that meaningful complexity
implies fragility results can be obtained. In many ways, this
can be viewed as a “canonical” complexity implies fragility
result in that it has a clear and precise meaning.

Example 3.1: Consider the discrete-time linear system:

A(ε) =
(

1
2 ε
0 1

2

)
parameterized by ε ∈ R. Clearly, A(ε) is stable since
λ1(A(ε)) = λ2(A(ε)) = 1/2 for all ε.

Computing C(P (ε)), where P (ε) satisfies P (ε) −
AH(ε)P (ε)A(ε) = I , one finds that the proofs of stability
become more complex as ε →∞, or

lim
ε→∞

C(P (ε)) = ∞.

Since complexity implies fragility, i.e., C(P (ε)) ≤ F (A(ε)),
this implies that the system A(ε) becomes more fragile as
ε →∞, or

lim
ε→∞

F (A(ε)) = ∞.

A graphical representation of this divergent behavior, along
with the relative size of C(P (ε)) and F (A(ε)), can be seen
in Figure 1.

IV. STABILITY OF CONTINUOUS-TIME LINEAR
SYSTEMS: A PPC SPECIFICATION

In this section, we present a PPC specification related to
the stability of continuous-time linear systems, i.e., systems
of the form:

ẋ = Ax

for A ∈ Fn×n, with F = R or C. Since this closely mirrors
the PPC specification given in the previous section, we will
be brief except where there are notable differences.

Property specification: Continuous-time stability. As with
the case of discrete-time systems, since we are interested
in the stability of continuous-time systems, consider the
following property specification:

(Fn×n, dF ,STCTF)

where dF is the the metric obtained from the Frobenius norm
on Fn×n, and

STCTF = {A ∈ Fn×n : Re(λi(A)) < 0 for i = 1, . . . , n},

with Re(λi(A)) the real part of the eigenvalue λi(A), is
the set of stable continuous-time linear systems. Note that
USTCTF = STCTc

F is the set of unstable continuous-time
linear systems.

Fragility. Unlike the discrete-time case, we are considering
either real or complex linear systems (and thus real or
complex perturbations, respectively), i.e., for A ∈ STCTF,

F (A) =
1

dF (A,USTCTF)

where

dF (A,USTCTF) = min{‖∆A‖F : A + ∆A ∈ USTCTF},

which is referred to as the real or complex stability radius,
depending on whether F = R or C, respectively.

The quantity dF (A,USTCTF) was first studied in the
seminal paper by Van Loan, [17], in the case when F = C.
It was shown that

dF (A,USTCTC) = min
w∈R

σmin(A− jwI).

This alternate formulation illustrates that computing the com-
plex stability radius is a nontrivial task since σmin(A−jwI)
is a nonlinear function, possibly with local minima; this
has motivated a wealth of work providing upper and lower
bounds on dF (A,USTCTC) (see [5], [7] and [17] to name
a few), along with numerical procedures for computing the
complex stability radius (cf. [6], [9] and [17]). The real
stability radius also has been well-studied, the most notable
example of which is [14], where it was shown that

dF (A,USTCTR) = min
w∈R

max
γ∈(0,1]

σ2n−1

(
A −γwI
w
γ I A

)
.

This formula indicates that computing the real stability radius
is somewhat difficult but computationally tractable.

Again, when proving stability by solving the Lyapunov
equation, we would like to be able to additionally say
something useful when this computation becomes hard or
ill-conditioned and relate this to the fragility of the system.

Proof specification: Lyapunov functions. As in the case
of discrete-time linear systems, our proofs will consist of
quadratic Lyapunov functions, xHPx where P = PH > 0,
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and our proofs will be verified through the continuous-time
Lyapunov equation:

AHP + PA = −I.

In particular, consider the following proof specification:

(PD(n, F), Fn×n,Φ),

where PD(n, F) is the set of n × n Hermitian (or just
symmetric when F = R) positive definite matrices, i.e., the
set of proofs, and Φ : Fn×n × PD(n, F) → Fn×n is given
by:

Φ(A,P ) = AHP + PA + I.

