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Abstract— A novel framework for stability analysis of linear and
polynomial stochastic systems is presented. The framework is built
on generalized polynomial chaos theory, which enables analysis
of dynamical systems with probabilistic uncertainty on system
parameters with various distributions. The theory allows for the
transformation of stochastic problems into a higher dimensional
deterministic problem, that is able to accurately approximate
the evolution of uncertainty in the state trajectories due to
stochastic system parameters. The developed theory is applied to
analyze a linear flight control design for an F-16 aircraft model.
The problem of generating stability certificates for stochastic
polynomial systems is also considered.

I. INTRODUCTION

Stability analysis of stochastic systems has been receiving
much interest of late. Determination of stability for the
nominal system itself is not often very useful. Instead we
wish to analyze stability with uncertainty in the system
dynamics. For linear systems, traditional linear robust control
[1] addresses robust stability for frequency dependent,
uniformly distributed uncertainty in the system dynamics. For
nonlinear systems in general, stability have been addressed
for deterministic systems with stochastic forcing [2], [3]. In
this paper we restrict our attention to systems with stochastic
parameters, i.e. systems with probabilistic uncertainty in
system parameters. For such class of systems, sampling based
approaches are often used to solve the stochastic problem
in a deterministic setting. The drawback of this approach is
that it can result in the solution of vary large problems for
accurate characterization of uncertainty. For linear systems,
the vertex set of the uncertainty polytope is often considered
[4], but such analysis is restricted to uniform distributions.
For nonlinear systems, it is not always possible to reduce the
problem set in this manner.

In this paper we present a novel way to examine the stability
of linear and nonlinear polynomial systems with probabilistic
uncertainty in their parameters. Here, we analyze the stability
problem by utilizing polynomial chaos theory which allows
the transformation of stochastic dynamics into deterministic
dynamics in higher dimension. While this increases the
computational complexity of the system, the resulting
complexity can be significantly lower than sampling based
methods.
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Polynomial chaos (gPC) was first introduced by Wiener [5]
where Hermite polynomials were used to model stochastic
processes with Gaussian random variables. According to
Cameron and Martin [6] such an expansion converges in
the L2 sense for any arbitrary stochastic process with finite
second moment. This applies to most physical systems.
Xiu et al.[7] generalized the result of Cameron-Martin to
various continuous and discrete distributions using orthogonal
polynomials from the so called Askey-scheme [8] and
demonstrate L2 convergence in the corresponding Hilbert
functional space. This is popularly known as the generalized
polynomial chaos (gPC) framework.

The gPC framework has been applied to applications including
stochastic fluid dynamics [9], [10], [11], stochastic finite
elements [12], and solid mechanics [13], [14]. However, appli-
cation of gPC to control related problems has been surprisingly
limited. The work of Hover et al.[15] addresses stability &
control of a dynamical system with probabilistic uncertainty
on the system parameters, but only addresses systems where
dynamics appear bilinearly. In this work, we address not only
stability of linear systems, but also the stability of nonlinear
polynomial systems. We develop a methodology of general-
izing the gPC framework to nonlinear polynomial systems
of arbitrary dimension. The deterministic result of the gPC
expansion for linear systems can be solved via the traditional
Lyapunov equation. Stability of the polynomial equations is
analyzed using sum-of-squares (SOS) techniques as described
in [16]. In both cases, the stochastic stability problem can be
solved by analyzing a set of deterministic equations.

