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Abstract— In this paper, the problem of robust supervisory
control of a finite family of discrete-event plants is studied.
Each plant has a separate closed specification language. A
hierarchical solution which can be regarded as an extension
of Zhong and Wonham approach to hierarchical control, is de-
veloped. It is shown that suitable extensions of Output-Control-
Consistency and Strict-Output-Control-Consistency properties
can be used to establish a high-level control structure and to
ensure hierarchical consistency.

I. INTRODUCTION

Ramadge and Wonham [10] were first to introduce the
supervisory control in discrete-event systems (DES). One
of the most active areas in the research so far, has been
the Robust Supervisory Control (RSC) of DES which was
initiated by Lin [8]. Research was continued on this problem
in different frameworks, e.g. [1], [12], [4]. [1], [12] present
a complete solution for the case in which the number of
the plants models are finite and each model has its own
specification. One of the important applications of robust
supervisory control is in fault recovery problems [11], [12].
In order to deal with computational complexity of designing
DES supervisors and to have more transparency in design,
researchers have explored modular [14] and hierarchical [15],
[2], [3], [7] methodologies. Specifically Zhong and Wonham
[15] initiated a bottom-up hierarchical approach in which
the high-level is obtained from abstracting the low-level.
Consistency in exchanging the information between the two
layers is established in [15] by refining the information
sent up to the high-level. In [9] authors have explained a
hierarchical system with uncertainty consisting of several
models at the low-level and one specification at the high-
level.
In this paper we have extended the RSC problem of [1] and
[12] to the hierarchical framework of [15] for the case of
full observation and closed languages. These assumptions
are not necessary and relaxing them is the subject of our
ongoing research. Our main results include a hierarchical
solution for the problem of robust supervisory control of
a finite family of DES plants in which each plant has a
separate closed specification language. It is shown that suit-
able extensions of Output-Control-Consistency (OCC) and
Strict-Output-Control-Consistency (SOCC) properties can be
used to establish a high-level control structure and to ensure
hierarchical consistency. The main difference between this
work and [9] is that here each plant has its own specification.
furthrmore here we introduce and discuss joint-OCC and
joint-SOCC properties and show how they can guarantee
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hierarchcal consistency.
The paper is organized as follows. Section II reviews the
RSC problem of [1] and [12] and Hierarchical Supervi-
sory control (HSC) problem of [15]. Section III explains
the developments of high-level model. Section IV presents
the main results of the paper and discusses the low-level
implementation of the supervisor, the relation between the
high and the low-level systems under supervision and the
hierarchical consistency are discussed. The proofs have been
removed because of space limitation.

II. PRELIMINARIES

A. Supervisory Control

The supervisory control problem addressed in this paper,
has been posed in the Ramadge-Wonham (RW) supervisory
framework [10]. An automaton G is described here by a 5-
tuple G = (Q,Σ,q0,δ ,Qm) where Q, Σ and Qm denote the
set of states, the set of the events and the set of marked
states respectively, q0 is the initial state and δ is the partial
transition function. In this work we assume the full marking
case and hence we have Qm = Q. L(G) denotes the closed
language of the automaton G. Supervision requires us to
partition the set of events Σ into controllable and uncon-
trollable subsets. Here Σ = Σc∪Σuc where Σc and Σuc denote
the controllable and uncontrollable subsets respectively. Let
E ⊆ L(G) denote the legal language (i.e. the string in L(G)
that satisfy design specifications). We call a language K
controllable with respect to another closed language L if
KΣuc ∩ L ⊆ K. Given a plant model G and a specification
E, a controller K ⊆ E is a maximal subset of E which
is controllable with respect to L(G) and is implementable
through running a supervisor S. Structurally, a supervisor is
a map S : Σ∗ → Γ where Γ = {γ ⊆ Σ|γ ⊇ Σuc} and S(s) is
the subset of events which are enabled after the execution
of s ∈ Σ∗. The language of the system under supervision is
referred to as L(S/G).

