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Abstract— We show that for time-invariant hybrid systems
given by a flow map, flow set, jump map, and jump set,
uniform global stability of a compact set plus the existence
of Lyapunov-like functions and continuous functions satisfying
a nested condition imply uniform global asymptotic stability
of the compact set (“uniform” in the sense that bounds on
the solutions and on the convergence time depend only on the
distance to the compact set of interest). The required nested
condition is a combination of the conditions in nested Matrosov
theorems for time-varying continuous-time and discrete-time
systems available in the literature. Our result also shows that
Matrosov’s theorem is a reasonable alternative to LaSalle’s in-
variance principle for time-invariant hybrid systems to conclude
attractivity to a compact set. We illustrate the application of
our main result by examples.

I. INTRODUCTION

Matrosov’s theorem is a powerful tool to establish uniform

global asymptotic stability for time-varying differential equa-

tions. The result reported by Matrosov in [13] shows that, in

addition to other technical conditions, given a continuously

differentiable function V that establishes uniform global sta-

bility of the origin, the existence of an auxiliary continuous

function with derivative that is “definitely nonzero” in the set

of points where the derivative of V vanishes is a sufficient

condition for uniform global asymptotic stability of the ori-

gin. Several extensions of Matrosov’s theorem have appeared

in the literature; see, e.g., [9] and its references. Matrosov’s

theorem has been applied to solve several nonlinear control

problems, including tracking control [16], output feedback

[15], and adaptive control [12], among others.

The extensions of the classical Matrosov theorem that

seem to give most flexibility when applied in practice are

those allowing for multiple auxiliary functions rather than

simply one auxiliary function as in the original result by

Matrosov. Such extensions are known as nested Matrosov

theorems since to assert uniform global asymptotic stability,

they require some of the auxiliary functions to be negative at

points where other ones vanish. For continuous-time systems

see [9], where five auxiliary functions are used in stability

analysis for nonholonomic vehicles, and [19], where 3n− 2
auxiliary functions are used for the interconnection of n

R.G. Sanfelice: Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, MA 02139, sricardo@mit.edu (research
performed at the Department of Electrical and Computer Engineering,
University of California, Santa Barbara); A.R. Teel: Department of Electrical
and Computer Engineering, University of California, Santa Barbara, CA
93106-9560, teel@ece.ucsb.edu.

*Research partially supported by the National Science Foundation under
Grant no. CCR-0311084 and Grant no. ECS-0622253, and by the Air Force
Office of Scientific Research under Grant no. FA9550-06-1-0134.

subsystems. Extensions of Matrosov’s theorem with multiple

auxiliary functions have also been proposed for discrete-time

systems; see [14]. A Matrosov theorem with one auxiliary

function but a weaken negativity condition, expressed in

terms of persistency of excitation, has been proposed in [11]

for a class of single-valued time-varying hybrid systems.

In this paper, we develop a nested Matrosov theorem

for time-invariant hybrid systems allowing for set-valued

dynamics, nonuniqueness of solutions, multiple jumps at the

same instant, and Zeno solutions. Hybrid systems are given

by a flow map, a flow set, a jump map, and a jump set.

In this context, uniformity of asymptotic stability properties

of compact sets indicates that bounds on the solutions and

on the convergence time depend only on the distance to the

compact set of interest. We show that uniform global stability

of a compact set plus the existence of Lyapunov-like func-

tions and continuous functions satisfying a nested condition

imply uniform global asymptotic stability of the compact

set. This result extends the nested Matrosov theorems in

[14] and [9] to time-invariant hybrid systems. To the best of

our knowledge, all instances of Matrosov’s theorem in the

literature have focused on time-varying systems. Certainly

a Matrosov theorem reaches its full power in the context

of time-varying (not necessarily periodic) systems, where

general invariance principles are not available. Here, we

emphasize that it can be applied to time-invariant systems

where it provides a useful alternative to LaSalle’s invariance

principle for concluding attractivity of a compact set. In

particular, no notions of invariance need to be introduced to

apply Matrosov’s theorem. We provide illustrative examples

that emphasize this point. A nested Matrosov theorem for

time-varying hybrid systems will be reported elsewhere.

The rest of the paper is organized as follows. Section II

introduces the hybrid systems framework as well as

stability definitions used in this paper. Section III presents

a motivational example and states our main result. In

Section IV, we illustrate its applicability by examples.

