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Abstract— We extend techniques for a reachability-based
abstraction to hybrid systems under shared control with appli-
cation to pilot-autopilot interaction during an aircraft landing.
A simple hybrid model of longitudinal aircraft dynamics and
mode-logic is developed based on publicly available data. As
the pilot and autopilot share control over some of the same
inputs, it is possible for the pilot to “fight” the autopilot.
New types of safety are proposed to identify regions in the
state-space in which pilot-autopilot conflict can occur, and then
computed using level set methods. The results partition the
state-space into different levels of safety. Cells of this partition
form discrete modes in an abstraction of the reachability result,
which can inform the design of a pilot display. Our results
show how shared control contributed to violations of “safe”
pilot interaction with the automation in the Nagoya 1994 A300
accident.

I. INTRODUCTION

Modern civil jet aircraft have many layers of automation,
usually with complex mode structure corresponding to dif-
ferent maneuvers (e.g., level flight, constant-rate descent,
constant-rate turn), different types of control protections
(saturation, envelope protection), and different types of pi-
lot input (manual, shared, supervisory). Flight management
systems are designed mostly through ad-hoc rules to avoid
known problems, then extensively tested through costly sim-
ulations to help identify unanticipated problems. However, as
it is physically impossible to test all possible initial condi-
tions and inputs, problems in human-automation interaction
can still occur [1], [2], [3]. “Automation surprises,” in which
the pilot becomes confused about the current mode or cannot
anticipate the next mode in the automation [4], [5], and other
problematic behaviors in actual aircraft operation, have been
implicated in aircraft incidents and accidents.

Computational techniques for verification can create a new
level of confidence and reliability in safety-critical systems
such as aircraft autopilots, by predicting where failures might
occur, and how human operators can predict them [6], [7],
[8], [9]. Verification provides a mathematical guarantee of
safety, where safety is defined as the ability to remain within
a desired set in the state-space, despite bounded control au-
thority. Through standard reachability analysis and controller
synthesis, we can compute the subset of the desired set (e.g.,
an aerodynamic flight envelope) in which we can guarantee
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the system can always remain: this is the reachable set, which
is synonymous with the “safe” region of operation [10], [11].
We draw on the Hamilton-Jacobi techniques implemented in
the Level Set Toolbox [12] because of their subgrid accuracy
and success in previous aircraft applications, although other
techniques [13], [14], [15], [16], [17] could be used.

Verification of semi-automated systems introduces further
complexity because it involves not only the automation, but
also the way in which the user interacts with the automation
[18]. The user-interface both provides information to the
user about the underlying automation, and allows the user
to issue input commands to the system. Formal methods
have been used to verify user-interfaces modeled as discrete
event systems [7], [8], [19], [20], [21]. Estimation has been
used to anticipate the human’s actions [22] through particle
filters. We consider hybrid systems with which a human
interacts – this includes not only the discrete mode-logic,
but also the continuous dynamics arising from forces acting
on the physical system. Since we cannot guarantee what
actions the human will take, we focus on guarantees that
the correct information has been provided to the human, in
order to achieve a desired task. While how this information is
displayed is vitally important to effective human-automation
interaction, we restrict ourselves to the portion of this prob-
lem we can quantify: what information is displayed.

In previous work, we used an abstraction method based
on a reachability computation, to determine the relevant
information content for a pilot’s display during an aborted
landing of a large civil jet aircraft [23], [24]. One of our
key assumptions was that the pilot’s input was limited
to pre-planned, discrete, supervisory actions. This simple
structure, in which the automation controlled the continuous
dynamics within each mode, and the pilot simply selected
modes as appropriate, allowed us to take advantage of the
well-developed verification algorithms for standard, fully-
automated hybrid systems.

In this paper, we extend these techniques to a semi-
automated system under shared control, in which both the
automation and the human have control over the same
continuous input. Shared control scenarios are common in
aircraft “manual” modes, in which the pilot’s input is filtered
by the automation’s algorithms for saturation or envelope-
protection. While treating the human’s input as a continuous
disturbance will ensure safety of the automated system, the
reachability results may be far too conservative to be useful:
in the aborted go-around scenario [23], this analysis would
have recommended that the aircraft never land, in order
to ensure a safe go-around! This paper proposes a model
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with shared continuous input, which still allows for useful
verification results. By completing multiple reachability cal-
culations, each under different assumptions about the pilot’s
input, we can examine guarantees of safety under shared
control by broadly capturing pilot intent.