B. Robust Supervisory Control

When the system is represented by several models (for
example, due to the dynamics uncertainty or occurrence
of the faults) the robust supervisory control methodologies
come in useful. The robust supervisory control framework
we use in this paper was originally proposed by Lin [8]
and later was extended in [1], [12]. In this approach, the
number of the plant models is finite and each model Gk has
its own specification Ek. it is assumed the plant models Gk
agree on the controllability of the events. The version of
robust supervisory control problem which we tend to extend
to hierarchical framework is given in Theorem 2.1:
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Fig. 1. General overview of a hierarchical supervisory control system

Robust Supervisory Control Problem: Consider a finite set
of plants Gk and a set of legal languages Ek ⊆ L(Gk) for
1 ≤ k ≤ n. A supervisor S : Σ∗ → Γ where Σ =

⋃
1≤k≤n

Σk and

Γ = {γ ⊆ Σ|γ ⊇
⋃

1≤k≤n
Σuc,k} is said to be robust if we have

L(S/Gk)⊆ Ek.
Theorem 2.1: [1], [12] Let G be any automaton whose

closed behavior is L(G) =
⋃
k

L(Gk). A robust supervisor S

exists that solves the RSC problem if and only if there exists
a language K 6= Ø, K ⊆

⋂
k
(Ek∪ [Σ∗−L(Gk)])∩L(G) such that

it is controllable w.r.t L(G). Furthermore L(S/G) = K and for
a model Gk we have L(S/Gk) = K∩L(Gk). �

C. Hierarchical Supervisory Control

The hierarchical supervisory control (HSC) problem setup
presented in [15], [5], [6] takes advantage of the reduced-size
system at the high-level to design the supervisor and provide
a more transparent design. A review of the hierarchical
setup proposed in [15] follows. Fig. 1 shows the hierarchical
structure that is implemented virtually during the running
time. In this configuration Glo is a finite-state deterministic
automaton which represents the actual plant model, con-
trolled in real world, and Ghi is the finite state deterministic
automaton which represents the abstracted information from
the the plant model Glo. For a detailed discussion on this
configuration the reader can refer to [15]. The channel
infolohi is a causal map θ : L(Glo) 7−→ T ∗ where T is the set
of events at the high-level. The causal map θ would have
the following property:

θ(ε) = ε

θ(sσ) =

{
either θ(s)
or θ(s)τ, for some τ ∈ T

(1)

An output map ω : L(Glo) 7−→ To where To = T ∪{τo} and
τo is called the silent event, is defined over L(G) so that for
every s ∈ L(Glo)

ω(sσ) =

{
τo if θ(sσ) = θ(s)
τ if θ(sσ) = θ(s)τ.

(2)

So the output map ω generates the silent event τo whenever
the map θ outputs nothing and generates the new high-level
event τ otherwise.
The output map ω and the automaton Glo can be combined
into a Moore automaton Glo = (Q,Σ,T0,δ ,ω,q0,Q) as elab-
orated in [15]. Now let Llo = L(Glo) and Lhi = θ(Llo), i.e.

Lhi is the abstracted language at the high-level. Also let
Ghi = (Qhi,T,q0,h,δhi,Qhi) be an automaton (at the high-
level) with the event set T whose closed behavior generates
Lhi, i.e. we have Lhi = L(Ghi). To equip the high-level
model Ghi with control structure, we need to know how
the controllability is inherited at the high-level. To do so,
the vocal states are defined. A state is called vocal if the
path s ending in that state generates a non-silent output,
i.e. ω(s) 6= τo. A path (string) connecting two vocal states
to each other or the root state to a vocal state, is called
a silent path if all of its intermediate states are silent.
A silent path is called controllable if at least one of its
events is controllable and is called uncontrollable if all of
its events are uncontrollable. Every silent path corresponds
to a high-level event and furthermore the high-level event
associated with a silent path is called controllable if that
silent path is controllable. Uncontrollable events at the high-
level are defined similarly. A silent path is colored red if it is
controllable and is colored green if it is uncontrollable. Once
a vocal state in Glo is reached a high-level event is generated.
So from the controllability point of view it should be clear
whether a vocal state has been reached through red or green
paths. It might be the case that a vocal state is reachable by
both red and green paths.