Notation: R
n denotes n-dimensional Euclidean space. R

denotes the real numbers. R≥0 denotes the nonnegative real

numbers, i.e., R≥0 := [0,∞). N denotes the natural numbers

including 0, i.e., N := {0, 1, . . .}. Z denotes the integers.

Z≥k denotes integers greater than or equal to the integer

k. Given a set S, S denotes its closure. Given a set S ⊂
R

n and a point x ∈ R
n, |x|S := infy∈S |x − y|. Given a

set S ⊂ R
n and constants δ, ∆, 0 ≤ δ ≤ ∆, ΩS(δ, ∆) :=

{x ∈ R
n | δ ≤ |x|S ≤ ∆}. A function α : R≥0 → R≥0 is

said to belong to class-K∞ if it is continuous, zero at zero,

strictly increasing, and unbounded.
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II. HYBRID SYSTEMS

Hybrid systems are dynamical systems with both contin-

uous and discrete dynamics. Several frameworks to model

hybrid systems have been proposed in the literature, includ-

ing [18], [3], [10], [2], [6], to just list a few. In this paper,

we follow the hybrid systems framework introduced in [6],

where a hybrid system H with state space R
n is given by

four objects defining its data:

• Flow map given by a set-valued map F : R
n →→ R

n

defining the flows (or continuous evolution) of H.

• Flow set C ⊂ R
n specifying the points where flows are

possible.

• Jump map given by a set-valued map G : R
n →→ R

n

defining the jumps (or discrete evolution) of H.

• Jump set D ⊂ R
n specifying the points where jumps

are possible.

A hybrid system H := (F, C, G, D) can be written in the

compact form:

H : x ∈ R
n

{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D ,

(1)

where the state x can contain both continuous and dis-

crete states. That is, the state x can be given by x :=
[ξ⊤ q]⊤ where ξ ∈ R

n−1 is the continuous state and

q ∈ {1, 2, . . . , N} ⊂ R is the discrete (or logic) state.

Solutions can evolve continuously (or flow) and/or dis-

cretely (or jump) depending on the continuous and discrete

dynamics and the sets where those dynamics apply. We treat

the number of jumps as an independent variable j and we

parametrize the state by (t, j). Solutions to H will be given

by hybrid arcs on hybrid time domains.

Definition 2.1: (hybrid time domain) A subset E ⊂ R≥0×
N is a compact hybrid time domain if

E =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .

A subset E ⊂ R≥0 × N is a hybrid time domain if for all

(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid

time domain. �

Definition 2.2: (hybrid arc) A function x : domx → R
n

is a hybrid arc if domx is a hybrid time domain and if for

each j ∈ N, the function t 7→ x(t, j) is locally absolutely

continuous. �

Definition 2.3: (solution to H) A hybrid arc x is a solution

to the hybrid system H if x(0, 0) ∈ C ∪ D and:

(S1) For all j ∈ N and almost all t such that (t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j)) .

(S2) For all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) .

�

A solution x is said to be nontrivial if domx contains

at least one point different from (0, 0), maximal if there

does not exists a solution x′ such that x is a truncation of

x′ to some proper subset of domx′, complete if domx is

unbounded, and Zeno if it is complete but the projection of

domx onto R≥0 is bounded.

Stability, uniform attractivity, and uniform asymptotic sta-

bility of compact sets for hybrid systems H = (F, C, G, D)
are defined as follows.

Definition 2.4: (UGAS) Let A ⊂ R
n be compact. The set

A is said to be

• uniformly globally stable (UGS) for H if there exists

a class-K∞ function α such that any solution x to

H satisfies |x(t, j)|A ≤ α(|x(0, 0)|A) for all (t, j) ∈
domx;

• uniformly globally attractive (UGA) for H if for each

ε > 0 and r > 0 there exists T > 0 such that, for any

solution x to H with |x(0, 0)|A ≤ r, (t, j) ∈ domx
and t + j ≥ T imply |x(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H
if it is both UGS and UGA.

The stability and attractivity notions in Definition 2.4 do

not insist that solutions to H exist from every point in R
n.

