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Abstract— This paper is concerned with uncertainty based
characterizations of fundamental performance limitations
(Bode formula) and input-output properties (observability) in
feedback systems. A hidden Markov model (HMM) formulation
is introduced, based on which a belief process (conditional
pdf) is defined. The belief process expresses uncertainty in the
state conditioned on history of noisy observations. Both the
Bode formula and observability are related to the asymptotic
dynamics of the belief process. These results are described for
the case of Gaussian linear systems and for open-loop nonlinear
systems with negative Lyapunov exponents.

I. INTRODUCTION

In recent years, several studies have considered informa-
tion theoretic aspects of feedback control systems. Much of
this work is spurred by advances in networks and the need for
bridging communication with control; cf., [1]. Research has
focussed on issues pertaining to control in the presence of
communication constraints [2], stabilization in the presence
of quantization [3], generalization of Bode like performance
limitations to control over networks [4], [5], distributed
control [6] etc. In many of these studies, information and
entropy play a key role. As an example, one important result
is the so-called data rate theorem which states that the rate
of instability of an open-loop plant must be compensated by
the information transmission rate over the communication
channel in any stabilizing feedback [5].

The idea of an information theoretic framework for feed-
back systems has a rich history going back to Wiener [7]
and Witsenhausen [8]. Although research on networks has
provided a renewed impetus to study these questions [9],
[10], there are many classical system-theoretic problems that
can be viewed in such terms to both obtain new insights as
well as new results. As an example, the data rate theorem is
intimately related to the Bode formula. Using an information
theoretic framework [11] presents Bode like results for
disturbance rejection problems with linear plant and a general
class of control.

This paper builds upon our earlier work [12] where
we introduced a framework for characterizing fundamental
limitations in control with the aid of belief propagation in
an HMM setting. In this paper we utilize this framework
to obtain a Bode like result for feedback systems with
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linear Gaussian dynamics. The result provides a conduit
to examine input-output properties such as observability of
states in terms of information or uncertainty. In classical
settings, these properties are often understood in terms of
energy, captured by a suitably defined l2 norm. An initial
condition is deemed relatively more (less) observable if it
provides more (less) energy in the output, and there is a
dual notion for controllability in terms of minimal energy
control. We argue that uncertainty rather than energy is a
more convenient concept to express input-output properties
in nonlinear systems.

The Bode formula and observability are related concepts:
The Bode formula provides intrinsic and control-independent
uncertainty rates in terms of conditional entropy. The con-
ditional entropy is the entropy of the belief process where
the conditioning occurs with respect to the history of noisy
observations. Thus, the belief process by itself should also
provide an assessment of observability. The key point is that
because Bode is control independent, one can hope to address
observability of states in a control independent fashion. One
immediate advantage is that we can then generalize these
notions to open-loop unstable systems. Another advantage is
one can obtain results for nonlinear systems.

The methodology of this paper is based on an ergodic
theoretic viewpoint whereby a closed-loop dynamical system
with an i.i.d disturbance is replaced by a certain Markov op-
erator. The Markov operator is used to propagate probability
densities on the joint space (x, y), where x is the state and
y is the output. With observations due to the output y alone,
this leads to an HMM. The conditional entropy of interest
to the Bode problem is intimately related to the asymptotic
dynamics of the so-called belief process of the HMM [13].
The belief process is constructed using a recursive Bayesian
estimator and represents the conditional distribution in the
state of the HMM given the history of observations. We
sketch this construction together with the entropy estimate
for a feedback system with linear Gaussian dynamics.

For observability, we again have the same setup and
consider a belief process with noisy observations. For an
anti-stable linear system (with all eigenvalues unstable), the
observability is understood entirely in terms of asymptotic
dynamics of the belief process. For an open-loop stable
system, we characterize observability in terms of uncertainty
of the (unknown) initial condition. For each of these, we
write Lyapunov equations which are generalizations of the
Lyapunov equations arising in classical settings. The un-
certainty based considerations are subsequently extended to
define and analyze observability in nonlinear settings. The
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results are presented for open-loop nonlinear systems with
negative Lyapunov exponents. We recover the Lyapunov
equation for observability when the model is specialized to
be linear with Gaussian noise.