Definition 2.2: [15] A Moore automaton Glo, as pre-
viously defined, is said to satisfy the Output-Control-
Consistency (OCC) property if every vocal state in it, is
reachable either by only red silent paths or by only green
silent paths. �
Consider a partition of the high-level event set T = Tc ∪
Tuc where Tc and Tuc denote the controllable and uncon-
trollable subset of T respectively. Also let Lvoc = {s|s ∈
L(Glo) and ω(s) 6= τ0} be the set of strings with vocal ends.
Now for s ∈ Lvoc define λ : Lvoc 7−→ {red,green} to be:

λ (s) =

{
red ω(s) ∈ Tc

green ω(s) ∈ Tuc
(3)

and color : Lvoc 7−→ {red,green} to be:

color(s) =

{
red final silent segment of s is red
green final silent segment of s is green

(4)
Therefore we have the following paraphrasing of definition
2.2:

Definition 2.3: Let Glo be a Moore automaton with the
following structure:

Glo = (Q,Σ,To,δ ,ω,q0,Q) (5)

. Glo is said to satisfy the OCC property if for each s ∈ Lvoc,
we have:

λ (s) = red(green)⇐⇒ color(s) = red(green). (6)

�
If the system satisfies the OCC condition, a control structure
Chi can be computed for the high-level by a control law γhi
which is implemented through a disabled-event map ∆hi :
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L(Ghi) 7−→ pwr(Tc). ∆hi denotes the set of events which are
disabled after t ∈ Lhi. A low-level version of disabled-event
map ∆hi is defined by ∆lo : Σ∗×T → pwr(Σc) as follows:

∆lo(s, t) = {σ ∈ Σuc| (∃s′ ∈ Σ
∗
u) sσs′ ∈ Llo & ω(sσs′)

∈ ∆hi(t) & ∀s′′ < s′, ω(sσs′′) = τo} (7)

The control at the low-level is implemented through a version
of γhi, say γlo : Σ∗×σ 7−→ {0,1}.
Let Ehi ⊆ Lhi be a controllable legal language at the high-
level. Ehi can be synthesized as the controlled behavior of
Ghi under the supervision of γhi, i.e. L(γhi/Ghi) = Ehi. There
would be a corresponding control law γlo at the low-level
that translates the high-level commands to the low-level.
Also let Elo = θ−1(Ehi)⊆ Llo be the low-level legal language
correspondent to Ehi. Theorem 2.4 states the relation between
the control low γlo and the legal language Elo at the low-level:

Theorem 2.4: [15] For the above setup:

L(γlo/Glo) = E↑
lo (8)

where E↑
lo is the supremal controllable sublanguage of Elo

w.r.t Llo and Σuc. �
It is desired to have θ(L(γlo/Glo)) = Ehi; in other words,
Ehi is to be recovered through the low-level implementation.
Strictly-Output-Control-Consistency can gaurantee the above
property.

Definition 2.5: [15], [6] Two red vocal states n1 and n2,
are said to be partners if their silent paths start either at the
root state or at the same vocal state, they share an initial
segment labeled s1σ with σ ∈ Σc and this shared segment is
followed in turn by segments labeled by string s2s3 and s2s4
respectively, where s2 ∈ Σ∗uc and at least one of the strings
s3 and s4 belongs to Σ∗uc. �

Definition 2.6: [15] A plant model Glo is said to be
Strictly-Output-Control-Consistent (SOCC) if i) it is OCC
and ii) no two red vocal states are partners in it. �
If Glo satisfies the SOCC property, the image of L(γlo/Glo)
under the map θ would be the original high-level controllable
language Ehi. Theorem 2.7 summarizes the result.

Theorem 2.7: [15] Assume that the low-level model Glo
satisfies the SOCC property. Let θ , Ehi, Elo and γlo be as
defined previously. Then we have:

θ(L(γlo/Glo)) = Ehi. (9)

�
We say hierarchical consistency holds in the system if
θ(L(γlo/Glo)) = Ehi.