Our motivation arises from the 1994 Nagoya Airbus A300
incident [25]. During a manual approach to landing, an
automatic go-around maneuver was accidentally triggered.
While a landing maneuver requires slow descent, a go-around
maneuver requires the aircraft to gain speed and ascend
rapidly. Unaware that they had initiated a go-around maneu-
ver, the flight crew applied a pitch-down command to make
the aircraft descend, while the automation applied a pitch-up
command to make the aircraft ascend. The flight crew’s input
commands overrode the automation’s input commands to
the elevators, but not to the trimmable horizontal stabilizers
(THS). This resulted in elevators positioned to drive the
aircraft into a nose-down orientation for descent, and the
THS positioned to drive the aircraft into a nose-up orientation
for ascent. The aircraft was physically unable to follow the
descending glideslope, so the flight crew decided to abandon
the landing. They returned to manual mode, and attempted
a manual go-around maneuver, sending a pitch-up command
to the elevators. This command, combined with the THS ori-
ented to achieve a full nose-up position, caused the aircraft to
climb too quickly and to stall. An unanticipated combination
of mode-logic and aircraft dynamics under shared control led
to a scenario in which the pilots inadvertently “fought” the
aircraft automation.

We aim to identify such scenarios before implementa-
tion and operation of shared control systems. The main
contributions of this paper are: 1) an example of human-
automation interaction under shared control, 2) a novel
application of reachability tools for verification under shared
control, and 3) an extension of abstraction techniques for a
human-automation system under shared control, as opposed
to supervisory control. The paper is organized as follows:
In Section II, we first introduce the aircraft model, a hybrid
system with both longitudinal continuous dynamics as well
as realistic mode-logic. Section III describes the use of
reachability tools to compute three different levels of safety.
Section IV presents the results of an abstraction based on the
techniques introduced in [24], but extended to accommodate
these new levels of safety. We discuss our results in the
context of our previous work, and lastly, Section V provides
conclusions and directions for future work.

II. MODEL FORMULATION

We model the longitudinal dynamics of the aircraft as
a switched system H = (X, Q, R, Σ, f, δ) with continuous
state x ∈ X , discrete modes Q, continuous reference inputs
r ∈ R, discrete inputs σ ∈ Σ, continuous dynamics fq : X×
R → X indexed by mode q ∈ Q, and transition function δ :
X×Q×R×Σ → X×Q. Figure 1 depicts modes Q ={TRIM
ADJ, MAN, GA, ALT, GA/PO, MAN/OOT, PERT ACQ },
discrete inputs Σ = {σMAN, σP/O, σTRIM, σGO}, the tran-
sition function δ, and the initial mode Q0 = {MAN}. The
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ẋ = fMAN(x, r)

γT = γP = 0

GA
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Fig. 1. Hybrid dynamical system model of manual landing scenario.

continuous dynamics ẋ = fq(x, r) are described below. In all
modes, the aircraft automation controls low-level dynamics
to track a desired reference trajectory. However, in some
modes, the reference values are chosen by the pilot, while
in other modes, the reference values are chosen by the
automation. The mode-logic is based on publicly available
data for the A-300, a mid-size civil jet aircraft [25].

In a standard manual landing, the pilot selects MAN
mode, and guides the aircraft along a desired descending
flight path. To abort the landing, the pilot selects GA mode
(σGO), which causes the aircraft to automatically climb at
a constant rate. Normally, after reaching a desired altitude
hALT, the aircraft automatically transitions to level flight.
From GA mode, the go-around can be aborted by re-selecting
MAN mode (σMAN). However, if the pilots attempt to
physically override the automation (σP/O) and then re-select
MAN mode (σMAN), the aircraft enters a different mode
sequence (GA/PO, MAN/OOT). These modes are governed
by significantly different control laws than are GA, MAN.

The modes in H differ in how the reference inputs rP

and rT are achieved, and in the constraints on the reference
inputs, as shown in Table I. Modes in Figure 1 fall into two
categories: fully automated (GA, ALT, PERT ACQ, TRIM
ADJ) and shared control (MAN, MAN/OOT, GA/PO). In
fully automated modes, the automation selects the reference
inputs. In shared control modes, the user selects the reference
input rP , and the automation selects the reference input rT

as applicable.

