
  

  

Abstract— The key function of AFM is to control the position 

of the probe according to imaging operation modes. These 

imaging modes yield multiple channels of data representing 

various probe responses to the same sample pattern. An 

algorithm based on the spatial and temporal correlation of the 

multiple channel data, corresponding to the same surface 

patterns, was developed to derive the pattern position with 

sub-pixel resolution in real time. This precise measurement of the 

pattern location serves as an input to an estimator of the drift 

velocity. An auxiliary position control was applied to compensate 

the drift between the probe tip and the sample. This pattern 

location measurement has higher noise rejection than any 

individual channel of the image, providing a reference location 

for drift compensation. Experimental data with sub nanometer 

drift control and nanoasperity measurements based on the 

auxiliary positioning are presented. 

I. INTRODUCTION 

N the last two decades atomic force microscope (AFM)  has 

been developed well beyond the topographic imaging tool. It 

has become an important instrument for manipulation and 

material property characterizations at the nanometer scale. The 

precision of positioning has always been the key driver for 

AFM technology and scanning probe microscopy in general. In 

an imaging tool the uncontrolled hardware drift, such as piezo 

creep and thermal drift, usually causes image distortion. Many 

solutions based on offline correction [1], hardware 

optimization [2-4] and image based real-time compensation 

[5] were proposed.  

The focus of this paper is on image-based adaptive control. 

Detecting an image pattern and precisely locating its 

coordinates enables the use an auxiliary control to compensate 

thermal drift.  The advantage of the image-based compensation 

is mainly the positioning precision, which is scalable to image 

resolution. Close-loop scanners eliminates piezo creep but is 

subjected to the limitation of the sensor noise, usually in the 

order of a nanometer. On the other hand, image of sub 

angstrom lateral resolution is routinely achieved with an open 

loop scanner. If such atomic position or pattern positions are 

used as the spatial positioning references, the positioning 

precision is limited only by the tip resolution. Clayton and 

Devasia used scanning tunneling microscope image of HOPG 
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to correct the scanner dynamics induced distortion [5].  By 

iterating the scanning control to reduce the positioning error 

they were able to achieve a few hundred Hertz scanning with 

much reduced distortion. The positioning error is measured by 

the difference between current image and a reference image. 

The scan size, around 1 nm, cannot be dealt with close-loop 

scanner or iterative feed forward control because both 

techniques are limited by sensor noises.  

The challenge at low speed operations is drift between the 

SPM probe and the sample. In recent years nearly all 

commercial SPMs use close-loop scanner to eliminate creep 

induced drift and nonlinearity of the positioning actuators. 

However, thermal drift exists in all the systems. A 

well-engineered SPM system has a thermal drift rate less than a 

few nm/min. Such drift is not a problem for micrometer scale 

imaging but becomes critical limitation for nanomanipulation 

and measurements at nanometer scale. The pinpointed 

manipulation and measurements often demand long time 

access to the objects, such as nanotubes and quantum dots, 

with no drift allowed.  

Several publications describe drift measurement and control 

systems. John et al [6] have introduced the drift measurement 

using cross correlation between two consecutive images and 

made corrections through piezo offset accordingly.  The 

simple correction implemented is equivalent to a slow P 

control of position, leading to a large control error, which 

amounts to a few percent of the image size.  

More recently Mokaber and Requicha [7] developed a drift 

compensation system based on Kalman filter. Although the 

theoretical estimation gives sub-nanometer precision for the 

drift compensation, the experiment exhibits more than a few 

nanometers control error. A close examination of the data 

reveals that the errors are results of cross-correlation drift 

measurements. In the pure prediction control, where the 

measurement is not involved, the positioning fluctuations are 

much smaller. It is obvious that a robust and precise drift 

measurement tool based on imaging patterns is needed in order 

to compensate thermal drift without causing positioning errors. 

Kalman filter provides the best results when dynamics of the 

system is accurate and noise statistical parameters are fixed 

and known a priori (e.g. astronomy and navigation). 

Unfortunately it is not always the case for AFM where both 

dynamics and noise statistics may change in time and depend 

on sample, tip, and environment. In this situation, with 

inaccurate model and/or underestimated statistical parameters 

of the noise, Kalman filter may diverge [8], i.e. its estimation 
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has errors that are much greater than predicted by theory.  

The purpose of this paper is to provide accurate and reliable 

tools to precisely locate the imaging pattern and implement 

real time control according to specific application 

requirements. Since AFM generates multiple image channels 

simultaneously, the spatial and temporal correlation of patterns 

in these channels can substantially enhance the robustness of 

the pattern detection and its position measurement. 