III. PROPOSED CONTROL STRUCTURE

We aim to solve a RSC problem for a finite number of
models, representing different aspects of a plant dynamics, in
a hierarchical framework. Fig. 2 shows a Hierarchical robust
Supervisory Control (HRSC) configuration for a system
consisting of two models. A detailed definition of HRSC
problem is given below. Consider a set of low-level Moore
automata Gl,k = (Qk,Σk,To,δk,ωk,q0,k,Qk), (k = 1, ..,n). We

Fig. 2. HRSC problem configuration with two models

assume all the models agree on the controllability of the
events. Our objective is to design a robust supervisor for
the above plant models. We want to develop a hierarchical
solution for the robust control problem. So we assume there
exists a map θ :

⋃
k

L(Gl,k) 7−→ T ∗ that reports the important

sequences from the low to the high-level. We will discuss in
section III.A how θ can be obtained. Following the approach
in [15], let Gh,k denote the abstracted model at the high-
level that generates θ(L(Gl,k)). We also assume the desired
behavior is given in the form of closed languages E ′

h,k for
each Gh,k at the high-level. With the legal behavior E ′

h,k given
at the high-level, we build the equivalent low-level legal
languages E ′

l,k = θ−1(E ′
h,k). With the previous notations, a

road map of the solution follows.
The RSC problem is solved at the high-level for the models
Gh,k and the specifications E ′

h,k, yielding a robust supervisor
Shi. The systems under the supervision at the high-level
would be L(Shi/Gh,k) = Eh,k ⊆ E ′

h,k. Let Slo be the imple-
mentation of Shi at the low-level which will be discussed
in details later. The relation between the system under the
supervision at the high-level, i.e. Eh,k = L(Shi/Gh,k) and that
under the supervision at the low-level, i.e. L(Slo/Gl,k) needs
to be investigated.

A. Information mapping

In order to transmit the low-level sequences of the
events to the high-level and also to translate the high-level
commands for the low-level, we need to have a map
capable of uniquely transmitting the low-level strings to the
high-level. In the reverse direction, the map would not be a
function and a high-level sequence might be translated to
several low-level sequences.
Consider a set of low-level Moore automata
Gl,k = (Qk,Σk,To,δk,ωk,q0,k,Qk), (k = 1, ..,n) where
ωk : L(Gl,k) 7−→ To are the individual output maps,
defined similarly as in (2), and To is the high-level
event set. Each output map ωk in fact corresponds to
a map θk : L(Gl,k) 7−→ T ∗. The image of the language
L(Gl,k) under the map θk would be a language Lh,k ⊆ T ∗

(Lh,k = θk(L(Gl,k))). Let Gh,k be any automaton whose
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closed behavior is Lh,k, i.e. we have:

L(Gh,k) = θk(L(Gl,k)) (10)

All the high-level languages L(Gh,k) (k = 1, ..,n), are defined
over the same event set T and hence it would be necessary
to expect any low-level sequence in different models Gl,k, to
be mapped to the same high-level sequence. In other words,
the crucial feasibility condition for the information mapping
is that for all 1≤ i, j ≤ n we have:

ωi(s) = ω j(s) for s ∈ L(Gl,i)∩L(Gl, j). (11)

The feasibility condition in (11) requires any string s which is
common among several models, to be transmitted the same
in all those models. If the feasibility condition in (11) is
satisfied for all 1≤ i, j ≤ n it would be possible to define an
information map θ :

⋃
k

L(Gl,k) 7−→ T ∗ as follows:

θ(s) = θk(s) for any k such that s ∈ L(Gl,k) (12)

Obtaining a feasible information map θ for a set of Moore
automata Gl,k is guaranteed if we can ensure the feasibility
condition of (11) holds among the strings s common between
the models Gl,k. To verify (11) for any two Moore automata
Gl,i and Gl, j for 1≤ i, j≤ n, let Ĝi, j = Gl,i×Gl, j be the meet
product of them. Then condition (11) holds if and only if in
every state (qi,q j) of Ĝi, j we have ωi(qi) = ω j(q j) where ωi
is the output map of the model Gl,i.