A. Aircraft Equations of Motion

The longitudinal dynamics of the aircraft arise from a
standard linearization of rigid-body dynamics about the
aircraft body frame under quasi-steady flow [26] with small
perturbations. Using the short period approximation, the state
xP = [α, θ̇, γP ] consists of angle of attack α, pitch rate
θ̇, and flight path angle γP . The equations of motion are
obtained by linearizing around the trim condition, xT =
[0, 0, γT ] with aircraft trim speed uT = 243.5 ft/s and
trim flight path angle γT . The total flight path angle is
γ = γP +γT , with γP a perturbation from the trim flight path
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Mode Input constraints Control authority Reach set Function
MAN rP ∈ [−13.3◦, 13.3◦] Shared control Fig. 5 Manual mode for descent
GA rP = 6.65◦ Fully automated Fig. 2 Go-around maneuver
ALT rP = 0◦ Fully automated Fig. 3 Altitude hold

GA/PO rP = −13.3◦, rT = 10.0◦ Shared control Fig. 6 Go-around with pilot override
MAN/OOT rP ∈ [−13.3◦, 13.3◦] Shared control Fig. 5 Manual out-of-trim mode
TRIM ADJ rT = 0◦, rP = −γT Fully automated Fig. 4 Trim adjust (trim back maneuver)
PERT ACQ rT = 0◦, rP = − 1

2βγT Fully automated Fig. 4 Perturbation acquire (trim back maneuver)
TABLE I

AIRCRAFT LANDING MODES, REFERENCE INPUT BOUNDS, CONTROL AUTHORITY, AND CORRESPONDING REACHABLE SET.

angle γT . The reference input r = [rP , rT ] ∈ R
2 consists of

the reference flight path angle for γP and γT , respectively.
We extend the state-space to x = [xP , γT ] ∈ R

4. The input
δe due to elevator deflection affects the dynamics of xP ,
while the THS affects the dynamics of γT . We describe the
synthesis of these controllers in terms of the reference flight
path angles rP , rT below.

The open-loop dynamics are given by ẋ = Aol(γT )x +
Bolδe, with

Aol(γT ) =





−0.6277 1 −0.1322 sin(γT )
−1.9552 −1.0524 0.0344 sin(γT )

0.6277 0 0.1322 sin(γT )





Bol =
[

−0.0418 −1.3391 0.0418
]T

(1)
with numerical values for stability derivatives taken from
data for the DC-8, a mid-size civil jet aircraft, on approach
to landing [26] (App. A, Table A-5).

In most modes, the trim dynamics are γ̇T = 0. However,
under unusual circumstances that require re-trimming (de-
scribed in Section II-B), the THS effectively moves the trim
conditions gradually from one set-point to another. Different
controllers are used in each mode.

B. Aircraft Mode-Logic

In Altitude (ALT) and Go-Around (GA), γ̇T = 0 and rT

and rP are constants, as described in Table I. In Manual
(MAN) mode, γ̇T = 0, and the pilot chooses the reference
input rP ∈ [−13.3◦, 13.3◦]. In these modes, a static full-state
feedback controller for tracking

δe(x, r) = −K(γT )xP + NrP (2)

is chosen with K(γT ) ∈ R
1×3 such that the closed-loop

systems fGA(x, r) = fMAN(x, r) = fALT(x, r),

fALT(x, r) =

[

AclxP + BclrP

0

]

(3)

with Acl = Aol(γT ) − BolK(γT ),

Acl =





−0.6486 0.9376 −0.0963
−2.6226 −3.0477 −3.0803

0.6486 0.0624 0.0963





Bcl = −2.3Bol

(4)

have eigenvalues at −1.2,−1.2± 0.12j.
The Go-Around/Pitch Override (GA/PO) mode, in which

γ̇T 6= 0, occurs when the pilot attempts to manually override
the pitch during a GA maneuver. The pilot has control of
the elevator and therefore rP , while the automation retains
control of the THS and therefore rT . We assume that rP < 0
and rT > 0 since the pilot is attempting to land the aircraft,
and the autopilot is attempting to ascend. With the control
law (2) implemented, the dynamics

fGA/PO(x, r) =

[

AclxP + Bcl(rP − γT )
−βsgn(γT − (rT − γP ))

]

(5)

in xP and γT are coupled, and reflect the fact that the pilot
and the autopilot are “fighting” such that γ → rP and γ →
rT , respectively. In (5), β = 0.5◦/sec, and sgn represents
the signum function, with sgn(0) = 0.