The remainder of the paper is organized as follows.
Section II employs belief propagation to state and prove the
Bode formula for the Linear Gaussian problem. This is also
linked to observability of open-loop states with an arbitrary
stabilizing feedback. Section III extends these considerations
now to nonlinear systems. Examples and connections to
the linear case are discussed. Finally, some conclusions are
outlined in Sec. IV.

II. LINEAR GAUSSIAN PROBLEM

A. Problem Setup

In this section, we restrict our attention to the Linear
Gaussian problem

xn+1 = Axn + Bun, (1)
yn = Cxn + dn, (2)
un = k(yn), (3)

where xn ∈ X = Rm is the state, un ∈ Y = Rp is the input,
yn ∈ Rq is the output, and dn ∈ Rq is an i.i.d Gaussian
disturbance. In the following, we discuss the Bode formula
and observability for this system. Although observability
results will be given for general MIMO settings, we will
assume the feedback system to be SISO for the Bode
formula.

B. Bode Formula

The Bode integral formula states that

1
2π

∫ π

−π

log |S(eiω)|dω =
∑

k

log(|pk|), (4)

where S(eiω) is the transfer function of the feedback loop
from the disturbance dn to scalar output yn, and pk are
unstable poles (|pk| > 1) of the open loop plant; cf. [14]. The
input, output and disturbance here are assumed to be scalar
signals. S is referred to as the sensitivity function and for an
open-loop plant P and a stabilizing feedback control C, it is
given by S = 1

1+PC . Entropy of the signals in the feedback
loop help provide another interpretation of the Bode integral
formula [15]:

Hc(y)−Hc(d) =
1
2π

∫ π

−π

log |S(eiω)|dω. (5)

Here, Hc(y) and Hc(d) denote the conditional entropy (see
[16]) of the random processes associated with the output
y and disturbance d respectively. Combining Eq. (4) with
Eq. (5), the open-loop unstable poles are seen to lead to a
positive entropy rate.

In our earlier paper [12], we proposed a framework
for obtaining Hc(y) in terms of belief propagation. As
in [12] we denote the joint space of state and output as
S

.= X × Y , and the space of pdfs on S as ∇S. Belief
process πn(x, y) ∈ ∇S is defined as the conditional pdf

of joint process sn ∈ S conditioned on the history of
observations yn−1

0 = {y0, y1, . . . , yn−1}. It represents the
belief in (xn, yn) given the history of past observations yn−1

0 .
fn and gn denote the marginal of πn with respect to X and Y
respectively. The belief propagation, πn → πn+1, is carried
out using a recursive Bayesian estimator; cf., [12].

Borrowing ideas from the HMM literature, the relative
entropy Hc(y) can be expressed in terms of asymptotic
dynamics of the belief propagation. Let µ denote the invariant
measure of the belief process then

Hc(y) =
∫
∇s

hy(π)dµ(π) (6)

where hy is the entropy function −
∫

g(y) ln g(y)dy where
g(y) is the marginal on the output space Y . This is referred
to as the integral formulation of the entropy rate, originally
due to D. Blackwell. Note that µ is an invariant measure on
the space of pdfs ∇S ; we refer the reader to [12] for details.

We assume the disturbance {dn} ∼ N(0, r) to be i.i.d. and
Gaussian and the pdf for the initial condition f0 = N(x̂0, P0)
is also Gaussian. This case is particularly interesting because
belief propagation (πn → πn+1) reduces to Kalman filtering
equations. The simplification arises because πn and fn are
all Gaussian in this case. Expressing fn = N(x̂n, Pn), the
equations for belief propagation are:

Conditioning:
{

x̂+
n = x̂n + Kn(yn − Cx̂n)

P+
n = (I −KnC)Pn

(7)

Dynamics:
{

x̂n+1 = Ax̂+
n + Bun

Pn+1 = AP+
n AT (8)

where Kn = PnCT (CPnCT + rI)−1 is the Kalman gain.
For a Gaussian random variable, entropy depends only upon
the variance and one is thus interested in asymptotic values
of {Pn}. If (A,C) is observable, Pn converges to a unique
positive semi-definite solution of the Discrete Algebraic
Riccati Equation (DARE):

P = A(P − PCT (CPCT + rI)−1CP )AT (9)

In ∇S , the invariant measure is supported on a single point
which renders the entropy calculations straightforward. We
present the Bode formula in the following Theorem:

Theorem 2.1: Consider the closed-loop system (1)-(3)
with linear dynamics. The disturbance {dn} is i.i.d with pdf
N(0, r) and initial condition x0 is also uncertain with pdf
f0 = N(x̂0, P0). Then