Correlations of the multi-channel data also render immunity to 

noises and perturbations occurred during imaging process. 

Furthermore the raster scanning of probe across the same 

pattern back and forth embeds asymmetric feedback control 

signatures for widely used Tapping
TM

 Mode imaging. These 

signatures provide a powerful tool to distinguish a true pattern 

from a set of noisy data. Reliable pattern positioning data 

enable a precise adaptive control, as demonstrated in the drift 

compensation, which has achieved sub-nanometer positioning 

accuracy over long period of time.  

In this paper we also outline a framework for pattern 

recognition [9,10] and pattern detection taking advantage of 

correlation between multivariable (multi-channel) AFM 

images. This framework is demonstrated in practical 

applications of drift compensation and nanoasperity detection. 

II. PATTEN RECOGNITION IN MULTI-CHANNEL AFM IMAGES 

Apart from the primary feedback that determines tip-surface 

interaction, the cantilever responses generate 

multi-dimensional data, including height, amplitude, phase and 

harmonics. The forward scan (trace) and reverse scan (retrace) 

of the same location also provide independent information of 

the same pattern location. Spatial correlation of these 

combined data provides much better noise rejection capability, 

allowing surface pattern identification far beyond the 

bandwidth allowed by the feedback loop and system noise 

floor. 

There are two approaches to pattern recognition and 

location on multi-channel images: template based and 

parametric based.  Template based algorithms locate regions 

on the image that matches a known reference pattern 

(template). They are applicable when well defined and slowly 

changing patterns are available on the image. NI Vision [11] 

provides reliable software implementation with important 

algorithmic improvements. Multi-channel AFM images can 

improve pattern location accuracy by matching all the channels 

of images with their own templates, while these templates are 

spatially correlated. 

Parametric based algorithms can be applied when interested 

patterns are changing from image to image and cannot be 

described by image template. Examples are polymeric phases 

undergoing transition, or slowly changing biologic samples 

under stimulation. These patterns, however, can be identified 

by a set of measurable variables such as geometrical and 

regression properties that are restricted to a certain 

parameterized region in the space of measured variables.  

A parametric algorithm based on geometrical patterns and 

spatial correlation of the combined images was developed to 

locate the surface pattern with sub-pixel resolution in real time. 

The parametric patterns in the multi-channel images are 

identified by a set of thresholds τi, (i=1,..,nτ ), one for each 

channel (with the trace and retrace data considered as different 

channels). These thresholds divide the pixels on every related 

image channel into two regions (with pixel values below and 

above the thresholds) and define the particles on the images, 

i.e. connected regions of pixels with values above the 

thresholds. The coordinates of the pixel with predefined 

location (e.g. location of the peak value inside the particle or a 

well defined corner of the particle) are called a location of the 

particle. Particles appear in different imaging channels are 

called related particles if they satisfy certain conditions 

(including closeness of their locations). 

The particle analysis is implemented firstly for nanoasperity  

(NA) detections. Nanoasperities are small protrusions with the 

height ranging from sub-nanometer to a few nanometers and 

lateral dimension of 10 to 20 nm. The quality control of data 

storage industry demands detection of such features in a raster 

scanning size of 20 µm, where the feature height is in the same 

magnitude of the noise floor. Figure 1 shows an example of the 

AFM data. The streak shaped short lines in the height images 

are due to either occurrence of the nanoasperity event or 

system noise, including mechanical perturbations. Only 6 of 

the events are qualified nanoasperities. On the other hand, 

none of the single image data can generate the information 

without ambiguity. Multi-channel particle analysis will help to 

qualify the true events in this case. 

 
Figure 1. Tapping modeTM image of a data storage media with a-d represent 

height and amplitude images. 

  

Nanoasperity detection problem with its specific constraints 

on the particle’s parameters utilizes the parametric based 

algorithms. Besides multi-channel geometrical measurements 

this problem uses regression characteristics of trace and retrace 

images.  