Note that if A is stable then there exists a unique P such
that Φ(A,P ) = 0. By slight abuse of notation, we can thus
view this P as a function:

P : STCTF → PD(n, F) (2)
A 7→ P (A) s.t. Φ(A,P (A)) = 0.

That is, in this case, proofs can be obtained explicitly. This
will be clear from context when we view P as a function.
Complexity specification. We now present an admittedly
unorthodox notion of complexity for proofs of continuous-
time linear systems. In particular, consider the candidate
complexity specification C : PD(n, F) → R+ given by:

C(P ) =
2

‖P−1‖F
. (3)

The following lemma demonstrates that this is a valid
complexity specification (see Definition 2.4).

Lemma 4.1: For the property and proof specifications
(Fn×n, dF ,STCTF) and (PD(n, F), Fn×n,Φ), the candi-
date complexity specification C : PD(n, F) → R+ given
in (3) is a complexity specification.

Proof: Consider any sequence of stable continuous-
time linear systems {Ai}∞i=0, Ai ∈ STCTF, and the corre-
sponding sequence of proofs {Pi}∞i=0, Pi ∈ PD(n, F), i.e.,
Φ(Ai, Pi) = 0 for all i ∈ N.

Define the following function K : Fn×n → Fn2×n2
given

by:
K(A) = AT ⊗ I + I ⊗AH ,

where ⊗ is the Kronecker product. It is well-known (cf. [7]
and [17]) that K(A) is singular, i.e., σmin(K(A)) = 0 iff
there is an eigenvalue of A on the imaginary axis, or

σmin(K(A)) = 0 ⇒ F (A) = ∞.

Now, by (2.17) of [7] (see also [10]), it follows that

1√
n
‖Pi‖2 ≤ ‖K(Ai)−1‖2 =

1
σmin(K(Ai))

for all i ∈ N . Therefore,

lim
i→∞

‖Pi‖2 = ∞ ⇒ lim
i→∞

√
n‖K(Ai)−1‖2 = ∞

⇒ lim
i→∞

σmin(K(Ai)) = 0

⇒ lim
i→∞

F (Ai) = ∞.

Finally, since ‖M‖2 ≤ ‖M‖F for any matrix M ,

1
‖P−1

i ‖F

≤ 1
‖P−1

i ‖2
= σmin(Pi) ≤ ‖Pi‖2

for all i ∈ N. Therefore,

lim
i→∞

2
‖P−1

i ‖F

= ∞ ⇒ lim
i→∞

‖Pi‖2 = ∞

⇒ lim
i→∞

F (Ai) = ∞

as desired.

Remark 4: An important consequence of the techniques
used to prove Lemma 4.1 is that there is a direct connection
between the fragility of A, the size of P and the conditioning
of the linear system used to compute P :

K(A)Vect(P ) = −Vect(I), (4)

where Vect is the vector obtained by staking the columns of
a matrix. In particular, it was shown in [7] that:

1√
n
‖P‖2 ≤

1
σmin(K(A))

≤
√

n‖P‖2.

So as K(A) becomes singular, ‖P‖ becomes large and vice
versa. Therefore, if ‖P‖ is large (or even C(P ) given in (3)),
it implies the “fragility” (or ill-conditioning) of the linear
system (4) along with the fragility of A as will be shown in
the next section.

Another complexity specification. We conclude this section
by reiterating that complexity specifications are not unique
through an example. Consider the candidate complexity
specification Ĉ : PD(n, F) → R+ given by:

Ĉ(P ) =
2σmin(P )√

n
. (5)

Since Ĉ(P ) ≤ C(P ), it follows from Lemma 4.1 that Ĉ(P )
is a complexity specification.

This illustrates that complexity specifications are not
unique and, in fact, there are often whole families of com-
plexity specifications. This indicates that there are some
complexity specifications that are “better” than others in that
they provide tighter lower bounds for fragility; this will be
discussed in further detail following Theorem 3.

V. COMPLEXITY AND FRAGILITY IN STABILITY:
THE CONTINUOUS-TIME CASE

In this section, we show that complexity implies fragility
for the PPC specification introduced in the previous section,
i.e., we show that complexity implies fragility in stability for
continuous-time linear systems.