Remark 3.1: In the continuation of this work we assume
that the Moore automata Gl,k, with the individual output
maps ωk, satisfy the feasibility condition in (11) and hence
we only refer to an information map θ defined in (12) for
the purpose of exchanging the information between the two
layers. Therefore, we can rewrite (10) as:

L(Gh,k) = θ(L(Gl,k)). (13)

�

B. Joint-OCC Property

The HRSC problem, by definition, is based on RSC and
HSC problems. In HSC problem, a Moore automaton Gl,k
should satisfy the OCC property and in RSC problem the
models should agree on the controllability of the events.
Note that this agreement at the low-level is obtained by
the definition of the events for each model while at the
high-level it is obtained by guaranteeing that the feasibility
property (11) holds in the system and hence a unique
information map θ exists for it. Nevertheless, we are not yet
guaranteed that any automaton Ghi whose closed behavior
is L(Ghi) =

⋃
k

L(Gh,k) is well-defined. In other words, we

should make sure that such Ghi has a correspondent model
at the low-level, say Glo where L(Glo) =

⋃
k

L(Gl,k), and we

have L(Ghi) = θ(L(Glo)). This would happen if we could
show OCC property holds for the Llo =

⋃
k

L(Gl,k).

Definition 3.2: Consider a set of Moore automata Gl,k =
(Qk,Σk,To,δk,ωk,q0,k,Qk) (k = 1, ..,n). Let Llo =

⋃
k

L(Gl,k)

and Lvoc be the strings in Llo with vocal ends. We say Gl,k
(k = 1, ..,n) satisfy the joint-OCC property if for all s ∈ Lvoc
we have (6) in definition 2.3. �
It follows from the feasibility condition that the joint-OCC
property is well-defined. It is shown in the following how
Llo can be presented with a Moore automaton.

Remark 3.3: Consider a set of Moore automata Gl,k (k =
1, ..,n) with the output maps ωk : L(Gl,k) 7−→ To. Assuming
that all the states in Gl,k’s are marked, we construct Glo as
follows:

Glo = trim[(Gco
l,1× ...×Gco

l,n)
co] (14)

where trim(.) denote the trim function and Gco stands for
the complement of automaton G w.r.t the set Σ =

⋃
k

Σk

respectively. Each state of Glo would be of the form q =
(q1, ...,qn) in which at least of the elements qi’s belongs to
the state set Qi of Gl,i. That means any sequence leading to
a state q in Glo, leads to qi in Gl,i. Define the output map
ω(s) = ωi(s). It follows from the feasibility condition in (11)
that this definition is well-defined. The closed behavior of
Glo with above structure is L(Glo) = Llo and besides, contains
the information outputs of Gl,k’s. �

Lemma 3.4: Consider the Moore automata Gl,k (k =
1, ..,n) and let Glo be defined in remark 3.3. Then Gl,k’s
satisfy the joint-OCC property if and only if Glo satisfies
the OCC property. �

Proposition 3.5: Consider the Moore automata Gl,k (k =
1, ..,n). Then Gl,k’s satisfy the joint-OCC property if and
only if each Gl,k satisfies the OCC property. �

Corollary 3.6: Gl,k (k = 1, ..,n) are individually OCC if
and only if Glo =

⋃
k

Gl,k, is OCC. �

IV. SUPERVISION IMPLEMENTATION AT THE LOW-LEVEL

Let Gh,k be the models at the high-level whose closed
language is L(Gh,k) = θ(L(Gl,k)). We assume the desired
behavior is given by E ′

h,k, Shi solves the robust supervisory
control problem and Eh,k = L(Shi/Gh,k) is the system under
supervision at the high-level. Also let Ehi =

⋃
k

Eh,k, Elo =

θ−1(Ehi) and finally E ′
l,k = θ−1(E ′

h,k) be the corresponding
legal language for each L(Gl,k) at the low-level.
Let Ghi be any automaton at the high-level whose closed
behavior is L(Ghi) =