III. ADAPTIVE CONTROL OF DRIFT COMPENSATION 

Pattern recognition provides a measurement of the position 

of the pattern. A controller is needed to properly compensate 

the position changes.  Drift compensation relies on drift 

measurements based on pattern recognition. In practice, 
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depending on application, one can use either specialized 

pattern location methods or well developed general technique 

based on locating regions on the image that matches a known 

reference template. Without loss of generality we can assume 

that reference position of the pattern is (x1=0, x2=0), where 

(x1(t), x2(t)) is the drifting location of the pattern (horizontal 

and vertical).With this notation, a simple dynamics of velocity 

controlled drift compensation system is: 

( ) ( ) ( ) 2,1, =+= itvtutx d

iii
&                  (1) 

 where ( )tui
 is the controlled velocity, and d

iv  is velocity of 

the drift. In this model we assume that the drift velocity is slow 

varying in most of the time and can be considered as a constant 

parameter of simple dynamic model (1). Abrupt change of 

condition rarely occurs due to large thermal inertia of the AFM 

systems. The position of the pattern can be measured directly, 

e.g. by image pattern recognition:  

( ) ( )( ) ( ) ( )( ) error,ge)PatRec(Imaˆ,ˆ
2121 +== txtxtxtx  

where ^ denote estimated (or measured) number in contrast to 

actual physical value. PatRec(Image) is a notation of any 

image location measurement based on pattern recognition 

outlined in Section II. 

A proposed adaptive control algorithm is based on simple 

adaptation of the Friedland’s parameter estimator [12]. 

According to separation principle controller design and 

state/parameter estimator can be designed separately. 

Controller design assumes that all states and parameters are 

known and controller implementation uses the outputs from the 

estimator as values of the unknown states and parameters.  

The adaptive approach was chosen as alternative to 

systematic methods such as LQG (Kalman Filter coupled with 

Linear Quadratic Regulator) or H∝ because a justifiable 

design model for drift in AFM cannot be developed and the 

best a priori knowledge of the drift cannot provide more than 

simple 1st order model (1).   With significant deviations from 

the model and varying environmental conditions Kalman filter 

may diverge and provide estimation error significantly larger 

than theoretical calculations. In such conditions the adaptive 

control described in this section performs better and exhibits 

higher stability. 

A. Controller Design 

In the proposed controller the compensation velocity is 

calculated by a simple model inversion formula  

2,1,ˆ =−−= ixvu ii

d

ii λ                   (2) 

The first term on the right side of  (2) is the open-loop drift 

speed compensator and the second is the gain for position 

offset to make the control system (1) asymptotically stable 

(remind that xi=0 is the reference position). With this control 

the dynamics of (1) becomes 

2,1, =−= ixx iii λ&                    (1’) 

and is asymptotically stable. 

 

B. Drift Velocity Estimator Design 

The following estimator for the drift velocity (simple 

Friedland’s estimator [12]) is used: 
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where αi is a gain of the estimator (see below). 

Assuming that drift acceleration is significantly slower than 

controller dynamics, it is important to verify the property of the 

estimator that estimation d

iv̂ approaches the correct constant 

value d

iv . To do this let us introduce the error of estimation 

( ) ( )tvvte
d

i

d

ii

)
−=  

With unknown constant (or slow varying) d

iv , the dynamics 

of the error can be derived following  (1) and (3): 

2,1, =−= iee iii α&  

The error converges to zero with ascending time.  

C. Integration of Observer 

The equations in (1), (2) and (3) for i=1 and i=2 are 

independent and in further presentation the subscript i will be 

omitted for simplicity.  

Measurements of x(t) are taken at discrete moments. 

Assume that previous measurement was taken at t=0 and 

current measurement at t=τ, and the values of x are x(0) and 

x(τ). Applying constant control between the measurements 

(calculated by (2) with x=x(0) ) and assuming constant 

unknown drift velocity, the solution of (1) and (2) is 

( ) ( )
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τ
τ

τ
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−
+= tt

xx
xtx 0,

0
0  

Combining this x(t), equation (3) can be written as 
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D. Drift Compensation Algorithm 

Based on formulas (2), (3) and (4) the following drift 

compensation algorithm is proposed. 

 

0. Initialization: 

00;0;0 =⇒=== d
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Iterate in the loop: 

1. Measure new drift 
newx  and time t∆  between the latest 

two measurements (using PatReq(Image)) 

2. Calculate  
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αuxαb

xx
αa −−=

−
−= ;

∆t
 

3. Calculate new drift velosity estimate 

newnewnew zαxv +=
)

 

4. Calculate new control 

newnew λxvu −−= d

new

)
 

and apply it to the system. 

5. Redefine 

d

new

d

oldnewold

newoldnewold

vvuu

zzxx
))

==

==

;

;;
 

6. go to step 1. 

End of the loop 

 

The adjustable gains λλλλ and αααα are absolute values of negative 

eigenvalues of the system under control (1’), -λλλλ, and the 

dynamics of estimator’s error, -αααα. Without discretization both 

dynamics are stable. 