II. WIENER-ASKEY POLYNOMIAL CHAOS

Let (Ω,F , P ) be a probability space, where Ω is the sample
space, F is the σ-algebra of the subsets of Ω, and P is
the probability measure. Let ∆(ω) = (∆1(ω),⋯,∆d(ω)) ∶
(Ω,F) → (Rd,Bd) be an Rd-valued continuous random
variable, where d ∈ N, and Bd is the σ-algebra of Borel subsets
of Rd. A general second order process X(ω) ∈ L2(Ω,F , P )
can be expressed by polynomial chaos as

X(ω) =
∞

∑
i=0

xiφi(∆(ω)), (1)

where ω is the random event and φi(∆(ω)) denotes the
gPC basis of degree p in terms of the random variables
∆(ω). The functions {φi} are a family of orthogonal basis
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in L2(Ω,F , P ) satisfying the relation

E[φiφj] = E[φ2
i ]δij , (2)

where δij is the Kronecker delta and E[⋅] denotes the
expectation with respect to the probability measure
dP (ω) = f(∆(ω))dω and probability density function
f(∆(ω)). Henceforth, we will use ∆ to represent ∆(ω).

For random variables ∆ with certain distributions, the
family of orthogonal basis functions {φi} can be chosen
in such a way that its weight functions has the same form
as the probability density function f(∆). These orthogonal
polynomials are the members of the Askey-scheme of
polynomials [8], which forms a complete basis in the
Hilbert space determined by their corresponding support.
Table I summarizes the correspondence between the choice
of polynomials for a given distribution of ∆. When the
appropriate set of polynomials is used, the convergence has
been shown to be exponential[7].

Random Variable ∆ φi(∆) of the Wiener-Askey Scheme
Gaussian Hermite
Uniform Legendre
Gamma Laguerre

Beta Jacobi

TABLE I
CORRESPONDENCE BETWEEN CHOICE OF POLYNOMIALS AND

GIVEN DISTRIBUTION OF ∆(ω).

III. STOCHASTIC LINEAR DYNAMICS AND POLYNOMIAL

CHAOS

A. System Description

Define a linear stochastic system in the following manner

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t,∆), (3)

where x ∈ Rn, u ∈ Rm. The system has probabilistic
uncertainty in the system parameters, characterized by
A(∆),B(∆), which are matrix functions of random variable
∆ ≡ ∆(ω) ∈ Rd with certain stationary distributions. Due
to the stochastic nature of (A,B), the system trajectory
will also be stochastic. The control u(t) is however may
be deterministic or stochastic depending upon the desired
implementation.

Let us represent components of x(t,∆),A(∆) and B(∆) as,

x(t,∆) = [x1(t,∆) ⋯ xn(t,∆)]T , (4)

A(∆) =

⎡⎢⎢⎢⎢⎢⎣

A11(∆) ⋯ A1n(∆)
⋮ ⋮

An1(∆) ⋯ Ann(∆)

⎤⎥⎥⎥⎥⎥⎦
, (5)

B(∆) =

⎡⎢⎢⎢⎢⎢⎣

B11(∆) ⋯ B1m(∆)
⋮ ⋮

Bn1(∆) ⋯ Bnm(∆)

⎤⎥⎥⎥⎥⎥⎦
. (6)

By applying the Wiener-Askey gPC expansion to
xi(t,∆),Aij(∆) and Bij(∆), we get

xi(t,∆) =
p

∑
k=0

xi,k(t)φk(∆) = xi(t)T Φ(∆), (7)

ui(t,∆) =
p

∑
k=0

ui,k(t)φk(∆) = ui(t)T Φ(∆) (8)

Aij(∆) =
p

∑
k=0

aij,kφk(∆) = aT
ijΦ(∆), (9)

Bij(∆) =
p

∑
k=0

bij,kφk(∆) = bT
ijΦ(∆), (10)

where xi(t),aij ,bij ,Φ(∆) ∈ Rp are defined by

xi(t) = [xi,0(t) ⋯ xi,p(t)]T ,

ui(t) = [ui,0(t) ⋯ ui,p(t)]T ,

aij = [aij,0(t) ⋯ aij,p(t)]T ,

bij = [bij,0(t) ⋯ bij,p(t)]T ,

Φ(∆) = [φ0(∆) ⋯ φp(∆)]T .

When ui(t,∆) is a feedback control, it follows that it must
also be probabilistic (depending on the implementation), and
if the control is not probabilistic, this implies ui(t) = ui,0(t)
with all other coefficients as zero.