⋃
k

L(Gh,k). Theorem 2.1 implies

L(Shi/Ghi) = Ehi and Ehi is controllable w.r.t L(Ghi). Also let
Glo be a Moore automata which is given by (14) in Remark
3.3 for the set of models Gl,k. By definition of Ghi and Glo
we have L(Ghi) = θ(L(Glo)). Now from Theorem 2.4, we
conclude that if the high-level supervisor Shi is implemented
by a disabled-event map ∆hi then there exists a low-level
supervisor Slo which is implemented by a disabled-event map
∆lo given in (7). We show Slo solves the robust supervisory
control at the low level for the set of models Gl,k and the
specifications E ′

l,k.
Theorem 4.1: Consider a set of models Gl,k which are

jointly OCC. Then with the above notations, we have
L(Slo/Gl,k) = E↑

lo∩L(Gl,k)⊆ E ′
l,k. �
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Fig. 3. Gl,1 and Gl,2 satisfy the SOCC condition individually but the model
Glo, which describes the union of them, does not.

Example 4.2: Fig. 3 shows a system in which each model
Gl,k satisfies the OCC condition. Here the odd numbers refer
to controllable events while the even numbers refer to uncon-
trollable events. Let the high-level specifications E ′

h,1 = A+B
and E ′

h,2 = {ε} be given. The system under supervision at
the high-level would be L(Shi/Ghi) = Ehi = A+B. The image
of Ehi at the low-level would be Elo = {ε,”1”,”1.3”,”1.5”}
and the controllable image of Ehi is L(Slo/Glo) = E↑

lo = {ε}.
Thus, the systems under supervision at the low-level would
be L(Slo/Gl,i) = {ε}∩L(Gl,i) = {ε} for i = 1,2. �
We would like the low-level implementation of the supervi-
sory control (L(Slo/Gl,k)) to map to the high-level supervi-
sor’s expectations (L(Shi/Gh,k)) and refer to this property as
Robust Hierarchical Consistency.

Definition 4.3: We say the robust hierarchical consistency
property holds in the system if θ(L(Slo/Gl,k)) = L(Shi/Gh,k)
for (k = 1, ..,n). �
In the robust control problem, we have to make sure that
implementation of a high-level command to disable an event
does not produce unintended consequences in any possible
plant. To ensure this, we bring in a Joint SOCC property.

Definition 4.4: The Moore generators Gl,k (k = 1, ..,n)
are Jointly SOCC if i) they are jointly OCC and ii) in the
reachability tree of

⋃
k

L(Gl,k), no two red vocal nodes are

partners. �
In the following proposition, we show if Gl,k (k = 1, ..,n) are
jointly SOCC then Gl,k are individually SOCC. The reverse
is not true as shown in an example following Proposition
4.5.

Proposition 4.5: Let a set of Moore generators Gl,k be
given for (k = 1, ..,n). If Gl,k (k = 1, ..,n) are jointly SOCC
then Gl,k (k = 1, ..,n) are individually SOCC.
Later in Example 4.9, we show if Gl,k’s are not jointly SOCC,
how they can be modified to become jointly SOCC.

Example 4.6: With the given models in example 4.2, Gl,1
and Gl,2 satisfy the SOCC condition but in Glo, two states
(A,C) (or (B,C)) are partners. �
In the following we show how the robust hierarchical
consistency property holds in a HRSC system.