With discretization, however, stability of the system may be 

lost. With control u constant between the measurements, the 

position x is drifting linearly in t according to equation (1). The 

linear term of the solution of equation (1’) is 

( ) ( )[ ]tt ∆−=∆ λxx 10  

To avoid oscillation around zero (at least in the model), the 

following condition should hold: λλλλ<(∆t)
-1

, or in practice, 

[ ]8.0,05.0. ∈
∆

= k
t

k
λ  

There are no specific theoretical constrains on αααα. The 

estimator of drift velocity d

iv̂  in (3) is implemented using two 

latest measurements; and continuous model (4) for the 

estimator’s state zi is implemented between the measurements. 

In practice, to be tolerant to noise, 

[ ]10,3, ∈= kkλα  

These gains should be chosen interactively based on 

operation condition. Gain scheduling is useful to quickly 

achieve rough convergence with higher gains and then make 

the gains smaller to adapt to the noise.  

A simplified block diagram of the system is shown in Figure 

2.  Imaging hardware (AFM) outputs images with drifted 

patterns. The Image Processing (Pattern recognition) block 

implements step 1 of the algorithm, i.e. measures the drift by 

any method of pattern recognition outlined above. Drift 

velocity estimator implements steps 2 and 3, and the 

Compensator implements step 4. Control velocity can be 

commanded by DSP hardware that applies smooth change of 

offset at high update rate, up to 100 kHz for the existing AFM 

controller. If this hardware option is not available or 

justifiable, AFM image offsets can also be applied 

automatically between the scan lines or frames by adding u∆t 

to the current offset, where ∆t is a predicted time between the 

previous and the next measurements. This time can be 

accurately estimated based on AFM sample rate. Scheduler 

changes gains of Compensator and Estimator and update 

pattern when necessary. Updating pattern for drift 

compensation application may mean updating a template; 

alternatively, for parametric pattern recognition, it means 

updating parameters of the evolving pattern. 

IV. EXPERIMENTAL RESULTS 

The drift control characteristics were performed using a 

Veeco Multimode
TM

 AFM in an open lab environment. 

Temperature change was not controlled but monitored, with a 

change of 2
o
C throughout a typical cycle of 24 hours.  The 

nanoasperity experiments were using a Dimension
TM

 3100 

since the measurements involve large sample and automatic 

sample site exchange. 

A. Drift Control 

The pattern recognition algorithm discussed in the previous 

sections measures the tip position relative to the sample. An 

example is shown in figure 3.  Part of the characteristic pattern 

in figure 3a is selected as the anchor pattern, where 4 to 6 data 

channels corresponding to the pattern spatial and temporal 

relations were simultaneously acquired. The patterns are 

Fig. 2. Block diagram of the drift estimation and compensation 
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compared with templates, created through the initial image 

showing in figure 3a. Selection of a template should contain 

sharp edge in both x and y directions. The spatial and temporal 

correlations between the templates were used to determine the 

position of the pattern. The translation of the pattern is 

recorded as the measurement of the drift. As a result of the real 

time drift compensation the pattern drift is within a nanometer 

in the 12-hour period (figure 3b). 

 
Figure 3. Image of HOPG at a joint of triple atomic facets. (a). Left: The 

pattern used to monitor the drift at the control start.; (b). right: the same 

pattern after 12 hours. The distances in the images represent the position of 

the anchor point throughout the controlling period. 

 

 

Figure 4. (a). Trajectory of the tip apex relative to the sample monitored in an 

over night cycle and (b) trajectory of the drift velocity vector. 

 

The control actions to maintain the anchoring position 

reflect the drift of the system. A typical drift monitored by the 

estimator is shown in figure 4 for a 24 hours period. In figure 

4a there are two types of drift corresponding to zone I and II. 

The main difference of these two periods relates to air 

convection flow when the central air conditioning system is 

turned on and off (zone I and II). As the convection flow 

equilibrating the system enters zone II.  In zone II the drift 

trajectory is predictable in a relatively long period of time and 

the feedback can rely mainly on the value of the drift velocity 

predicted by the estimator. In this case the measurement of tip 

location can be interrupted for manipulation and 

point-and-shoot measurements. In zone I where the convection 

flow perturbs the drift behavior the observer (estimator) can 

only make short-term prediction, the position measurement 

must stay active meaning the imaging of the anchor pattern 

should proceed. The temperature change in the period is 2.3 
o
C. However the smoothness of the trajectory is unrelated to 

the temperature variation. 

 The trajectory of the drift velocity vector over the same 

period is shown in figure 4b. While the most data are 

concentrated at the center, there are traces far off the center, 

amount to tens of nm drift. The randomness of these relative 

high-speed drifts re-emphasized the need of the iterative model 

updating.   