The number of terms p is determined by the dimension d of ∆
and the order r of the orthogonal polynomials {φk}, satisfying
p+1 = (d+r)!

d!r!
. The coefficients aij,k and bij,k are obtained via

Gelarkin projection onto {φk}pk=0 given by

aij,k =
⟨Aij(∆), φk(∆)⟩
⟨φk(∆)2⟩ , (11)

bij,k =
⟨Bij(∆), φk(∆)⟩
⟨φk(∆)2⟩ . (12)

The n(p + 1) time varying coefficients, {xi,k(t)}; i =
1,⋯, n;k = 0,⋯, p, are obtained by substituting the ap-
proximated solution in the governing equation (eqn.(3)) and
conducting Gelarkin projection onto {φk}pk=0, to yield n(p+1)
deterministic linear differential equations, given by

Ẋ =AX +BU, (13)

with X ∈ Rn(p+1); A ∈ Rn(p+1)×n(p+1);B ∈ Rn(p+1)×m and

X = [xT
1 xT

2 ⋯ xT
n ]T , (14)

U = [uT
1 uT

2 ⋯ uT
m]T . (15)

While it is possible to derive many forms for the A and B
matrices, a convenient form can be obtained in the following
manner. Define êijk =

⟨φi,φjφk⟩
⟨φ2

i
⟩ . The linear equations of

motion can be expressed as

ẋi,l =

n

∑
j=1

p

∑
k=0

p

∑
q=0

aij,kxj,q êlkq +

m

∑
j=1

p

∑
k=0

p

∑
q=0

bij,kuj,q êlkq.

2
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Define the matrix Φk as

Φk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ê1k1 ê1k2 ⋯ ê1kp

ê1k2 ê2k2 ⋯ ê2kp

⋮ ⋮ ⋱ ⋮

ê1kp ê2kp ⋯ êpkp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

The matrices A and B can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 ⋯ A1n

A21 A22 ⋯ A2n

⋮ ⋮ ⋱ ⋮

An1 An2 ⋯ Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

Aij =

p

∑
k=0

aij,kΦk, (18)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 ⋯ B1m

B21 B22 ⋯ B2m

⋮ ⋮ ⋱ ⋮

Bn1 Bn2 ⋯ Bnm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

Bij =

p

∑
k=0

bij,kΦk. (20)

More convenient expressions for A and B are given by

A =

p

∑
k=0

Ak ⊗Φk, (21)

B =

p

∑
k=0

Bk ⊗Φk, (22)

where ⊗ is the Kronecker product and the Ak, Bk matrices are
the projections of each matrix onto their respective polynomial
subspaces. Therefore, transformation of a stochastic linear
system with x ∈ Rn, u ∈ Rm, with pth order gPC expan-
sion, results in a deterministic linear system with increased
dimensionality equal to n(p + 1).

B. Stochastic Stability

By writing the stochastic system in a deterministic framework,
we are able to obtain deterministic equations that can be
analyzed to determine the stability properties of a system. This
framework will yield one larger LMI as opposed to the many
smaller LMI’s required to show stability using a Monte-Carlo
approach.
Proposition 1: The system in (13) with u = 0 is stable if and
only if there exists a P = P T

> 0 such that

AT P + PA ≤ 0

Proof: Choose V =XT PX and utilize the standard Lyapunov
argument.
This result is presented to demonstrate the power of the
approach to enable the study of system stability in terms of
well known methodologies.

Remark 1: The number of polynomials should be chosen to
minimize inaccuracy in the approximation as the validity
of the stability arguments depend upon the accuracy of the
polynomial approximation.

The closed-loop stability of a system can be analyzed by
utilizing similar arguments.
Proposition 2: Given a feedback control u(t,∆) =Kx(t,∆),
the feedback gain asymptotically stabilizes the distribution of
systems if the condition

AT P + PA + (KT
⊗ Ip)BT P + PB(K ⊗ Ip) < 0

is satisfied for some P = P T
> 0.