In fact, by the very definition of solutions in Definition 2.3,

solutions to H can only exist from points in C ∪ D, which

does not necessarily cover R
n. Moreover, maximal solutions

to H are not necessarily complete. For more details about

existence of solutions to hybrid systems, see [7].

The results for hybrid systems H in [7] give mild condi-

tions on the data (F, C, G, D) to guarantee certain regularity

properties for the set of solutions to H. These conditions

are critical for things like inherent robustness of asymptotic

stability [7], establishing that asymptotic stability implies

uniform asymptotic stability [7], invariance principles [17],

and converse Lyapunov theorems [4]. However, these con-

ditions are not required to establish sufficient conditions

for nominal asymptotic stability of compact sets, like those

proposed in this paper. Therefore, we will not insist on them.

III. NESTED MATROSOV THEOREM

A. Motivational example

Consider the so-called bouncing ball system shown in

Figure 1. Let x1 be the vertical position of the ball and x2

x1

x2

Fig. 1. Bouncing ball system.

be its vertical velocity. A model of the bouncing ball system
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is as follows. In between bounces, the equations of motion

are given by

ẋ1 = x2,

ẋ2 = −γ ,

where γ > 0 is the gravity constant. In between bounces, we

have that x1 > 0. The bouncing condition of the ball can be

modeled by the condition

x1 = 0 and x2 < 0 ,

and after the bounce (or jump), the ball’s state is mapped by

x+
1 = 0,

x+
2 = −̺x2,

where ̺ ∈ [0, 1) is the restitution coefficient. This defines a

hybrid system, which we denote by HBB . Let x := [x1 x2]
⊤.

Then, HBB is given by

HBB : x ∈ R
2















ẋ = f(x) :=

[

x2

−γ

]

x ∈ C

x+ = g(x) :=

[

0
−̺x2

]

x ∈ D ,

(2)

where

C :=
{

x ∈ R
2 | x1 > 0

}

,

D :=
{

x ∈ R
2 | x1 = 0, x2 < 0

}

.

To assert that A = (0, 0) is uniformly globally asymptoti-

cally stable for HBB , one could take the energy of the system

given the continuously differentiable function

V1(x) :=
1

2
x2

2 + γx1 , (3)

evaluate it along solutions to HBB , and try to conclude from

those that the origin is UGS and UGA. It follows that along

flows

〈∇V1(x), f(x)〉 = 0 ∀x ∈ C (4)

and that at jumps

V1(g(x)) − V1(x) ≤ −
1

2
(1 − ̺2)x2

2 ∀x ∈ D . (5)

From (4) and (5), using, for example, the sufficient conditions

for stability of compact sets for hybrid systems in [17],

it follows that A is UGS. However, classical Lyapunov

arguments cannot be used to establish (uniform) attractivity

since the function V does not decrease along flows when the

state is away from the origin. Instead, one could appeal to

invariance principles, for which certain technical conditions

must be verified and also some rudimentary knowledge of

solutions is needed to compute invariant sets. For invariance

principles for hybrid systems, see [10], [5], and [17]. Instead,

we take the continuously differentiable function

V2(x) := gx2 (6)

and note that

〈∇V2(x), f(x)〉 = −γ2 ∀x ∈ C , (7)

in particular, for each point x in C such that

〈∇V1(x), f(x)〉 = 0. We show that (4), (5), and (7)

imply that the pair V1, V2 establishes uniform asymptotic

stability of A for HBB via a nested Matrosov theorem.

This result parallels the original one proposed by Matrosov

in [13]. While asymptotic stability of the origin for the

bouncing ball has been established by other means in the

literature (see, for example, [1], [17], and [4]), the appeal

of Matrosov’s theorem is that it is expressed in terms of

less stringent Lyapunov-like conditions and requires no

knowledge about the solutions of the hybrid system.

B. Main result

Since our main theorem assumes UGS, we start by estab-

lishing a UGS result for closed sets of hybrid systems.

Theorem 3.1: (UGS conditions) The closed set A ⊂ R
n is

UGS for the hybrid system H = (F, C, G, D) if there exists

a function V : R
n → R≥0, continuously differentiable on an

open set containing C , and class-K∞ functions α1, α2 such

that α1(|x|A)≤V (x)≤α2(|x|A) for all x ∈ C ∪D ∪G(D)
and

〈∇V (x), f〉 ≤ 0 ∀x ∈ C , f ∈ F (x)

V (g) − V (x) ≤ 0 ∀x ∈ D , g ∈ G(x) .