Distance to ill-posedness. Following the approach of [1],
we present a technique for bounding the distance to a set of
“ill-posed” problems through the use of gradient techniques
applied to functions that play the role of “condition num-
bers.” This result will be fundamental in establishing our
complexity implies fragility result for continuous-time linear
systems.
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Let X be a inner product space, with inner product 〈 , 〉.
The inner product on X induces a norm ‖ · ‖ =

√
〈 · , · 〉,

which induces a metric d(x, y) = ‖x − y‖. For a smooth
function f : X → R, we denote the Fréchet derivative of f
at x by Txf : X → R, i.e., Txf(δ) is the derivative of f at
x in direction δ. The induced operator norm of Txf is given
by:

‖Txf‖op = sup
‖δ‖=1

|Txf(δ)|,

and the gradient of f , ∇f : X → X , is the function uniquely
defined as follows:

Txf(δ) = 〈∇f(x), δ〉.

In particular, we have that

‖Txf‖op = ‖∇f(x)‖.

Definition 5.1: Let X be an inner product space, Y ⊂ X ,
and let f : Y → R be a smooth function. Define f−1(∞)
to be the set such that for every z ∈ f−1(∞) there exists a
continuous path x : [0, 1) → Y such that

lim
t→1

x(t) = z and lim
t→1

f(x(t)) = ∞.

Theorem 2 ([1]): Let X be an inner product space, Y ⊂
X and let f : Y → R be a smooth function. If for all x ∈ Y
there exists an M > 0 and α > 1 such that

‖∇f(x)‖ ≥ Mfα(x)

then for all x ∈ Y

d(x, f−1(∞)) ≤ 1
(α− 1)Mfα−1(x)

.

Differentiating the complexity specifiation. Using The-
orem 2 as a guide, we will compute the derivative of the
complexity specification given in (3) and find a lower bound
for the gradient.

Viewing P as a function of A as given in (2), the
complexity specification given in (3) can be used to define
a function κ : STCTF → R+ with:

κ(A) :=
1
2
C(P (A)) =

1
‖P (A)−1‖F

. (6)

We can compute the derivative of κ as follows:
Proposition 5.1: For all A ∈ STCTF,

TAκ(δ) =
trace(P (A)−3TAP (δ))

‖P (A)−1‖3F
,

where TAP (δ) is the derivative of P (A) which is defined
implicitly as follows:

AHTAP (δ) + TAP (δ)A = −(δHP (A) + P (A)δ). (7)
Proof: We can write

κ(A) =
1

f ◦ g ◦ P (A)

where g(A) = A−1 and f(A) = ‖A‖F . The chain and
quotient rules yield:

TAκ(A) = −
Tg◦P (A)f(TP (A)g(TAP (δ)))

‖P (A)−1‖2F
. (8)

Now the derivatives of f and g can be computed in the
standard way, and are given by:

TAg(δ) = −A−1δA−1

TAf(δ) =
trace(AHδ)
‖A‖F

Therefore,

TAκ(A) =
trace(P (A)−HP (A)−1TAP (δ)P (A)−1)

‖P (A)−1‖3F

=
trace(P (A)−3TAP (δ))

‖P (A)−1‖3F
where P (A)−1 = P (A)−H since P (A) is Hermitian and
positive definite.

Finally, differentiating

Φ(A,P (A)) = AHP (A) + P (A)A + I = 0

yields

δHP (A) + AHTAP (δ) + TAP (δ)A + P (A)δ = 0

as desired.
Using Proposition 5.1, we can establish the following

bounds on the gradient of κ. First, note that Fn×n is an inner
product space with the inner product 〈A,B〉 = trace(AHB);
the induced norm is the Frobenius norm.

Proposition 5.2: For all A ∈ STCTF,

‖∇κ(A)‖F ≥ 2κ(A)2.
Proof: By (7), it is easy to verify that TAP (P (A)−1) =

2P (A). Therefore,

‖∇κ(A)‖F = sup
δ 6=0

|TAκ(δ)|
‖δ‖F

≥ |TAκ(P (A)−1)|
‖P (A)−1‖F

=
|trace(P (A)−3TAP (P (A)−1))|

‖P (A)−1‖4F

= 2
|trace(P (A)−3P (A))|

‖P (A)−1‖4F

= 2
|〈P (A)−1, P (A)−1〉|

‖P (A)−1‖4F
= 2κ(A)2

as desired.
Complexity implies fragility. We now present a novel
complexity implies fragility result for the stability of linear
systems. This is the main result of this paper.

