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Abstract— This paper identifies a fundamental limitation on
haptic rendering performance induced by passivity require-
ments. This limitation arises when the target closed-loop re-
sponse requires feedback compensation of hardware dynamics.
The intrinsic human-in-the-loop nature of haptic rendering
further requires passivity of the closed-loop response. The
conflict between performance and passivity that we discuss is a
consequence of feedback bandwidth constraints, not sampling
or quantization. Key to our analysis is an interpretation of a
Bode gain-phase integral relationship that relates magnitude at
low frequencies to phase at high frequencies.

I. INTRODUCTION

FEEDBACK control in haptic rendering shapes the dy-
namic response of a motorized user interface, called

a haptic device, to match a target dynamic response. De-
pending on the intrinsic dynamics of the haptic device and
the desired dynamic response, compensation for the haptic
device dynamics may be required for the actual closed-loop
response to closely match the desired dynamic response.
In general, the mechanical properties of the device such as
damping and inertia are minimized during hardware design
to avert the need for compensation in the feedback design.
However, minimizing these hardware dynamics is in conflict
with other design considerations such as structural strength or
component cost. Feedback control offers the ability to com-
pensate for hardware dynamics; however the designer must
be simultaneously aware of inherent costs and limitations.

The human-in-the-loop aspect of haptic rendering raises
special stability concerns. Typical frequency-domain tech-
niques for assessing stability such as phase margin and gain
margin are not appropriate for haptic rendering since the
mechanical interaction with the human operator introduces
significant nonlinear, time-varying dynamics. This particular
stability problem is termed coupled stability [1], and a
common solution is to design the controller such that the
closed-loop response presented to the user through the haptic
device has a passive dynamic response. Coupled stability
is assured if the human operator behaves passively. Given
that passivity is a requirement for stability, it is important
to determine the class of dynamic responses that can be
rendered by the haptic device while maintaining the passivity
condition for coupled stability.

Previous analysis of haptic rendering identifies limitations
on the feedback design due to sampling effects and quantiza-
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tion error. When rendering a virtual wall, passivity imposes
limitations on the gains of the controller parameters [2]–[7].
Extensions to the work on the virtual wall problem predict
limits for more general nonlinear virtual environments [8],
[9]. Prior literature on haptic rendering has not analyzed
the challenges of accurately rendering passive linear time-
invariant dynamics without regard to sampling or quantiza-
tion issues. In this respect, our analysis is similar to analysis
of limitations in end-point impedance control for robots [1].
However, unlike typical impedance control which uses force
sensing, we consider haptic rendering using position sensing
as the feedback signal.

In this paper we show that certain linear time-invariant
passive dynamic systems cannot be approximated passively
over a given finite bandwidth. This fundamental conflict
between performance and passivity holds for all linear time-
invariant controllers. In contrast to previous work, the limi-
tation we reveal is not mitigated by faster sampling or finer
sensor quantization. A necessary condition is determined for
the existence of a feasible feedback design, and interpretation
of this condition reveals certain compensation of hardware
dynamics cannot be achieved while maintaining a passive
closed-loop response.

II. BACKGROUND

A. Haptic rendering using position feedback

In a standard configuration of haptic rendering, a hu-
man operator grasps and applies forces to a motorized,
computer-controlled manipulator. Figure 1 depicts a direct-
drive, single-axis, impedance-type haptic device. We assume
that the user’s torque f applied to the handwheel and the
motor torque u affect the handwheel position y through the
same dynamics. In general, the haptic device may be linear
or rotary; however, without loss of generality, we refer to f
and u as forces rather than torques.

We model the dynamics of the haptic device and the
controller as transfer functions of the Laplace variable s. Let
P denote the haptic device dynamics such that

y = P( f +u), (1)

and let C describe the controller such that

u =−Cy. (2)

The primary goal of the controller is to shape the dynamic
behavior of the haptic device from f and y to match desired
dynamics, termed the virtual environment. We denote linear
time-invariant virtual environments by the transfer function
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Fig. 1: Schematic of a rotary haptic device and controller.