In Manual Out of Trim (MAN/OOT), γ̇T = 0 but γT 6= 0.
This mode occurs when the pilot initiates manual operation
from GA/PO. With the controller as in (2), the dynamics are

fMAN/OOT(x, r) = fMAN(x, r) (6)

as in (3). However, note that the bounds on rP are not
adjusted to reflect the non-zero γT (Table I). It is therefore
possible for the pilot to chose rP such that γ becomes unsafe,
as appears to have occurred in the description of the Nagoya
1994 accident.

Perturbation Acquire (PERT ACQ) mode, in which γ̇T = 0
and rP = −γT , is the first part of the trim-back maneuver,
which drives γ to 0. With control as in (2), the dynamics are

fPERTACQ(x, r) =

[

AclxP + Bcl(−γT )
0

]

(7)

In TRIM ADJ mode, the second part of the trim back
maneuver, we have γ̇T 6= 0, and rT = 0, rP = − 1

2βγT .
With control as in (2), the dynamics are

fTRIMADJ(x, r) =

[

AclxP + Bcl(−
1
2βγT )

−βsgn(γT )

]

(8)

with β/2 chosen to regulate the transient response.

III. SAFETY UNDER SHARED CONTROL

An algorithm has been recently developed to create a
discrete event system (DES) abstraction of a hybrid sys-
tem with discrete user-initiated inputs [24]. The algorithm
involves three steps: 1) separation of the hybrid system into
subsystems which contain no human-initiated discrete inputs,
2) calculation of the reachable set for each subsystem, and
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3) abstraction to a DES based on the reachability result. The
reachability result is used to partition the state-space into
intersections of “safe” or “unsafe” regions in each subsystem.
Since we cannot predict when or even if the pilot will initiate
a discrete event, we complete reachability analysis only over
those portions of the system which are fully automated. The
intersections of reachable sets reveal the effect of discrete
pilot inputs (e.g., transitioning the system from a safe region
in one subsystem to an unsafe region in the next subsystem)
without making unrealistic assumptions about the pilot (e.g.,
by treating pilot-initiated events as either standard controlled
inputs or disturbance inputs).

We use the same algorithm here, with modifications that
incorporate the effect of shared control on the reachability
analysis on each subsystem (described in Sections III-A
and III-B). Our system (Figure 1) contains both discrete
pilot inputs and continuous pilot inputs (in modes MAN,
GA/PO, MAN/OOT). We therefore separate the system into
six subsystems which contain no pilot-initiated events (since
there are 6 modes which occur after a discrete pilot-initiated
input), containing the modes {GA}, {GA/PO}, {MAN-
OOT}, {PERT ACQ, TRIM ADJ, MAN}, {MAN}, {GA,
ALT}. Hence all transitions within the six subsystems are
state-based transitions, and each subsystem is amenable to
standard reachability analysis.

Computing the reachable set involves representing all the
states which have a path to a target set. We draw on level
set methods [12] here because of their subgrid accuracy and
success in previous aircraft applications [23], [27], however
other techniques can be used [16], [17], [15], [13], [14]. For
a continuous system, the reachable set W(t) is computed
in backwards time: starting with the desired target, which
is encoded implicitly as a level set function, the boundary
of the target set is propagated backwards in time according
to the system dynamics ẋ = f(x, r). Define a continuous
function J0 : X → R which encodes the target

W0 = {x ∈ X | J0(x) ≥ 0}. (9)

Finding the backwards reachable set W(t) requires solving
the terminal value time-dependent modified Hamilton-Jacobi
(HJ) partial differential equation (PDE) [11]

∂J(x,t)
∂t + min

[

0, H
(

x, ∂J(x,t)
∂x

)]

= 0 for t < 0

J(x, 0) = J0(x) for t = 0
(10)

with

H

(

x,
∂J(x, t)

∂x

)

= max
r∈R

∂J(x, t)

∂x

T

f(x, r). (11)

As shown in [11], we obtain an implicit representation of the
reachable set W(t) = {x ∈ X |J(x, t) ≥ 0}. The algorithm
for hybrid systems is described in [11].