Hc(y) = H(d) +
∑

k

|pk|, (10)

where |pk| > 1 are the unstable eigenvalues of A.
Proof: The entropy is obtained with respect to the

asymptotic dynamics of (7)-(8), solution of DARE (9) in this
case. The proof is carried out in three steps: (1) Consider a
decomposition of Rm = Rms⊕Rmu into stable and unstable

eigenspaces and write A =
(

As 0
0 Au

)
, C = (Cs Cu). One

can then show that P =
(

0 0
0 Pu

)
where Pu � 0. (2) With
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respect to unstable dynamics, the variance of Cux (output
component due to the state) is given by the following simple
formula

CuPuCT
u = r(|Au|2 − 1). (11)

(3) Finally, the entropy for the limiting Gaussian pdf is
obtained as a simple calculation. We presents details of these
steps next:

1) Suppose λ is a simple eigenvalue of matrix A with
an eigenvector v so Av = λv. If P � 0 is a semi
positive-definite solution of the DARE (9) then

(1−|λ|2)vT P v̄ = −|λ|2vT (PCT
u (CuPCT

u +r)−1CuP )v̄
(12)

Now if |λ| < 1 then this implies vT P v̄ ≤ 0. By
positive semi-definiteness of P , we have Pv = 0. Thus
the restriction of P to stable eigenspace Rms is 0 and
on account of symmetry,

P =
(

O O
O Pu

)
, (13)

where Pu satisfies the DARE

Pu = Au(Pu − PuCT
u (CuPuCT

u + rI)−1CuPu)AT
u .

(14)
For repeated eigenvalues, a proof may be constructed
in a standard manner by constructing an appropriate
sequence.

2) The covariance matrix Pu � 0 and is a solution to the
DARE in the unstable eigenspace:

Pu = Au(Pu − PuCT
u (CuPuCT

u + rI)−1CuPu)AT
u .

(15)
Using the Woodbury matrix identity, this leads to a
Lyapunov equation

AT
u P−1

u Au = P−1
u + CT

u r−1Cu. (16)

Taking determinant | · | on both sides and simplifying,
one obtains

|Au|2rmu = |rI + CT
u CuPu|. (17)

Now, CT
u CuPu is a rank 1 matrix so

|rI + CT
u CuPu| = rmu + trace(CT

u CuPu)rmu−1.
(18)

Using (17),

(|Au|2 − 1)rmu = trace(CT
u CuPu)rmu−1

∴, (|Au|2 − 1)r = trace(CT
u CuPu) = CuPuCT

u .

(19)

3) Finally, we compute the entropy for the limiting Gaus-
sian pdf. From parts (1) and (2),

CPCT = CuPuCT
u = (|Au|2 − 1)r, (20)

and the asymptotic covariance for the conditional pdf
of the output yn is given by

σ2
y = CPCT + r = r|Au|2. (21)

As a result,

lim
n→∞

hy(πn) =
1
2

ln(2πeσ2
y)

= ln(2πer) + ln |Au|
= H(d) + ln |Au| (22)

Using the integral formula (6)

Hc(y) =
∫
∇s

hy(π)dµ(π)

=
∫
∇s

(H(d) + ln |Au|)dµ(π)

= H(d) + ln |Au| (23)

C. Observability

While the Bode formula provides a controller independent
result for intrinsic uncertainty of the output process {yn},
here we are interested in characterizing observability of states
in terms of uncertainty. As with the Bode formula, the
uncertainty is expressed with the aid of belief process in
the presence of an i.i.d Gaussian disturbance.

Consider the feedback system (1)-(3) with noisy observa-
tions {yn

0 }. The output is not necessarily scalar now and the
disturbance dn ∼ N(0, R). The two cases with anti-stable
and stable A matrices are treated separately.