Theorem 4.7: Let the low-level Moore automata Gl,k (k =
1, ..,n) be given and also Gh,k, E ′

h,k, Shi, Eh,k, Ehi, Elo, E ′
l,k,

Glo and Slo be as previously defined in Theorem 4.1. If Gl,k
(k = 1, ..,n) are jointly SOCC then we have θ [L(Slo/Gl,k)] =
Eh,k. �
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Fig. 4. (a): G1 and (b): G2 with vocal states

Example 4.8: The system in Example 4.6 does not satisfy
the robust hierarchical consistency. Specifically we have
θ(L(Slo/Gl,1)) = {ε} 6= Eh,1. It follows from Example 4.6
that Gl,i for i = 1,2 do not satisfy the joint SOCC property
and hence with the given specifications Eh,1 and Eh,2 at
the high-level, violating the robust hierarchical consistency
is justified. Again note that in general the joint SOCC
property is a sufficient, and not necessary, condition for
robust hierarchical consistency. �

Example 4.9: The theory developed in this paper is il-
lustrated through this example. Figs. 4.(a) and (b) show
two low-level Moore automata G1 and G2 with individually
assigned output maps ωi for i = 1,2. It can be checked
that the feasibility condition holds for them. Neither G1
nor G2 is OCC and only G1 is SOCC. Fig. 5 shows the
Moore model G = G1 ∪G2 whose equivalent output map
ω (see remark 3.3) has been refined so that G is SOCC
and OCC. The following changes have occurred in G: the
state reached by s = 1 has been assigned a new output D
(ω(1) = D) to make the SOCC property hold in G; the state
reached by the sequence s′ = 1.6 has been renamed to Auc
(ω(”1.6”) = Auc) to reflect the uncontrollable behavior of
the last silent segment of the sequence s′ = 1.6; and finally
sequences s1 = 1.4 and s2 = 1.5, whereas in fig. 4 in which
we have δ (q0,”1.4”) = δ (q0,”1.5”), reach different states
(see OCC algorithm in [13]). Since G is SOCC, we can show
that Ĝ1 = G×G1 and Ĝ2 = G×G2 will be jointly SOCC.
(Note the state of Ĝi will be of the form (x,y) where x and
y are the states of G and Gi, respectively and the output
at (x,y) is taken to be equal to the output of G at x). The
results are shown in Fig. 6. The abstracted models Gh,1 and
Gh,2 are obtained from the models in fig. 6 and are shown in
Fig. 7. Suppose E ′

h,1 = L(Gh,1)−{DC} and E ′
h2

=
⋃
n
{DAn

ucB}
for n ≥ 1. For the given set of high-level models and legal
languages there would be a robust supervisor Shi for which
the systems under supervision could be shown by Fig. 8.(a)
and (b). Theorem 4.1 guarantees that E↑

l,i∩L(Gi) for i = 1,2
is the language of Gi under the supervision at the low-
level where El,i = θ−1(Eh,i) as previously elaborated. Figs.
9.(a) and (b) illustrate these facts. Note that in the states
(3) and (10) of the graph of (Slo/G1) in Fig. 9.(a), the
plant G1 has reached its state (3) through strings ”1.3.6”
and ”1.2”, respectively. In the first case, we allow ”C” to
occur and in the other case, we disable C (see (7)). Since
the the models in Fig. 6 are jointly SOCC, Theorem 4.7
guarantees that the robust hierarchical consistency defined
in Definition 4.3 holds in the system. It is easy to check that
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Fig. 6. (a): Ĝ1 and (b) Ĝ2 satisfy the joint-OCC and joint-SOCC conditions

the abstractions of the low-level languages under supervision
given by the automata in Fig. 9, are given by the languages
of the automata in Fig. 8, i.e. θ [L(Slo/Ĝi)] = Eh,i for i = 1,2.
�

V. CONCLUSION

In this paper a hierarchical solution for the problem of
robust supervisory control of a finite family of DES plants
was derived based on Zhong and Wonham approach. Joint-
OCC and joint-SOCC properties as the extensions of the
OCC and SOCC properties were developed as sufficient
conditions to guarantee the robust hierarchical consistency.
We showed the robust supervisor which is designed for
the high-level yields the maximum controllable behavior at
the low-level while at the same time, robust hierarchical
consistency holds in the system.
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Fig. 7. (a): high-level model Gh,1 (b):high-level model Gh,2

D B
C

A

ucA
ucA

D
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Fig. 8. (a): Gh,1 under supervision, Eh,1 = L(Shi/Gh,1) (b): Gh,1 under
supervision, Eh,2 = L(Shi/Gh,2)
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