 The detailed results of the drift control are shown in 

figure 5.  In figure 5a, curve 1 represents the controller action 

ux in equation (4); curve 2 is the drift velocity in x direction 

from the estimator 
d

xv
)

. The initial state of the controller and 

estimator are zeros due to lack of knowledge of the drift. As the 

measurements builds up the drift rate is determined more 

accurately, the controller ramps up the control until the drift is 

compensated. The actual positioning error is shown in fig. 5b. 

The horizontal curve represents a zero drift target, as the 

control reference. The controller reaches nanometer precision 

in about half an hour.  Since the observer has now a fully 

established steady drift model the control loop gain will be 

dominated by the predicted drift until the measurement 

indicated a larger error.  The model will keep updating control 

gradually according to the new measurement. The long-term 

stability is shown in figure 5c. The data reflect the actual tip 

position relative to the anchor pattern. As can be seen the 

positioning error is within 1 nm from the target over an 

extended time. Y-axis control has the same characteristics and 

noise level.  

 
Figure 5.  The drift control results. (a).  curve 1. The control speed ux; curve 2. 

The measured drift speed. (b). Position measurement as a function of time. 

(b) 

(a) 

(c) 

65

60

55

50

D
ri
ft

 i
n
 X

 A
x
is

 (
n

m
)

140120100806040200

Time (min)

 X Drift
 X Target 
 X Observer

 

40x10
-3

20

0

-20

-40

D
ri
ft

 R
a

te
 (

n
m

/m
in

)

140120100806040200

 Time (min)

 1: Control speed ux

 2: Measured drift speed

Zone II 

Zone I 

(a) (b)

2050



  

Dash-dotted line: reference position; solid line: measured position; dotted 

line: observer output. (c).long term stability with position as a function of 

time. 

It is worth to mention that the above controls are performed 

for an open loop scanner in which the drift also included piezo 

hysteresis. Since our sensing element is the tip itself, the 

correction will compensate any drift regardless its physical 

origin.  

B. Nanoasperity Detection and Measurements 

Figure 6 illustrates AFM images of a typical nanoasperity. 

Figure 6a is a 10 Hz scanning data with the pixel resolution of 

2nm/pixel. The shape of the nanoasperity and the surface 

roughness is accurately measured. In the conventional 

application a scanning of 20µm area is needed to increase 

inspection coverage. However, even at 0.5 Hz scan rate the 

bandwidth of the feedback is still insufficient to track the small 

particles within a few pixels. The data zoom shown in figure 6b 

only gives an indication of the nanoasperity event but not 

nearly the quality of the data for the geometric measurement. 

Figure 6c is the same 20 um scan but with 7 times higher speed. 

One can see the nanoasperity event is displayed in the survey 

data with further deteriorated quality. Since the nanoasperity 

event is already clearly determined, the higher speed scan 

offers the advantage to reduce the site survey from nearly an 

hour to minutes. Using the scheme of combining survey scan of 

figure 6c and detail scan of figure 6a not only the site (20X10 

µm) survey time can be reduced but the data qualify can be 

substantially improved. 

 
 

The challenge is to detect the nanoasperity without fault 

within the data with low signal to noise ratio. These 

nanoasperities are not even visible to operator examination of 

the image. The noise level in all the images is comparable to 

the pattern. None of these individual images can provide a 

well-defined parameter space to locate the patterns. However, 

multi-channel particle analysis outlined in section II gives 

positive identification of nanoasperties even when their heights 

are in the noise level. 

In the nanoasperity application the parametric pattern 

detection is critical and a multi-channel measured variables 

have to be used to minimize the missing and false hits. After 

accurately locating nanoasperity the controller simply offsets 

the tip to the point of interest automatically and performs a 

high quality measurement.  

The parametric pattern measurement from multiple channels 

simultaneously provides a robust mechanism in catching 

nanoasperities. 

V.  SUMMARY 

A pattern detection algorithms based on multi-channel data 

analysis in real time have been developed and used in control 

applications. The detection of the patterns and precisely 

locating their positions allow the measurements and 

compensation of the system drift or zoom-in scan for high 

quality data. A digital controller with a positioning precision of 

1 nm compensates the drift over long period of time in an 

uncontrolled open environment. 
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Figure 6. Nano asperity in a data 

storage media.   (a) 10Hz scan at 

1um size with 512X512 pixels; (b) 

0.5Hz scan in the survey area of 

20X10 um with 2048X1024 pixels. 

Figure shows a data zoom of an 

1um area.; (c) 7Hz scan in the 

survey area of 20X10 um with 

2048X1024 pixels.  
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