Theorem 3: For the PPC specification

(Fn×n, dF ,STCTF,PD(n, F), Fn×n,Φ, C)

complexity implies fragility, i.e., for any stable continuous-
time linear system A ∈ Fn×n and P ∈ PD(n, F) such that
Φ(A,P ) = AHP + PA + I = 0,

C(P ) =
2

‖P−1‖F
≤ F (A).
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Proof: By Theorem 2 and Proposition 5.2, we know
that for all A ∈ STCTF

d(A, κ−1(∞)) ≤ 1
2κ(A)

=
1

C(P (A))
=
‖P (A)−1‖F

2
.

The fact that C is a complexity specification implies
that κ−1(∞) ⊂ USTCTF. This in turn implies that
d(A,USTCTF) ≤ d(A, κ−1(∞)).
Another complexity implies fragility result. Just as
complexity specifications are not unique, complexity implies
fragility results are not unique. To provide an example of
this, consider the PPC specification:

(Fn×n, dF ,STCTF ,PD(n, F), Fn×n,Φ, Ĉ),

where Ĉ is given in (5). Then for this PPC complexity
implies fragility, or for all A ∈ STCTF and P ∈ PD(n, F)
such that Φ(A,P ) = 0,

Ĉ(P ) =
2σmin(P )√

n
≤ F (A).

Of course, this is just a consequence of Theorem 3 and the
fact that Ĉ(P ) ≤ C(P ), but it illustrates that complexity
implies fragility results are far from unique and motivates
the following observations on this theorem.
Comments on Theorem 3. It has been indicated numerous
times that complexity specifications are not unique to a
given problem and proof specification. This implies that there
are complexity specifications, or complexity implies fragility
results, that are “better” than others. In fact, the authors
believe that the complexity implies fragility result presented
in Theorem 3 is far from the best one in that it will fail to
detect fragility in a variety of situations (as Example 5.2 will
illustrate).

In an ideal situation, a complexity specification would
always be small exactly because the problems being con-
sidered are not fragile—most situations do not display this
ideal property, i.e., the complexity is not always small
exactly because problems can be fragile. Given the fact that
complexity is unavoidable, and due to the non-uniqueness
of complexity specifications, it is natural to ask: “what
is the ‘best’ complexity specification?” Intuitively the best
complexity specification would be the one that provides
the tightest lower bound on the fragility and/or always
detects fragile systems, i.e., a complexity specification where
fragility also implies complexity. More specifically, for the
PPC specification given in Theorem 3, it was shown in [17]
(see also [5] and [10]) that when F = C and for A ∈ R,

F (A) ≤ 2‖P‖2.

Therefore, an “ideal” complexity implies fragility result
would be the one that utilizes the complexity specification
C(P ) = c‖P‖2 for some constant c ∈ R+; this will
be further justified in the next paragraph. In [17], Van
Loan discusses the possibility of such a complexity implies
fragility result (although he does not use this language)
but admits to not being able to prove such a result and

gives a good explanation of why such a proof is difficult.
We have, similarly, been unable to prove such a result.
Therefore, establishing whether such a complexity implies
fragility result exists is a very interesting open problem.
Other interpratations of complexity and fragility. In the
previous paragraph, we discussed complexity specifications
related to ‖P‖. It is important to note that P relates to other
important system-theoretic concepts (we will discuss these in
the context of continuous-time systems, but analogous con-
siderations hold for discrete-time systems). We will briefly
mention two of these: transient response and H∞ control.

First note that P directly relates to the transient response
of A (see [7]). More specifically, if x(t) is the solution to
ẋ = Ax with x(0) = x0, then

‖x0‖2σmin(P ) ≤ xH
0 Px0 =

∫ ∞

0

‖x(t)‖2dt ≤ ‖x0‖2‖P‖.