Rd . We denote the actual closed-loop dynamics between f
and y rendered to the user by R. These dynamics are defined
by the feedback interconnection of P with C:

R ,
P

1+PC
. (3)

As in [10], we measure the accuracy of haptic rendering by
distortion, defined as the relative error between the actual
and desired closed-loop dynamics:

Θ ,
R−Rd

Rd
. (4)

The dynamic response presented to the user closely matches
the desired response if Θ is small along the entire jω-axis.
Due to bandwidth limitations imposed by the hardware, the
loop-gain PC must roll-off at high frequencies. It follows
from (3) that the rendered dynamics R approach the open-
loop device dynamics P at high frequencies. As a practical
performance specification, let

|Θ( jω)| ≤MΘ, for 0≤ ω ≤ ωc. (5)

The block diagram in Figure 2 depicts the model-matching
feedback design problem in the general control configuration.
The signal yd is the desired position of the haptic device
given by yd , Rd f , and the error between the actual and
desired position is given by e , y− yd . The performance
variable z is given by the normalized error signal z , R−1

d e
such that distortion Θ describes the closed-loop response
from f to z.

In contrast to the block diagram shown in Fig. 2, it is com-
mon in the literature on haptic rendering to use the virtual
environment as the controller [3], [4], [6]–[8], or to partition
the controller into a virtual coupler and virtual environment
[9], [11]. In the former case, the virtual environment must
be expressed as a dynamic response from position to force
rather than from force to position as we have defined it here,
and no separate compensation for the hardware dynamics
is included. When the virtual environment represents the
dynamics of some physical system, it is preferable to express
the virtual environment in forward dynamics from force to
motion. By partitioning the controller into a virtual coupler

u

y

C

P

dR
dy zf

dR
e -1

R

Fig. 2: General control configuration for haptic rendering
with position feedback. The closed-loop response from f to
z is given by distortion Θ.

and virtual environment, the virtual environment can then be
expressed in forward dynamics. The virtual coupler can also
provide compensation for hardware dynamics as described
in [10]. For our present discussion we do not partition the
controller; however this does not imply that the controller is
synonymous with the virtual environment. We assume that
the controller accounts for the virtual environment and any
compensation of hardware dynamics.

Let us introduce one additional closed-loop transfer func-
tion that plays a key role in our analysis. The Bode sensitivity
function for the feedback loop between P and C is given by

S ,
1

1+PC
. (6)

The value of the Bode sensitivity function along the jω-axis
describes several important feedback properties including
stability robustness, attenuation of exogenous inputs entering
the plant input, and the sensitivity of the four closed-loop
transfer functions associated with the feedback interconnec-
tion of P and C to variations in the hardware dynamics [12].
There are two facts, however, about the Bode sensitivity
function which are relevant to our present discussion. First,
comparing (6) and (3), we note that S and the rendered virtual
environment R are related algebraically by

R = PS. (7)

Through this relationship we can translate specifications
on the rendered virtual environment into specifications on
the Bode sensitivity function. The second fact is that, for
practical systems, the loop-gain PC will be strictly proper. It
follows that

lim
s→∞

S( jω) = 1. (8)

B. Passivity for coupled stability

While the controller C should be designed to stabilize the
haptic device P, stability of this feedback interaction is not
sufficient to guarantee well-behaved interaction between the
human operator and the controlled device. When in physical
contact with the device, the human operator forms an ad-
ditional feedback path between the haptic device position y
and the force f . The dynamics in this path are variable and
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depend on many factors such as grasp, posture, muscle co-
contraction, and volitional responses. As a result, the coupled
user and powered haptic device may give rise to undesired
oscillations.

A practical method to assure coupled stability of the
human operator and haptic interface system is to design
the dynamic response of the haptic interface system to be
passive [1]. A necessary and sufficient condition for a linear
time-invariant transfer function between a pair of power
variables—such force and velocity—to be passive is that its
poles lie in the closed left-half plane and its Nyquist plot lies
in the closed-right half plane [13]. Thus, for a stable feedback
design, the user is presented with a passive dynamic response
if

Real[ jωR( jω)]≥ 0 ∀ω. (9)

In other words, the Nyquist plot of sR must lie entirely in
the right-half plane, or equivalently, the positive-ω locus of
R must remain below the real-axis.