1) Anti-stable case: For the anti-stable case, all eigen-
value of A are assumed to be outside unit circle. From
part (1) in the proof of Bode formula, noisy observations
lead to a perfect asymptotic belief in stable states and
certain asymptotic uncertainty for unstable states. The latter
is expressed in terms of the limiting conditional pdf fn =
p(xn|yn

0 ) as n → ∞ and will be used here to quantify
observability of unstable states. Noting that fn = N(x̂n, Pn),
the Kalman filtering equations for the variance are:

Conditioning : P+
n = [(Pn)−1 + CT R−1C]−1

Dynamics : Pn+1 = AP+
n AT . (24)

Let P
.= limn→∞ Pn, then P is the solution of DARE:

P = A(P − PCT (CPCT + R)−1CP )AT (25)

and using Woodbury matrix identity, we have

AT P−1A− P−1 = CT R−1C (26)

Denote S
.= P−1, we obtain the Lyapunov equation

AT SA− S − CT R−1C = 0. (27)

S is the so-called information matrix.
2) Stable case: For the stable case, all eigenvalue of

A are assumed to be inside unit circle. Since one has
perfect asymptotic belief for such states, the observability is
characterized using uncertainty for the initial condition x0.
This is expressed in terms of the conditional pdf p(x0|yn

0 ) as
n →∞. The reason for doing so is that noisy observations
serve to provide information regarding the state process
{xn

0}. Without input noise, the uncertainty of this process
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Conditional pdf Lyapunov Equation
Anti-stable (Au) limn→∞ p(xn|yn

0 ) AT
u SAu − S = CT R−1C

Stable (As) limn→∞ p(x0|yn
0 ) AT

s SAs − S = −CT R−1C

TABLE I
OBSERVABILITY FOR LINEAR GAUSSIAN PROBLEM

arises only due to uncertainty in the initial condition {x0}.
This can also be seen by noting that A−1 is anti-stable for
A stable. So the appropriate uncertainty limit to consider is
in backward time.

The evolution of belief process now reduces to a smooth-
ing problem, where π0 = p(x0|yn

0 ) represents the condi-
tional pdf where the conditioning is due to future noisy
observations {yn

0 }. As with the Bode formula, it suffices
to consider the evolution of covariance matrix Pn (or its
inverse Sn = P−1

n ) where one traverses the time-line from
n backwards to 0. This is the so-called information filtering
procedure with equations for the information matrix Sn:

Dynamics : Sn = AT S+
n+1A

Conditioning : S+
n = Sn + CT R−1C, (28)

where dynamics precede the conditioning step because of
backward recursion (n + 1 → n). This simplifies to

S+
n = AT S+

n+1A + CT R−1C 0 ≤ n ≤ N (29)

This backward recursion continues till we find S+
0 . We

denote S
.= S+

0 as the horizon N →∞. It is the solution to
the following Lyapunov equation:

AT SA− S + CT R−1C = 0 (30)

and P
.= S−1 is the asymptotic covariance matrix for initial

state.
3) Discussion: Table I summarizes the observability re-

sults for the an anti-stable and a stable system. With each
of these, a Lyapunov equation characterizes observability of
states in terms of information matrix S (this is the inverse
of the covariance matrix). For an anti-stable system, this
matrix gives information regarding the asymptotic state while
for a stable system, the matrix gives information on the
initial condition. Since S is symmetric and positive definite,
one can easily obtain an eigen-decomposition of the state
space in terms of directions with increasing information
content. We note that the Lyapunov equation of the stable
case is also the same as the Lyapunov equation with energy
based considerations (with R = I). However, in terms of
uncertainty, these considerations also extend to feedback
systems with arbitrary feedback (just like Bode) as well as
unstable system where input (due to feedback, say) is also
being used for well-posedness of the closed-loop.

III. OBSERVABILITY IN NONLINEAR SYSTEMS

A. Problem Setup
We consider the nonlinear system

state : xn+1 = α(xn), (31)
output : yn = c(xn) + dn, (32)

where n is discrete time step, xn ∈ X ⊂ Rm is the state,
yn ∈ Y ⊂ Rq is the output, dn ∈ Rq is i.i.d. disturbance
assumed here to be Gaussian N(0, R). We assume open-loop
settings here and make one additional assumption regarding
the dynamics. In particular we assume that dynamics α(·)
have negative Lyapunov exponents. We recall that the leading
Lyapunov exponent for α(·) is defined as:

lim
n→∞

1
n

ln ρ(αn′
(x0))

.= λ(x0) (33)

where αn′
(x0)

.= dαn

dx0
(x0) and ρ(·) denotes its spectral

radius. The m Lyapunov exponents are negative if and only
if the leading one is. For a scalar map α(·), there is only one
Lyapunov exponent and it is given by

λ(x0) = lim
n→∞

1
n

ln |αn′
(x0)|, (34)

Typically Lyapunov exponents are constant – for instance
when defined with respect to an Ergodic partition. We do not
make this assumption as observability will be characterized
with respect to an initial condition x0. In linear settings,
Lyapunov exponents are constant and are given by ln(·) of
the eigenvalues of the A matrix. The leading one equals
ln(ρ(A)).