We are now ready to state our main result.

Theorem 3.2: (hybrid nested Matrosov) Let A ⊂ R
n be a

compact, UGS set for the hybrid system H = (F, C, G, D).
Then, A is UGAS if there exist m ∈ Z≥1 and, for each

0 < δ < ∆,

• a number µ > 0,

• continuous functions uc,i : C ∩ ΩA(δ, ∆) → R, ud,i :
D ∩ ΩA(δ, ∆) → R, i ∈ {1, . . . , m},

• functions Vi : R
n\A → R, i ∈ {1, . . . , m}, C1 on an

open set containing C ∩ ΩA(δ, ∆),

such that, for each i ∈ {1, . . . , m},

|Vi(x)| ≤ µ ∀x ∈ (C ∪ D ∪ G(D)) ∩ ΩA(δ, ∆) (8)

〈∇Vi(x), f〉 ≤ uc,i(x) ∀x ∈ C ∩ ΩA(δ, ∆) ,
∀f ∈ F (x)

(9)

Vi(g) − Vi(x) ≤ ud,i(x) ∀x ∈ D ∩ ΩA(δ, ∆) ,
∀g ∈ G(x) ∩ ΩA(δ, ∆)

(10)

and, with the definitions uc,0, ud,0 : R
n → {0} and

uc,m+1, ud,m+1 : R
n → {1}, we have, for each j ∈

{0, . . . , m},

1) if x ∈ C ∩ ΩA(δ, ∆) and uc,i(x) = 0 for all i ∈
{0, . . . , j} then uc,j+1(x) ≤ 0,

2) if x ∈ D ∩ ΩA(δ, ∆) and ud,i(x) = 0 for all i ∈
{0, . . . , j} then ud,j+1(x) ≤ 0.

The theorem imposes a nested negative semi-definite con-

dition on the functions uc,i and ud,i, which bound the change

in Vi along flows and jumps, respectively. Through the

definition of uc,0 and ud,0, the nested condition requires that

uc,1 and ud,1 are never positive. The function uc,2 (respec-

tively, ud,2) can be positive only where uc,1 (respectively,

2917



ud,1) is negative. In other words, when uc,1 is zero, uc,2

should be nonpositive. Similarly for ud,2. Continuing, uc,3

should be nonpositive when uc,1 and uc,2 are zero, but uc,3

can be positive elsewhere. And so on. Finally, through the

definitions of uc,m+1 and ud,m+1, there are no points in

ΩA(δ, ∆) where all of the uc,i (respectively, ud,i) are zero.

The existence of µ satisfying (8) is guaranteed when Vi is

continuous on ΩA(δ, ∆). However, continuity is not required

in general. The theorem is stated for functions Vi that are

continuously differentiable at each point in C ∩ ΩA(δ, ∆),
but a similar result holds for functions locally Lipschitz on

this set. Such a result requires working with a generalized

notion of derivative.

Note that when the first function in Matrosov’s theorem is

positive definite and radially unbounded as in Theorem 3.1,

it can be used to establish UGS for the given compact set.

Under mild regularity assumptions, hybrid systems with

UGAS compact sets admit smooth, strict Lyapunov functions

[4]. However, such functions can be difficult to construct.

As highlighted above, the Matrosov theorem relaxes the

requirements on the functions that need to be constructed.

The proof of Theorem 3.2 follows the proofs of both the

continuous-time and discrete-time nested Matrosov theorems

in [14], [9]. In fact, the main argument of the proof is to

recursively exploit the negativity guaranteed in the nested

conditions in 1) and 2) of the (i + 1)-th Matrosov func-

tions uc,i+1, ud,i+1 at points where the i previous Matrosov

functions vanish for each i < m. Then, UGA follows from

the construction of a function V , which is obtained from a

linear combination of the Vi functions, with the property that

it has a strictly negative decrease along flows and jumps on

ΩA(δ, ∆). The details of the proof are omitted due to space

constraints. Finally, note that Theorem 3.2 when specialized

to the continuous-time case, i.e., taking G, D = ∅, recovers

the result in [9] for the time-invariant case, while when

specialized to the discrete-time case, i.e., taking F, C = ∅,

recovers the result in [14] for the time-invariant case.