C. Bode gain-phase relationship

Analyticity of transfer functions imposes relationships
between the magnitude and phase that may conflict with
feedback design goals. The Bode gain-phase integral predicts
that the phase of a proper, stable, minimum phase transfer
function along the jω-axis is completely determined by
the magnitude of the transfer function along the jω-axis
[14], [15]. We use a related integral expression to relate
performance and passivity requirements in haptic rendering.
We state the result in terms of S; however we note that the
result is not particular to the Bode sensitivity function.

Let pi for i = 1, ...,np be the poles of S and zi for i =
1, ...,nz be the zeros of S such that

S(s) =
k ∏

nz
i=1(s− zi)

∏
np
i=1(s− pi)

. (10)

We assume that S is normalized such that k is positive. Let
arg(s) assume values from −π to π and define

argS(s) =
nz

∑
i=1

arg(s− zi)−
np

∑
i=1

arg(s− pi). (11)

Then logS(s) is given by log |S(s)|+ j argS(s).
Bode gain-phase relationships follow from Cauchy’s in-

tegral theorem applied to contour integrals that enclose
the right-half plane. We consider the contour integral of
logS/

√
1+ s2/ω2

0 . Assume that all pi’s lie in the open left-
half plane and that all zi’s lie in the closed left-half plane.
Then the integrand logS/

√
1+ s2/ω2

0 is analytic on and in-
side a contour defined by a large semicircle around the right-
half plane and the jω-axis. Small semi-circle indentations
at +/- jω0 and at any zeros of S on the imaginary axis are
added to avoid singularities. We take

√
1−ω2/ω2

0 to be
positive for −ω0 < ω < ω0, positive imaginary for ω > ω0,
and negative imaginary for ω < ω0. By the hypotheses on P

and C, it follows that S( jω)→ 1 as ω →∞. Then S satisfies
(cf. [14, Eqn. 13-36])∫

ω0

0

log |S( jω)|√
1−ω2/ω2

0

dω =−
∫

∞

ω0

argS( jω)dω√
ω2/ω2

0 −1
. (12)

This integral equality implies that amplification of S( jω)
below ω0 must be balanced with negative phase area above
ω0. If we change the variable of integration to v , logω/ω0,
the weighting factors 1/

√
1−ω2/ω2

0 and 1/
√

ω2/ω2
0 −1

become ev/
√

1− e2v and ev/
√

e2v−1. Inspection of these
weighting factors (shown in Fig. 3) reveals that the left-hand
side of (12) is strongly influenced by log |S( jω)| within a
decade below ω0. The contribution of the phase of S( jω) to
the right-hand side of (12) is more evenly distributed with
bias towards values near ω0.
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Fig. 3: Weighting factors from (12) shown on a logarithmic
frequency scale.

III. A LIMITATION ON PARTIAL CANCELLATION OF
DEVICE DYNAMICS

The performance specification (5) and passivity require-
ment (9) generate constraints on the magnitude and phase
of closed-loop transfer functions Θ and R. The Bode gain-
phase relationship (12) provides a means to relate magnitude
and phase requirements if they are expressed in terms of a
single closed-loop transfer function. To do this, we express
performance and passivity requirements in terms of the Bode
sensitivity function S. From (7), the magnitude and phase of
S are given by

|S|= |R|/|P| (13)
argS = argR− argP. (14)

From (4), distortion may be written as

R = (1+Θ)Rd . (15)

It follows from (13) and (15) that

log |S|= log
∣∣∣∣Rd

P

∣∣∣∣+ log |1+Θ|. (16)

Assume that the performance specification (5) is satisfied
with MΘ < 1. Then for 0≤ ω ≤ ωc

log |S( jω)| ≥ log
∣∣∣∣Rd( jω)

P( jω)

∣∣∣∣+ log |1−MΘ|. (17)
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This inequality provides a lower bound on the magnitude
of S( jω) that depends only on the hardware P, the desired
rendered dynamics Rd and the performance specification (5).
Notably, the lower bound on the magnitude of S( jω) does
not depend on the feedback design.