The initial cost function is determined by state constraints
(due to the flight envelope) and control constraints (due
to feedback under saturation). The aerodynamic envelope
is defined by state bounds such that xmin ≤ x ≤ xmax,
where xmin = [−11.5◦,−15◦,−13.3◦,−13.3◦] and xmax =

Fig. 2. Safe set WGA
safe

in xP =

[α, θ̇, γ] of fully automated mode
GA; note γ̇T = 0. States inside
the shaded region are deemed
“safe”.

Fig. 3. Safe set WALT
safe

in xP =

[α, θ̇, γ] of fully automated mode
ALT; note γ̇T = 0. States inside
the shaded region are deemed
“safe”.

−xmin. Additionally, since the elevators can deflect a max-
imum of umax = 50◦, the feedback control (2) must lie
within this range for any reference flight path angle rP .
Bounds on the reference inputs r = [rP , rT ] for each mode
are indicated in Table I. The target consists of states outside
of these bounds, as well as states which result in a saturated
control input. For each mode q ∈ Q we define the initial
cost function:

J0(q, x) = minx{J
state
0 (q, x), J sat

0 (q, x)}, with
J state

0 (q, x) = minx {x − xmin, xmax − x}
J sat

0 (q, x) = minx

{

umax − maxr∈R(q) δe(x, r),
minr∈R(q) δe(x, r) − umax

}

(12)

A. Fully automated modes

For modes which are fully automated in their continuous
control input (GA, ALT, PERT ACQ, TRIM ADJ), we
compute the reachable set using the Hamiltonian (10). The
result of the reachability computation in each mode is the
set of states which are guaranteed to remain within their
flight envelope and not saturate the elevators. Figures 2 and 3
show the reachable sets for modes GA and ALT. (We assume
that all continuous states inside the reachable set in GA will
be driven into the reachable set in ALT.) Figure 4 shows
the reachable sets for the modes PERT ACQ and TRIM
ADJ in subsystem {PERT ACQ, TRIM ADJ, MAN}. Since
MAN is a shared control mode, we address it in a separate
computation in Section III-B. The computed sets in Figure 4
are 4D, so we plot a series of 3D sets to provide 3D snapshots
of the 4D object at specific values of γT .

B. Shared control modes

For modes that are not fully automated (MAN, GA/PO,
MAN-OOT), the pilot has control over the continuous input.
Our strategy to address verification under shared continuous
control is to use multiple reachability calculations, each with
different assumptions about pilot intent. We have chosen
three sets of assumptions here, although in general, this
number could be chosen arbitrarily. We choose increasingly
looser assumptions about the pilot’s behavior to create mul-
tiple levels of safety: safe, marginally safe, and recoverably
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Fig. 4. Safe sets WTRIMADJ
safe

, WPERTACQ
safe

in x = [α, θ̇, γ, γT ] of fully
automated modes TRIM ADJ, PERT ACQ. States inside the shaded region
are deemed “safe”. Since γ̇T 6= 0, we compute the reachable set in 4D,
and plot 3D snapshots for various values of γT as labeled above.

safe. To find regions that are safe, marginally safe, and re-
coverably safe, respectively, we 1) treat the pilot’s reference
input as a disturbance input, 2) assume the pilot provides no
reference input (rP = 0), and 3) treat the pilot’s reference
input as a controlled input. Note that we do not enforce
the computed invariance-preserving control law along the
boundary of the reachable set in shared control modes.

The Hamiltonians for these calculations, respectively, are

H
(

x, ∂J(x,t)
∂x

)

= minr∈R̂
∂J(x,t)

∂x

T
f(x, r)

H
(

x, ∂J(x,t)
∂x

)

= ∂J(x,t)
∂x

T
f(x, 0)

H
(

x, ∂J(x,t)
∂x

)

= maxr∈R
∂J(x,t)

∂x

T
f(x, r)

(13)

with R̂ ⊂ R. The resulting reachable sets Wsafe, Wmarg,
Wrecov are interpreted as providing corresponding levels of
safety: 1) safe, 2) marginally safe, 3) recoverably safe. Note
that regions of higher safety levels are always fully contained
within regions of lower safety levels.