Proof: First, let us look at u(t,∆) =Kx(t,∆).

ui(t,∆) =
p

∑
l=0

ui,lφl =

n

∑
j=1

p

∑
k=0

kijxj,kφk

By projecting, we find that

U = (K ⊗ Ip)X (23)

Therefore, the closed loop system is given by

Ẋ =AX +B(K ⊗ Ip)X
Using the Lyapunov function V = XT PX, where P =

P T
> 0, and taking its derivative implies that the system is

asymptotically stable (exponentially stable since this is a linear
system) if

XT (AT P + PA + (K ⊗ Ip)BP + PB(K ⊗ Ip))X < 0.

This completes the proof.
This result allows us to test the stability of a control law for
a family of systems by the analysis of a single deterministic
system. It does not make sense to examine marginal stability
(λ(A) = 0) for these systems because any inaccuracies in
the approximation of the distribution could lead to instabil-
ity. Therefore, the amount of uncertainty in the distribution
approximation should be considered when analyzing stability
margins.

IV. STOCHASTIC POLYNOMIAL SYSTEMS

We now consider the problem of analyzing the stability of
polynomial systems with stochastic coefficients. The gPC
methodology is useful because it preserves the order of
polynomial systems. In other words, a qth-order polynomial
remains a qth-order polynomial after the substitution. The only
difference is the number of system states required to describe
the stochastic system.

A. System Description

Consider a system of the form

ẋi(t,∆) =
m

∑
j=1

aij(∆)xαj (t,∆), (24)

where m represents the number of terms in the expression,
i = 1, . . . , n represents the number of states, aij are the
coefficients, x = [x1 ⋯ xn]T , and αj = [αj1 ⋯ αjn]T
with αjk ∈ N+ is a vector containing the order of each term in
the monomial. For example the term given by x2

1x
3
2x3 = xα

with α = [2 3 1]T . Note that without loss of generality, this
vector does not need to depend upon i because we can just add

3
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zeros to aij for any terms that do not appear in the equations
of some state xi. To apply the gPC expansion to this equation
of motion, we write

xi(t,∆) =
p

∑
k=0

xi,k(t)φk(∆), (25)

aij(∆) =
p

∑
k=0

aij,kφk(∆), (26)

where these forms are familiar as they are identical to those
of the linear system.

These expressions can be utilized to derive the equations of
motion in a fashion similar to that utilized in the previous
section. Consider the term

aij(∆)xαj (t,∆) =
∑p

k=0∑
p
k11=0

⋯∑p
k1αj1

∑p
k21=0

⋯∑p
knαjn

[
aij,kx1,k11⋯x1,k1αj1

x2,k21⋯xn,knαjn
φk⋯φknαjn

] .
While this expression involves a large number of summations
(the number depends upon the order of each polynomial
term), clearly, the order of the polynomial in terms of the
vector x is preserved, however the number of terms in the
polynomial has increased dramatically. As was done in the
linear case, the equations of motion can be projected onto each
polynomial subspace to obtain a system of ODE’s in terms of
our coefficients. Each equation of motion is then given by

ẋi,q =

m

∑
j=1

p

∑
k=0

[êq,k,k11,...,knαjn
aij,k

n

∏
r=1

αjr

∏
m=1

xrkm], (27)

where

êq,k,k11,...,knαjn
=

1

⟨φ2
q⟩ ⟨φqφkφk11⋯φknαjn

⟩,

and ∑p
k=0 [⋅] = ∑p

k=0∑
p
k11=0

⋯∑p
knαjn

=0 [⋅]. As an example,

consider a polynomial of the form ax2
1x2 with x1, x2, and

a as random variables. For this term, α = [2 1]T . The gPC
expansion of this term is written as

ax2
1x2 =

p

∑
k=0

akx1,k11x1,k12x2,k21φkφk11φk12φk21

In general, we can write the expanded system in the following
form

Ẋ =
m̂

∑
j=1

âijX
α̂j , (28)

where X has been previously defined. The term, m̂, represents
the new number for terms based on the addition of more
variables, âij is the coefficient of each new term, and α̂j

contains the orders of each of the monomials.