The constraint on the phase of R( jω) given by (9) can be
expressed as a constraint on the phase of S( jω) using (14).
For 0≤ ω ≤ ω0 we require that

−π− argP( jω)≤ argS( jω)≤−argP( jω). (18)

For our present discussion, we focus on the implications of
the lower bound in (18) when the haptic device dynamics
are dominated by inertial effects at high frequencies. For
such devices, the phase of P( jω) approaches −π at high
frequencies. It follows that any phase lag in S( jω) must be
small at high frequencies so as to not violate the lower bound
in (18).

An inherent conflict emerges between performance and
passivity when (17) and (18) are related through the Bode
gain-phase relationship (12).

Proposition 1: Assume that P has relative degree of two
and has no open right-half plane poles. Given 0≤MΘ < 1, a
necessary condition for the existence of a proper, stabilizing
controller C that meets the performance specification (5) and
passivity requirement (9) is

∫
ω0

0

log
∣∣∣Rd( jω)

P( jω)

∣∣∣+ log |1−MΘ|√
1−ω2/ω2

0

dω

≤
∫

∞

ω0

π + argP( jω)√
ω2/ω2

0 −1
dω. (19)

for all 0 < ω0 ≤ ωc.
Proof: Suppose that there exists a proper stabilizing

controller C that achieves the performance specification and
satisfies the passivity requirement on sR. Since open right-
half plane poles of C are open right-half plane zeros of R
(recalling that R = P/(1+PC), it follows that C has no open
right-half plane poles. Together with the hypotheses on P,
it follows that S is stable and has no open right-half plane
zeros. Then S satisfies the Bode gain-phase relationship (12).

For 0≤ω ≤ωc, the left-hand side of (12) is lower bounded
by (17) which captures the performance requirement. We use
the passivity condition (18) to upper bound −argS( jω) by
π +argP( jω) for all positive frequencies. Thus the resulting
inequality (19) holds for any controller that satisfies the
hypotheses.

We can demonstrate the existence of passive virtual en-
vironment dynamics Rd that violate (19) by choosing any
non-zero passive virtual environment and multiply it by
a sufficiently large scalar. Suppose that ω0 and MΘ are
fixed. The left-hand side of (19) grows with the magnitude
of Rd , but the right-hand side depends only on the phase
of P. A sufficiently large scaling of any passive virtual
environment will violate (19). It follows that no proper,
stabilizing controller C exists that meets the performance
specification while presenting passive dynamics to the user.

Proposition 1 implies a limitation on the ability to com-
pensate for hardware dynamics while presenting a passive re-
sponse to the user. We say that the feedback design partially
cancels hardware dynamics at frequencies where |R( jω)|>
|P( jω)|. At these frequencies the magnitude of the closed-
loop response y to the human operator’s force f exceeds
the open-loop response. Examining (19), we note that only
virtual environments that require partial cancellation can
cause the inequality to be violated. The unpowered hardware
dynamics sP are passive, so π + argP( jω) is positive. It
follows that the right-hand side of (19) is always positive.
Furthermore, the term log |1−MΘ| is always negative, so
(19) will always hold if |Rd( jω)|< |P( jω)| for 0 < ω < ωc.

A practical implication of Proposition 1 is that even a
small amount of compensation for hardware inertia may be
impossible without violating the passivity requirement on sR.
Consider haptic device dynamics P with only inertia. Since
argP( jω) is −π , the right-hand side of (19) is exactly zero.
The left-hand side of (19) must remain less than or equal
to zero. This requirement implies that |Rd( jω)/P( jω)| must
not significantly exceed unity over any range of frequencies
below ωc.

IV. EXAMPLE

We now consider the conflict between performance and
passivity for a simple example problem. Let the haptic device
model be a damped mass system P = 1

s2+s and let the
virtual environment dynamics be an ideal parallel spring-
damper Rd = 1

s+10 . For the performance specification, we let
MΘ = 0.5 and we consider several different values for ωc.
Figure 4 shows the left-hand and right-hand sides of (19)
using four values for ωc indicated by lines A, B, C, and
D. Proposition 1 predicts that there is no proper stabilizing
feedback design that achieves |Θ( jω)| ≤ 0.5 up to 10 (rad/s)
and that makes sR passive. Thus the performance bandwidth
indicated by A cannot be achieved passively.
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∞
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∣
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∣

∣
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Fig. 4: Right and left sides of the inequality in Proposition 1
for MΘ = 0.5. Lines A, B, C, and D indicate four specifica-
tion for ωc.