Wsafe ⊆ Wmarg ⊆ Wrecov (14)

The reachable set Wsafe is computed under the assumption
that the pilot is actively driving the aircraft out of its flight
envelope. It represents the worst-case scenario, and therefore
provides the most conservative result. Those states in Wsafe

are “safe” because for those states the aircraft will remain
in its flight envelope regardless of the pilot’s continuous
input. We assume that the bounds on the reference input
r are 25% of the values given in Table I, a reasonable
estimate of a pilot’s actions under standard operation. Larger
bounds will produce more conservative results, by allowing
the disturbance input (e.g., the pilot) more control authority.

The reachable set Wmarg is computed under the assump-
tion that the pilot has no active continuous input. Those states
in Wmarg are “marginally safe” because for those states the

Fig. 5. The green, yellow and red sets represent, respectively, the safe set
W

MAN/OOT

safe
, the marginally safe set WMAN/OOT

marg and the recoverably
set WMAN

recov of the shared control mode MAN/OOT. The respective sets
of MAN, WMAN

safe
, WMAN

marg , WMAN
recov , are shown in the 3D snapshots at

γT = 0.

aircraft will remain in its flight envelope assuming that the
pilot does not interfere with the aircraft automation.

The reachable set Wrecov is computed under the assump-
tion that the pilot is acting as precisely as any automaton
to keep the aircraft within its flight envelope. It represents
the best-case scenario, and therefore provides the least con-
servative result. Those states in Wrecov are “recoverably
safe” because for those states the aircraft can remain in its
flight envelope as long as the pilot applies the continuous
input specifically computed through the above reachability
calculation.

We complete this three-part calculation for subsystems
{MAN} and {MAN/OOT}. Figure 5 shows Wsafe, Wmarg,
and Wrecov, respectively, for MAN/OOT. The result of the
three calculations in MAN are equivalent to the snapshot in
Figure 5 at γT = 0. Notice that for some values of γT in
Figure 5, there are no combinations of xP which are safe or
marginally safe.

While GA/PO is a shared control mode, we assume that
in the worst case, rP = −13.3◦ and rT = 10.0◦. With
these assumptions, the reachability calculation proceeds as
in Section III-A. Figure 6 shows Wsafe for GA/PO.

IV. REACHABILITY-BASED ABSTRACTION

As described in [23], [24], the result of the reachability
calculations in semi-automated systems can be abstracted to
form a discrete event system. This abstraction is particularly
useful because it is a simple way of encoding behaviors
possible in a semi-automated system under shared control. In
addition, information in the abstraction can be used to inform
the design of user-interfaces [19], so that the user can be fully
informed about the effect of user-initiated events on system
safety. We use the algorithm as described in [24], applied
to the reachability calculations performed in Section III:
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Fig. 6. Safe set WGA/PO

safe
of shared control GA/PO. Although functionally

a shared control mode, we assume in the worst-case scenario that rP =
−13.3◦, rT = 10◦, and hence pilot/autopilot interaction is predictable (and
treated as a fully automated mode).

The state-space is partitioned according to the reachability
result, and each cell of the partition is represented by a
single discrete mode. The resulting DES is assured to be
deterministic through further partitioning the state-space in
modes from which the user can initiate a discrete event.
Details of the abstraction (and proof of its determinism) are
in [24].

However, the reconstruction of a DES occurs in a slightly
different manner since we have multiple reachable sets to
account for in modes under shared continuous control. In
the fully automated modes of Figure 1, we use the stan-
dard abstraction of “safe” and “unsafe” sets into separate
modes. For shared control modes, the new levels of safety
defined in the previous section, and their corresponding sets
(Wsafe,Wmarg,Wrecov), are used in creating the abstraction.
In order for the DES to be deterministic, additional modes
must be created when it is possible to transition from a fully
automated mode to a shared control mode by a pilot initiated
discrete event. For example, the mode corresponding to the
“safe” set of GA, WGA

safe, must be further subdivided into
modes representative of the intersection between WGA

safe and
the three levels of safety of MAN (WMAN

safe ,WMAN
marg ,WMAN

recov ),
since it is possible to return to MAN by a pilot-initiated input
σMAN at anytime during the GA maneuver.