B. Stability

Now that it has been shown that the new deterministic system
has become a polynomial system of the same order with
n(P + 1) variables, we can utilize some techniques to talk
about the stability of such a system. One such technique is

Sum-of-Squares (SOS) programming. We can utilize the SOS
framework to discuss the stability of these new polynomials.
For details on this approach, see [16], [17], [18] Let X (X)
be a vector of monomials with the property that X = 0 if and
only if X = 0. Define a function

V = X T PX (29)

Furthermore, define a function W (X) that is positive definite
in X and is a sum-of-squares polynomial in terms of X.
Proposition 3: The approximation of the family of polynomial
systems is stable when a function, V , can be found such that

V (X) −W (X) is SOS (30)

−V̇ (X) is SOS (31)
Proof: For proof see[16].

Remark 2: This result is straight-forward but powerful. It
enables the analysis of uncertainty in nonlinear systems in an
algorithmic manner that does not require case-by-case analysis
of the various changes in the terms.

V. EXAMPLES

A. F-16 Control Verification

Here we consider a flight control problem, based on an F-16
aircraft model, where a feedback control K has been designed
for the nominal system. We wish to verify the robustness
of the controller in the presence of parametric uncertainty in
the F-16 model. For simplicity, we assume that the variation
in the system parameters are dependent on a single random
variable, ∆, meaning that the variation in these parameters
is not independent. In general, these parameters could be
independent random variables. In this example, we consider
the short-period approximation of an F-16. The model is given
by

ẋ = Ax +Bu,

y = Cx,

where the state vector x = [α q xe]T ; α is the angle
of attack, q is the pitch rate, and xe is an elevator state
which captures actuator dynamics. The control, u = δec, is
the elevator command in degrees. The matrix parameters are

A =

⎡⎢⎢⎢⎢⎢⎣

−0.6398 0.9378 −0.0014
(−1.5679) (−0.8791) (−0.1137)

0 0 −20.2000

⎤⎥⎥⎥⎥⎥⎦
B = [ 0 0 20.2 ]T

C = [ 0 180
π

0 ]
The values in parenthesis are assumed to be uniformly dis-
tributed with 10% deviation about their nominal values. A
frequency-domain control has been designed based on feed-
back of q. The control is of the form

u =
0.3122s + 0.5538

s2
+ 2.128s + 1.132

q.

This control is a pitch-rate tracking control. This is converted
to state-space to find system matrices Ac, and Bc, Cc. These
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Fig. 1. Eigenvalue distributions of system for ±20%

matrices are then augmented to the system to arrive at the
closed loop system

ẋa = Aclxa +Bclu,

where

Acl = [ A BCc

BcC Ac
]

Bcl = [ 0
Bc
]

The equivalence of the deterministic gPC system and the
stochastic system can be inferred from figure 1. The circles
(black) represent the eigenvalues of the gPC system with ten
terms. The solid (red) dots represent the eigenvalues of the
system obtained by sampling the stochastic system over ∆.
It is interesting to note that the distribution of eigenvalues
of the stochastic system is similar to the set of eigenvalues
of the gPC system. This gives us confidence in the use of
polynomial chaos for stability analysis and control of stochas-
tic dynamical systems. The gPC system replicates the Monte
Carlo behavior in a deterministic framework, as we are able
to obtain these eigenvalues all at once from the closed loop
Acl matrix. Furthermore, we are able to understand how the
system trajectories evolve over time. Figure 2 shows the pitch
rate response of the system in the presence of ±10% system
uncertainty in the aforementioned parameters. The predicted
mean and trajectory bounds from gPC are represented by the
dark solid and dashed lines respectively. The Monte-Carlo
responses of each system are depicted in gray. We observe
that the bounds predicted by the gPC system are in excellent
agreement with the responses of the Monte-Carlo simulations.
In this manner, we are able to deterministically predict the
statistical behavior of the system through examination of the
gPC system. In essence, the use of gPC removes the need
for a large number of repeated compuations (for Monte-Carlo)
but trades repeated compuations for a single simulation over

Fig. 2. Predicted and Monte-Carlo system response to ±10%
parameter uncertainty

a higher dimensional space. The efficiency of this approach
depends on the problem and the complexity of the system.