Let us examine the conflict between performance and pas-
sivity through example controller designs. Since the rendered
dynamics R are given by P/1 + PC, we can algebraically
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solve for the controller that makes R ≡ Rd . However, the
solution C = R−1

d −P−1 is not necessarily proper or stabiliz-
ing. In the present example, the exact algebraic solution for
C is −s2 +10. This improper controller is not practical, and
furthermore, multiplying this expression by a low-pass filter
to obtain a proper controller does not necessarily result in
closed-loop stability. We note that classical design techniques
for loop-shaping do not provide a direct method of shaping
the closed-loop dynamics, and optimal synthesis tools do
not necessarily produce stable controllers, a prerequisite
for sR to be passive. To generate feedback designs which
approximate the desired closed-loop response using a stable,
proper controller, we use controllers of the form

C =
(

(τs+1)2

Rd
− 1

P

)(
1

γs+1

)3

. (20)

For the values of τ and γ given in Table IV, the controller
given by (20) yields closed-loop stability and the desired
performance. The frequency responses of distortion Θ are
shown in Fig. 5.

Design (2πτ)−1 Hz (2πγ)−1 Hz
A 8 400
B 4 100
C 1.6 15
D 0.6 2

TABLE I
PARAMETERS τ AND γ OF THE FOUR FEEDBACK DESIGNS.
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Fig. 5: Distortion Θ for designs A, B, C and D.

Frequency responses of the rendered virtual environment
R for each design, labeled A through D, are shown in Fig. 6.
Inspection of the phase plot reveals that designs A, B, and
C violate the lower bound of -180 degrees and thus do not
present the user with passive dynamics. Proposition 1 proves
that no feasible design exists that meets the performance
specification for design A and satisfies the phase criteria
for passivity. Progressive relaxations of the bandwidth in-
cur smaller excursions below -180 degrees. Only design D
both meets the performance specification and the passivity
requirement. For designs B and C, inequality (19) is not
violated so Proposition 1 provides no determination on
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(b) Bode phase plot
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Fig. 6: Frequency response of the haptic device P, the
virtual environment Rd , and four causal approximations to
Rd (designs A, B, C, & D). Designs A, B, and C violate
passivity since their phase drops below -180 degrees.

whether some other feedback design exists that achieves the
bandwidth of C without violating passivity. There may then
exist a higher-order controller than (20) which satisfies both
performance and passivity requirements.

V. CONCLUSIONS

In this paper we have shown that, for given haptic device
hardware and performance specification for the feedback
design, a certain class of passive transfer functions can-
not be approximated while presenting a passive response
to the human operator. This class of transfer functions is
characterized by compensation of hardware dynamics. In
Proposition 1 we have provided a necessary condition for
the existence of a stabilizing, proper feedback design that
can passively approximate a desired closed-loop response.
If the inequality (19) is violated at any frequency, we can
conclude that no feasible feedback design exists that satisfies
both performance and passivity requirements.

Passivity is a strong requirement which may be overly
restrictive. Less conservative coupled stability criteria may be
available through a robust stability analysis assuming a set of
possible user dynamics. Although relaxing passivity would
mitigate the conflict between performance and passivity,
other tradeoffs may exist such as between performance
bandwidth and the closed-loop bandwidth. As seen in the
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example, small increases in the performance bandwidth cause
large growth in the controller bandwidth. While a high-order
controller may be used to increase the rate of roll-off, such
a design will also increase the amount by which the phase
requirement of passivity is violated.

While our analysis and design example assume only
position feedback, a force or torque sensor may be installed
to measure the user’s applied input f . While additional
sensing offers benefits, it does not circumvent the intrinsic
conflict between performance and passivity. Our Bode gain-
phase analysis of S is simply an analysis of the closed-loop
response from f to f + u. Regardless of the sensor suite,
performance and passivity impose the same requirements on
this closed-loop response. Furthermore, due to bandwidth
limitations of the motor and amplifier, the closed-loop re-
sponse from f to f + u must always approach unity (as is
true of S). The conflict between performance and passivity
is thus intrinsic to impedance-type haptic devices where the
inputs f and u affect the output y through the same dynamics.
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