In addition, we take advantage of the relationship in (14)
to reduce the complexity of state-based transitions within
a given mode (such as MAN) – e.g., it is only possible
to transition to neighboring levels of safety. One advantage
of this relationship is that a user interacting with such
abstractions is given warning, in effect, that their actions will
lead to unsafety. For example, if the aircraft transitions from
a safe region to a marginally safe region, the recoverably safe
region is essentially a buffer to allow the user to “recover” to
a higher level of safety before the aircraft enters the unsafe
region. Once the complete DES has been created, modes with

empty sets can be removed, as the system will never enter
them. Finally, finite state machine reduction is used, and the
result is a deterministic, reduced DES, shown in Figure 7.

Our aircraft landing system generates behavior quali-
tatively similar to descriptions of the Nagoya 1994 ac-
cident. We focus in particular on the transition from
GA/POσMAN→ MAN/OOT. The steady state value x∗ =

[0◦, 0◦,−3.3◦, 10◦] lies within the safe set W
GA/PO
safe in

GA/PO mode, but only within the marginally safe set
W

MAN/OOT
marg in MAN/OOT mode. When σMAN is initiated,

the system moves from being “safe” to “marginally safe”.
Once in MAN/OOT, γT = 10◦ and assuming the flight
crew maintains rP = −13.3◦, the aircraft will remain in
the marginally safe region W

MAN/OOT
marg . Figure 5 shows that

the safe set is empty at this value of γT , hence the highest
level of safety that is possible at this stage is marginal safety,
which is preserved so long as the pilots are effectively hands-
off of the elevator controls with rP = 0◦.

However, once the flight crew decides to abandon the
landing and attempt a manual go-around, the pilots choose
rP to make the aircraft climb in altitude. We assume rP =
6.65◦ as in the reachability calculation of Section III. With
this value of rP , the aircraft will first enter the recoverably
safe set WMAN/OOT

recov , then eventually will be driven out of
W

MAN/OOT
recov into a region which is unsafe, and corresponds

to a stall condition. Although the flight crew was aware that
the aircraft was in an out of trim configuration (i.e. that it was
in MAN/OOT mode), they were not aware of the limitations
that this imposed on their actions, and were therefore unable
to reliably ascertain the safety of their maneuver.

V. CONCLUSION

We extend techniques for a reachability-based abstraction
to a hybrid systems under shared control. We model pilot-
autopilot interaction during an aircraft landing as a hybrid
system with longitudinal aircraft dynamics. Our model is
capable of mimicking a situation in which the pilot “fights”
the autopilot. For modes under shared control, three sets
corresponding to three levels of safety are computed: 1) safe,
2) marginally safe, and 3) recoverably safe. Using level set
techniques, these sets are computed by choosing different
Hamiltonians to reflect different roles for the pilot input. We
use the result of the reachability computations to develop a
DES abstraction by partitioning the state-space. Our initial
results are consistent with behavior that was implicated in
the Nagoya 1994 Airbus A-300 accident.

We aim to develop a general theory for techniques to iden-
tify problems in human-automation interaction early in the
design process. In future work, we plan to extend the method
presented for the aircraft landing system to generic hybrid
systems with all possible combinations of continuous and
discrete inputs, controlled by the user or by the automation.

REFERENCES

[1] C. Billings, Aviation Automation: The Search for a Human-Centered
Approach. Hillsdale, NJ: Erlbaum, 1997.

2283



Fig. 7. User interface (reduced DES). For clarity, modes associated with fully automated “unsafe” sets, and modes with empty sets, are omitted. In the
diagram the following abbreviations are used: Safe (S), Marginally Safe (MS), Recoverably Safe (RS), Unsafe (US). Unlabeled transitions are state-based
transitions which correspond to crossing cell boundaries in a reachability-based partition of the state-space, described in [24].

[2] S. Vakil, A. Midkiff, T. Vaneck, and R. Hansman, “Mode awareness
in advanced autoflight systems,” in Proc. IFAC Symp. on Analysis,
Design, and Evaluation of Man-Machine Sys., Cambridge, MA, 1995.

[3] L. Sherry and R. Feary, “Task design and verification testing for
certification of avionics equipment,” in Proc. of the AIAA/IEEE Digital
Avionics Systems Conf., Sept. 2004, pp. 10.A.3–10.A.10.

[4] N. Sarter and D. Woods, “How in the world did we get into that mode?
Mode error and awareness in supervisory control,” Human Factors,
vol. 37, no. 1, pp. 5–19, 1995.

[5] A. Suzuki, T. Ushio, and M. Adachi, “Detection of automation
surprises in discrete event systems operated by multiple users,” in
SICE-ICASE Int’l Joint Conf, Korea, Oct. 2006, pp. 1115–1119.