IV. EXAMPLES

We now apply our main result to the following hybrid

systems.

Example 4.1: (Bouncing ball revisited) Consider the

bouncing ball system in Section III-A given by HBB . Let

A = (0, 0) and V1 : R
2 \ A → R be the continuously

differentiable function in (3). It follows that conditions (9)

and (10) in Theorem 3.2 hold for i = 1 with

uc,1(x) := 0 for each x ∈ C \ A ,
ud,1(x) := − 1

2 (1 − ̺2)x2
2 for each x ∈ D \ A .

Moreover, with uc,0(x) := 0 for all C \ A and ud,0(x) := 0
for all D \ A, uc,1(x) and ud,1(x) establish items 1 and 2

in Theorem 3.2 for j = 0.

Let V2 : R
2 \ A → R be the continuously differentiable

function given in (6). Conditions (9) and (10) hold for i = 2
with

uc,2(x) := −g2 for each x ∈ C \ A ,
ud,2(x) := −gγx2 for each x ∈ D \ A .

For every x ∈ C \ A such that uc,i(x) = 0, i = 0, 1, then

uc,2(x) < 0; and for every x ∈ D \A such that ud,i(x) = 0,

i = 0, 1, then ud,2(x) < 0. Then, items 1 and 2 hold for

j = 1, 2. Moreover, UGAS of A follows from Theorem 3.2

with m = 2.

Example 4.2: (Non-Zeno bouncing ball) The previous

bouncing ball model exhibits Zeno solutions. See, for exam-

ple, [8]. Moreover, if the flow and jump sets are extended to

their closures, the model exhibits purely discrete (jumping)

solutions. In the current example, an alternative model for

the bouncing ball is developed that does not exhibit Zeno

solutions. It is related to a model arising from regularization

procedures in [8]. The model is developed to preserve

UGAS of the origin, relying on Matrosov’s theorem. As

before, let γ represent the gravitational constant and let

̺ ∈ [0, 1) represent the restitution coefficient. Consider a

model parametrized by the positive constants εi, i = 1, 2, 3,

with data

f(x) :=

[

x2

−M(x1) − N(x1)x2

]

, g(x) :=

[

0
−̺x2

]

,

C :=
{

x ∈ R
2 | x1 ≥ 0 or (x2 ≥ −ε2 and x1 ≥ −ε1)

}

,

D :=
{

x ∈ R
2 | x1 = 0 , x2 ≤ −ε2

}

,

where

• M : R → R is continuous with M(x1) = γ for x1 ≥ ε3

and x1M(x1) > 0 for all x1 6= 0;

• N : R → R≥0 is continuous with N(x1) = 0 for x1 ≥
ε3, and N(x1) > 0 for x1 < 0.

The jump map takes points in the jump set, which is already

closed, to points outside of the jump set. Thus, there are

no Zeno solutions (see [7, Corollary 4.9]). Indeed, after a

finite number of jumps, the ball’s trajectory asymptotically

converges to the origin by flowing only. Figure 2 depicts

trajectories evolving on the flow and jump sets using the

functions M and N shown in Figure 3, which satisfy the

conditions above. When x1 ≥ ε3, the flow map here matches

the flow map of the previous bouncing ball model. When

x1 ≤ ε3, the modifications to the model are aimed at

generating forces corresponding to compression of the ball

and energy dissipation. Ideally, the functions M and N and

the values ε1 and ε2 would be such that the solution of

ẋ = f(x) starting at (x1, x2) = (0,−ε2) would satisfy:

• x1(t) ≥ −ε1 for all t ≥ 0, in order to guarantee

complete solutions for the hybrid system from the set

where x1 ≥ 0,

• x2(t) = ̺ε2 for the first t > 0 such that x1(t) = 0,

in order to replicate the dissipation caused by jumping

from (x1, x2) = (0, ε2).

However, neither of these conditions is required for the

derivation that follows.

Let A denote the origin and let V1 : R
2 → R≥0 be the

C1 function given by V1(x) := 1
2x2

2 +
∫ x1

0
M(s)ds. We find

that the conditions of Theorem 3.1 hold, so that the origin is

UGS, and conditions (9) and (10) in Theorem 3.2 hold for
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(a) Jumps occur in D, given by the thick black line. Jumps
decrease velocity. Flows occur in C, denoted by the solid gray
region.
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(b) After a finite number of jumps, the ball’s trajectory remains
in the flow set and asymptotically converges to A by only
flowing.