B. Observability

As with the stable linear case, we characterize observ-
ability in terms of conditional pdf p(x0|yn

0 ). This captures
the uncertainty in initial condition. The challenge is that as
opposed to the linear Gaussian case, belief propagation is by
no means straightforward for the nonlinear case. The main
idea of this section is that while the belief propagation is
difficult, one can still obtain bounds for the variance of the
estimate (for x0) by using the concept of Fisher information;
cf., [16].

We describe the method for an initial condition x0 that is
a priori unknown. Using (31)-(32), we have

ym = c(αm(x0)) + dm. (35)

The key to note is that ym are independent Gaussian random
variables with mean c(αm(x0)) and variance R. The Fisher
information is the amount of information that an observed
random variable (ym) carries about the unknown (x0). It is
defined as variance of the score function:

V (ym) =
∂

∂x0
(ln g(ym;x0)) . (36)

where g is the Gaussian distribution with mean c(αm(x0))
and variance R. An easy calculation then shows that the
score function

V (ym) =
(
αm′

(x0)
)T

CT
mR−1 (ym − c(αm(x0))) , (37)

where Cm
.= c′(αm(x0)) and the Fisher information

J (m)(x0) = E[V (ym)V T (ym)]

=
(
αm′

(x0)
)T

CT
mR−1Cm

(
αm′

(x0)
)
(38)
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where E[·] denotes the expectation operator, and the super-
script (m) is used to draw attention to the fact that this is the
information regarding x0 contained in the mth observation.
With negative Lyapunov exponents |αm′

(x0)| → 0 as m →
∞ and the observation contains less and less information
regarding the initial condition x0.

Since {y0, y1, . . . , yn} are all independent, their joint pdf
g(yn

0 ;x0) = Πn
m=0g(ym;x0) and one obtains the identity

Jn(x0) =
n∑

m=0

J (m)(x0), (39)

where Jn is the Fisher information for the sequence {yn
0 }.

Using (38), it is given by

Jn(x0) =
n∑

m=0

(
αm′

(x0)
)T

CT
mR−1Cm

(
αm′

(x0)
)

(40)

These considerations are useful because the Cramer-Rao
inequality then allows one to write a lower bound on the
variance of any unbiased estimator of the unknown x0:

Var(x0) ≥ J−1
n (x0) (41)

This is called the Cramer-Rao Lower Bound (CRLB). As
n → ∞, the series (40) converges for the case of negative
Lyapunov exponents (for some sufficiently large M , there
exists a non-negative constant d < 1 such that ‖αm′

(x0)‖ <
dm for all m > M ). Denoting J(x0)

.= limn→∞ Jn(x0),
Var(x0) ≥ J−1(x0).

Example 3.1: Consider first a Linear Gaussian setup
where maps α and c are linear:

state : xn+1 = Axn, (42)
output : yn = Cxn + dn, (43)

and ρ(A) < 1. For an initial condition x0,

ym = CAmx0 + dm. (44)

The score function and the Fisher information (for ym) are
given by:

V (ym) = (CAm)T R−1(ym − CAmx0), (45)
J (m)(x0) = (CAm)T R−1(CAm). (46)

The Fisher information for yn
0 is

Jn(x0) =
n∑

i=0

Ex0 [V (yi)V T (yi)] =
n∑

i=0

(CAi)T R−1(CAi)

(47)
We note that the series converges because ρ(A) < 1.
Denoting J(x0)

.= limn→∞ Jn(x0), it is easy to see that
J(x0) is a solution to the following Lyapunov equation

J = AT JA + CT R−1C, (48)

i.e., the Fisher information matrix J(x0) = S = P−1, where
P is the covariance matrix found in the preceding section (for
the stable case). The CRLB inequality is thus an equality in
this case.