[6] S. Umeno and N. Lynch, “Safety verification of an aircraft landing
protocol: A refinement approach,” in Hybrid Systems: Computation
and Control, LNCS 4416, A. Bemporad, A. Bicci, and G. Buttazzo,
Eds. Springer Verlag, April 2007, pp. 557–572.

[7] J. Crow, D. Javaux, and J. Rushby, “Models and mechanized methods
that integrate human factors into automation design,” in Int. Confer-
ence on HCI in Aeronautics, Toulouse, France, Sept. 2000.

[8] A. Joshi, S. P. Miller, and M. P. Heimdahl, “Mode confusion analysis
of a flight guidance system using formal methods,” in IEEE Digital
Avionics Systems Conference (DASC 2003), Oct. 2003.

[9] R. Boyatt and J. Sinclair, “A lightweight formal methods perspective
on investigating aspects of interactive systems,” in Proc. Int’l Work-
shop on Formal Methods for Interactive Systems. Elsevier, Sep. 2007.

[10] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proc. of the IEEE, vol. 88, no. 7,
pp. 949–970, 2000.

[11] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proc. of the IEEE,
vol. 91, no. 7, pp. 986–1001, 2003.

[12] I. Mitchell, A Toolbox of Level Set Methods, Department of
Computer Science, University of British Columbia, June 2004,
www.cs.ubc.ca/∼mitchell/ToolboxLS.

[13] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, available
from http://www.cds.caltech.edu/sostools, 2004.

[14] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech.” in Hybrid Systems: Computation and Control, LNCS 34143,
M. Morari and L. Thiele, Eds. Springer Verlag, 2005, pp. 258–273.

[15] M. Kvasnica, P. Grieder, and M. Baotic, “Multi-Parametric Toolbox
(MPT),” 2004. [Online]. Available: http://control.ee.ethz.ch/∼mpt

[16] A. Chutinan and B. Krogh, “Computational techniques for hybrid
system verification,” IEEE Trans. on Automatic Control, vol. 48, no. 4,
pp. 64–75, Jan. 2003.

[17] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlin-
ear systems using conservative approximation,” in Hybrid Systems:
Computation and Control, LNCS 2623, O. Maler and A. Pneuli, Eds.
Springer Verlag, March 2003, pp. 20–35.

[18] J. Bowen and S. Reeves, “Formal models of informal GUI designs,”
in Int’l Conf. on Software Formal Methods for Interactive Systems,
Electronic Notes in Theor. Computer Science. July 2007, pp. 57–72.

[19] A. Degani and M. Heymann, “Formal verification of human automa-
tion interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[20] A. Cerone, P. Lindsay, and S. Connelly, “Formal analysis of human-
computer interaction using model-checking,” in Proc. of the IEEE Int’l
Conf. on Software En. and Formal Methods. Sept. 2005, pp. 352–361.

[21] W. Hussak and S. Yang, “Formal development of remote interfaces for
large scale real-time systems,” in IEEE Int’l Conference on Systems,
Man, and Cybernetics, 2004, pp. 124–129.

[22] C. Lesire and C. Tessier, “Estimation and conflict detection in human
controlled systems,” in Hybrid Systems: Computation and Control,
LNCS 3927, J. Hespanha and A. Tiwari, Eds. Springer Verlag, March
2006, pp. 407–420.

[23] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid
verification of an interface for an automatic landing,” in Proc. IEEE
Conf. on Decision and Control, Las Vegas, NV, 2002, pp. 1607–1613.

[24] M. Oishi, I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Invariance-
preserving abstractions of hybrid systems: Application to user interface
design,” IEEE Trans. on Control System Technology, 2007, p. 229-244,
Vol. 16, No. 2, March 2008.

[25] P. Ladkin and H. Sogame, “Aircraft accident investigation report 96-5,”
http://sunnyday.mit.edu/accidents/nag-contents.html, July 1996.

[26] D. McRuer, I. Ashkenas, and D. Graham, Aircraft dynamics and
automatic control. Princeton University Press, 1973.

[27] A. Bayen, I. Mitchell, M. Oishi, and C. Tomlin, “Reachability analysis
and controller synthesis for autopilot design,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 1, pp. 68–77, 2007.

2284