Fig. 2. Phase plot of a trajectory to the non-Zeno bouncing ball starting
from x(0, 0) = [10 , 0]⊤. Parameters: γ = 9.8m/s2, ̺ = 0.8, ε1 = ε3 =
0.3, ε2 = 0.6. Functions M and N as given in Figure 3.

i = 1 with

uc,1(x) := −N(x1)x
2
2 ∀x ∈ C ,

ud,1(x) := − 1
2

(

1 − ̺2
)

ε2 ∀x ∈ D .

Since these functions are never positive, items 1 and 2 in

Theorem 3.2 hold for j = 0. In fact, since there are no

points where ud,1 is zero, item 2 in Theorem 3.2 will hold

for all j no matter what ud,i is for i > 1. Also note that

uc,1(x) < 0 for all x ∈
{

x ∈ R
2 | x2 > 0 , x1 < 0

}

.

To define V2, we let N denote the open cone in
{

x ∈ R
2 | x2 > 0 , x1 < 0

}

given by

N :=
{

x ∈ R
2

∣

∣

∣
x = r

[

λ − 2
λ + 1

]

, r > 0, λ ∈ (0, 1)
}

,

and let σ : R → [−2π, 2π] be a continuously differ-

entiable, 2π-periodic function such that
dσ(s)

ds
= 1 when

s = ∠ (x/|x|) and x ∈ R
2\(N∪A), where ∠ : S1 → [0, 2π)

is such that ∠z denotes the angle, positive in the counter-

clockwise direction, between z and the positive horizontal

axis and S1 denotes the unit circle. See, for example, the

function plotted in Figure 4(b). Then, for all x ∈ R
2 \ A,

x1ε3

M(x1)

γ

(a) Gravity force function M .

x1

ε3

ε3

N(x1)

(b) Friction force function N .

Fig. 3. Functions used in Non-Zeno bouncing ball model. They agree
with the Zeno bouncing ball model in Example 4.1 when x1 > ε3 > 0.
Otherwise, these functions capture compression of the ball at impacts with
the floor.

define

V2(x) := σ

(

∠

(

x

|x|

))

, uc,2(x) := 〈∇V2(x), f(x)〉 .

If uc,1(x) = 0 then x ∈ R
2 \ (N ∪ A), ∇V2(x) =

[−x2 x1]
T

/|x|2, and N(x1)x2 = 0. Therefore,

uc,1(x) = 0 =⇒ uc,2(x) =
−x2

2 − x1M(x1)

|x|2
.

Since M(x1)x1 > 0 for all x1 6= 0, it follows that item 1

of Theorem 3.2 is satisfied for j = 1, 2. Hence, the origin is

UGAS. △

Remark 4.3: In Example 4.1, using Theorem 3.2, we

establish that the origin of the bouncing ball is globally

asymptotically stable. This fact can be also established using

invariance principles in [17], or using a strict Lyapunov

function as shown in [4]. The model in Example 4.2 is an

alternative, which is realistic to some extent, to the bouncing

ball model in Example 4.1. It has the property that every

solution to it is non-Zeno. Note that away from the origin,

both models behave similarly.

V. CONCLUSIONS

For hybrid systems allowing for set-valued dynamics,

nonuniqueness of solutions, multiple jumps at the same

instant, and Zeno solutions we introduced a nested Matrosov

theorem as a tool to establish uniform global asymptotic
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x2
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(a) The sector N used to specify the function
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Fig. 4. Function V2 for the application of Theorem 3.2 to the non-Zeno
bouncing ball system.

stability of compact sets. The required nested condition is a

combination of the conditions in nested Matrosov theorems

for time-varying continuous-time and discrete-time systems

available in the literature. The conditions constitute a relax-

ation of classical Lyapunov conditions. Moreover, in contrast

to invariance principles, no knowledge about solutions of the

hybrid system are required. Indeed, like Lyapunov theorems,

only bounds on derivatives and differences must be estab-

lished. Our result was demonstrated on two examples: the

classical bouncing ball system and a non-Zeno version of it.
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