So the area under a solution, which can be viewed as a way of
detecting fragility in stability in the system, directly relates
to both the minimum and maximum singular value of P ,
i.e., P contains more information about A than just a yes/no
answer on stability.

Another interesting insight into complexity and fragility
for linear systems is provided by H∞ control (cf. [3] and
[18]). We first note that the transfer function for the system:

ẋ = Ax + u

y = x

is given by G(s) = (sI − A)−1. Therefore, the H∞ norm
of this transfer function is:

‖G(s)‖∞ = max
w∈R

‖(jwI −A)−1‖ = F (A),

or the H∞ norm is just the fragility of A. Moreover,
‖G(s)‖∞ < γ if and only if there exists an X(γ) =
X(γ)H > 0 satisfying the algebraic Riccati equation:

AHX(γ) + X(γ)A +
1
γ2

X(γ)2 = −I.

It follows that limγ→∞X(γ) = P. That is, as the system
becomes more fragile, which forces γ to get large, X(γ)
converges to P . Thus, the H∞ norm, fragility in stability of
a linear system, Riccati equations and Lyapunov equations
all relate. These relationships have yet to yield any new
complexity implies fragility results, but it seems likely that
the continued study of these interconnections will yield
interesting insights.
Examples. We conclude this section with a couple of
examples illustrating the results presented. In all of these
examples, we take F = C as it is generally easier to compute
the complex stability radius d(A,USTCTC).

Example 5.1: The first example will demonstrate that in
some “ideal” cases, the notion of complexity introduced is
directly related to fragility.

Consider the continuous-time linear system

A(ε) =
(
−ε 1
−1 −ε

)
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Fig. 2. C(P (ε)) (gray) and F (A(ε)) (black) versus ε.

with ε ∈ R+. Since λ1(A(ε)) = −ε + j and λ2(A(ε)) =
−ε − j, A(ε) is stable for all ε > 0 and the eigenvalues
approach the imaginary axis as ε → 0.

For this example, it is easy to verify that

C(P (ε)) =
1

ε
√

2
≤ F (A(ε)) =

1
ε
.

Therefore, C(P (ε)) →∞ as ε → 0 implying that the system
becomes fragile as ε → 0.

Example 5.2: Unlike the previous example, this example
will demonstrate that the notion of complexity introduced
can fail to notice certain fragile systems.

In analogy to Example 3.1, consider the continuous-time
linear system:

A(ε) =
(
−1 ε
0 −1

)
with ε ∈ R. Clearly A(ε) is stable for all ε ∈ R since
λ1(A(ε)) = λ2(A(ε)) = −1.

For this example, C(P (ε)) does not diverge as ε → ∞
while F (A(ε)) → ∞ (see Figure 2). That is, the complex-
ity specification fails to detect the fact that the problem
is becoming fragile. This indicates that there are “better”
complexity specifications as discussed in the comments on
Theorem 3.

VI. CONCLUSIONS

This paper presented an axiomatic formulation of com-
plexity implies fragility through the use of property speci-
fications, proof specifications and complexity specifications,
or PPC specifications. These concepts were illustrated in the
context of stability for both discrete-time and continuous-
time systems. This work is only meant to be the first step in
both formalizing the notion of complexity implies fragility
and providing examples of this phenomenon. There are
clearly “better” complexity implies fragility results related to
the stability of continuous-time systems, and there are many
other complexity implies fragility results that could be estab-
lished in the context of systems theory, e.g., results related
to stabilizability, controllability and nonlinear stability.

The greatest challenge in obtaining far-reaching com-
plexity implies fragility results is to better understand the

many forms that these results can take. In this paper we
picked a notion of fragility that is natural, and we connected
it to the complexity of proofs. The authors believe that
although it probably is universally true that proof complexity
implies some type of fragility, the notions of complexity and
fragility may be different, i.e., a complex proof may imply
a type of fragility different than the one considered in this
paper. Therefore, given a proof method, a promising research
direction is improving notions of complexity so that they
better reflects the real failure in algorithms and improving
notions of fragility so that they better reflects fragilities that
are natural and meaningful.
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