Example 3.2: Let α and c be scalar nonlinear maps. We
denote the variance of scalar Gaussian disturbance by r. In
this case, the negative Lyapunov exponent property means:

λ(x0) = lim
n→∞

1
n

ln |αn′
(x0)| < 0. (49)

We assume this. For an initial condition x0,

ym = c(αm(x0)) + dm. (50)

The score function and the Fisher information are given by:

V (ym) =
1
r
(ym − c(αm(x0))) · c′(αm(x0))αm′

(x0)

J (m)(x0) =
|c′(αm(x0))|2

r
|αm′

(x0)|2. (51)

The Fisher information for yn
0 is thus

Jn(x0) =
n∑

m=0

E[V 2(ym)]

=
1
r

n∑
m=0

|c′(αm(x0))|2 · |αm′
(x0)|2 (52)

Let C
.= supx∈X |c′(x)| then

Jn(x0) ≤
C

r

n∑
m=0

|αm′
(x0)|2 (53)

and the series converges because the Lyapunov exponent is
assumed negative (for some sufficiently large M , there exists
a non-negative constant d < 1 such that |αm′

(x0)| < dm for
all m > M ). Denote J(x0)

.= limn→∞ Jn(x0) then CRLB
implies that the variance of estimate x0 is 1

J(x0)
or greater.

C. Numerics

Example 3.3: Consider a nonlinear system

xn+1 = 0.9xn + εz3
n,

zn+1 = 0.9zn, (54)

with both Lyapunov exponents equal to ln(0.9). The origin
(0, 0) is a globally asymptotically stable fixed-point. The
output equation

yn = xn + dn, (55)

where dn ∼ N(0, 1). With ε = 0, the system is linear and
the state z is not observable. As ε increases, one gets more
and more information about the state z due to dynamics.
However, as opposed to a linear system, the information now
is also a function of the initial condition. One would expect
the initial conditions with smaller |z0| to provide very little
information regarding the state z while the initial conditions
with larger |z0| to provide more so.

The information matrix is obtained by using the Lyapunov
equation (48) for ε = 0, and the series formula (40) for the
nonlinear case (ε = 0.1). With ε = 0, J is a constant matrix
independent of initial conditions. The smallest eigenvalue is
0 with an eigenvector along the z-direction. The conclusion
is that the one has large (in this case infinite) uncertainty
along the z direction. This is consistent with the fact that z
is not observable for ε = 0.
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Fig. 1. Summary of observability computations for (a) linear (ε = 0) and (b) nonlinear (ε = 0.1) cases. The background is the smallest eigenvalue of
J(x0, z0) and the lines depict the eigen-direction (corresponds to smallest information or largest uncertainty directions).

Figure 1 summarizes the results of observability computa-
tions carried out for a grid of initial conditions in the phase
space X

.= [−2, 2]× [−2, 2]. With ε = 0.1, the information
matrix J(x0, z0) is now a function of the initial condition
(x0, z0). The system is now observable for all initial condi-
tions in the sense that that J(x0, z0) is non-singular. Fig. 1(b)
depicts the smallest eigenvalue of J(x0, z0) together with the
eigen-direction (depicted as a short line). Consistent with
our intuition, the smallest eigenvalue is relatively small for
initial conditions with z0 close to 0. It becomes larger as |z0|
increases. This corresponds to the fact that initial conditions
with larger value of |z0| are more observable than the
ones with smaller value. The eigen-direction corresponding
to large uncertainty is more interesting. It is close to the
linear case for smaller |z0| but is along the x-direction
for a sufficiently large value of |z0|. This shows that the
nonlinearity causes z to become (relatively) more observable
for sufficiently large values of |z0|.

An interesting observation from the study is that the
information matirx J is independent of x0 and depends
only upon z0. This is because x enters the state and output
equations in a linear fashion. So the information matrix
(which is a function of only linearizations) is independent of
x0. As a result, J is only a function of z0 and the analysis
above is independent of x0.

IV. CONCLUSION

In this paper we obtained uncertainty based characteriza-
tions of fundamental performance limitations (Bode formula)
and observability. The uncertainty flow is studied using belief
propagation in HMM settings. For the linear Gaussian case,
the Bode formula was shown to be a simple consequence
of Kalman filtering equations and naturally led to observ-
ability characterizations for both unstable and stable states.
Furthermore, these uncertainty based characterizations of
observability are independent of control much as the Bode
formula is control independent. In open-loop stable settings,
this lead to the well-known Lyapunov equation for observ-
ability. Uncertainty based characterizations also suggested
a novel approach for observability of nonlinear systems in

terms of Fisher information. We gave some generalizations
for nonlinear systems with negative Lyapunov exponents.
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