B. Nonlinear Example

For linear systems with parametric uncertainty appearing
linearly in the parameters (as in the previous example), it
is possible to determine system stability by examining the
stability of the vertex set [4]. While for many nonlinear
systems, this may be the case, one cannot in general assume
that the stability of the vertex set implies stability of the
nonlinear system over the entire range. As a result, it becomes
even more important to ensure that stability is guaranteed for
entire distribution of parameters. The gPC methodology, in
this context, is very useful in the analysis of stability for
uncertain nonlinear systems. Proof of stability for the gPC
system ensures that the stochastic nonlinear system is stable
for the entire distribution of parameter uncertainty. This is
exemplified by the following analysis. Consider the system

ẋ1 = x2

ẋ2 = −x1 + a(∆)x3
2,

we want to understand the stability of this system when a
is uncertain and its value is based on a uniform distribution
around a mean value of −0.5. For this case, we consider
the distribution to vary by ±0.4 (a(∆) ∈ [−0.9,−0.1]).
The nominal system is stable, and by utilizing SOSTOOLS
(see[19], [20]), we are able to show stability and obtain a
Lyapunov function of the form

V = .79602x2
1 + .70839x2

2.

To verify the stability of the system, we introduce the gPC
expansion and determine the stability of the deterministic
system. The deterministic system is another polynomial system
of the same order, but with increased dimensionality. To
demonstrate the methodology, stability certificates were gen-
erated for various values of p, the number of gPC expansions.
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For a specific case of p = 4, the Lyapunov function is given
by,

V = ZT QZ,

where Z = [x23 x22 x21 x20 x13 x12 x11 x10]T , and

Q = [ Q11 0
0 Q22

] .

The sub-matrices are given by

Q11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.5230 0.1472 −0.0659 0.0239
0.1472 0.6272 0.1509 −0.0949
−0.0659 0.1509 0.6814 0.1377
0.0239 −0.0949 0.1377 0.7589

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Q22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.6581 0.0510 −0.0242 0.0086
0.0510 0.7073 0.0590 −0.0385
−0.0242 0.0590 0.7376 0.0567
0.0086 −0.0385 0.0567 0.7772

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is interesting to note that for this system, the structure of the
Q matrix takes a block diagonal form. The Lyapunov function
for the gPC system retains the original structure, i.e. it is also
block diagonal. This suggests ways of examining stability and
generating certificates for gPC systems. It is important to note
that the number of terms in the certificate increases signifi-
cantly as more coefficients are added. If the structure of the
Lyapunov function is unknown, then guessing all possibilities
of monomials can lead to problem formulations with large
numbers of variables, which are extremely computationally
intensive in the SOSTOOLS framework.

VI. SUMMARY

In this paper we present a novel framework for stability
analysis of linear and polynomial stochastic systems. We
restrict ourselves to systems with probabilistic uncertainty in
system parameters. The framework is built on generalized
polynomial chaos theory, where stochastic dynamical systems
are transformed into equivalent deterministic systems in higher
dimensional space. The stability analysis for the stochastic
system reduces to stability analysis of the deterministic system.
The novelty of the paper is the accurate representation of the
uncertainty in the state trajectories due to stochastic parameters
and analysis of its stability in the Lyapunov sense. The
developed theory is also applied for robustness verification
of a linear flight control design for a stochastic F-16 aircraft
model. A computational approach for of generating stability
certificates for stochastic polynomial systems is also presented.
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