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Abstract— A hybrid feedback is developed for robust, global
stabilization of the attitude of an underactuated rigid body. For
the case where two angular velocities are considered as controls,
this objective is achieved. For the case where the two controls
are torques, the objective is achieved in a “practical” sense,
i.e., robust, global asymptotic stability of some arbitrarily small
neighborhood of the desired attitude is achieved. To assist with
the exposition, a robustly, globally stabilizing hybrid controller
is also developed for the case where three angular velocities are
considered as controls. This solution provides an alternative to
one that has appeared recently in the literature.

I. INTRODUCTION

The main contribution of this paper is the description of a

hybrid feedback for robust, global stabilization of the point

ξ∗ := (0, 0, 0, 1)⊤ for the nonlinear control system

ξ̇ = W (ω)ξ ξ ∈ C0 :=
{
ξ ∈ R

4 : ξ⊤ξ = 1
}

(1)

W (ω) =
1

2




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (2)

using feedback controls ω in the set

Ω12 :=
{
ω ∈ R

3 : ω3 = ω1ω2 = 0 , ω⊤ω ≤ 1
}
.

Notice that any control choice renders the set C0 invariant

since W (ω) +W⊤(ω) = 0 for all ω ∈ R
3.

We are motivated by the work in [4] which provides what

is apparently the first hybrid feedback (in that case, a sample-

and-hold controller) for global stabilization of ξ∗ for the

system (1). The feedback in [4] uses controls in the set

Ω123 :=
{
ω ∈ R

3 : ω1ω2 = ω2ω3 = ω3ω1 = 0 , ω⊤ω ≤ 1
}

(Ω12 is a strict subset of Ω123) which facilitates extending the

solution to the stabilization problem for the system (1)-(2)

augmented with the dynamics ω̇ = f(ω) +Bu where

ω̇1 = u1 , ω̇2 = u2 , ω̇3 = aω1ω2 (3)

using feedback controls u. It is assumed that a 6= 0.

Rigid body dynamics motivate the control system (1)-(2),

(3). The system (1)-(2) corresponds to the kinematics of the

rigid body, expressed in terms of a unit quaternion, and ξ∗

corresponds to the desired attitude of the rigid body. The
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vector ω corresponds to angular velocities, and the equations

(3) correspond to angular velocity dynamics

Jxω̇1 − (Jy − Jz)ω2ω3 = Mx

Jyω̇2 − (Jz − Jx)ω3ω1 = My

Jzω̇3 − (Jx − Jy)ω1ω2 = Mz

(where the moments of inertia Jx, Jy , and Jz are positive

scalars) in the case of two input torques such that Mz ≡ 0,

and after an input transformation from (Mx,My) to u. The

condition a 6= 0 corresponds to the condition Jx 6= Jy .

The stabilization problem for underactuated angular veloc-

ity dynamics has been studied in several papers, notably [1],

[12], [10] which consider the case of one input torque. The

attitude stabilization for the case of two input torques has

been studied in [6], [2], [8], [9], [13], [5], [4]. For additional

discussions about the attitude control problem, see [14].

In [4], the attitude stabilization problem with two input

torques is addressed by first solving the kinematic stabi-

lization problem globally using controls in Ω123 and then

using u in the system (3) to regulate the variables ω to

their desired values. We also first address the kinematic

stabilization problem globally, but we consider the problem

with controls in Ω12 rather than Ω123. Such a solution is

useful when a 6= 0 is close to zero so that it is significantly

more difficult to change ω3 than it is to change ω1 or ω2.

Moreover, the solution that we provide will also succeed in

regulating the attitude when a = 0 and ω3 starts at zero.

In addition to a solution to the kinematic stabilization

problem with controls in Ω12, we will also give a global

hybrid feedback controller using controls in Ω123. This

control law can serve as an alternative to the algorithm

proposed in [4], which is based on using sample-and-hold

control. We will present the solution to the kinematic control

problem with controls in Ω123 first since many of the ideas

in that solution appear again in the solution to the kinematic

control problem with controls in the set Ω12.

The paper is organized as follows: In Section II we review

hybrid systems and the notion of global asymptotic stability

for said systems. In Section III we solve the robust, global

stabilization problem for the kinematics using controls in the

set Ω123. In Section IV we solve this problem using controls

in the set Ω12. In Section V we show how to use the solution

to the kinematic control problem with controls in Ω12 to

solve the robust, global stabilization problem for the system

(1)-(2) together with the dynamical equation ω̇3 = aω1ω2

where a 6= 0 using controls (ω1, ω2). In Section VI, we

discuss the application of our ideas to the problem of robust,

global stabilization of an underactuated rigid body.
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II. HYBRID SYSTEMS AND ASYMPTOTIC STABILITY

A. Well-posed hybrid systems

Our treatment of hybrid systems follows that given in

[7]. The emphasis in [7] is on a framework that guarantees

that asymptotic stability in hybrid systems is robust to small

perturbations, whether they come from parameter variations,

external disturbances or measurement noise. Here, we call

such systems “well-posed” hybrid systems. For the purposes

of this paper, a well-posed hybrid system is written as

ẋ = f(x) x ∈ C , x+ ∈ G(x) x ∈ D (4)

where (see [7] for more details) the sets C ⊂ R
n and D ⊂

R
n are closed, f : C → R

n is continuous, and the set-valued

mapping G : R
n →→ R

n is outer-semicontinuous, locally

bounded, and nonempty on D. Solutions to the hybrid system

(4) are defined on hybrid time domains, which are subsets of

the reals times the nonnegative integers [7]. The system (4)

is said to be forward complete and non-Zeno from C ∪ D
if every maximal solution to (4) starting in C ∪ D has a

hybrid time domain whose real component is unbounded.

The integer component may or may not be unbounded.

B. Asymptotic stability

For the hybrid system (4), the compact set A ⊂ R
n is said

to be globally asymptotically stable if:

1) For each ε > 0 there exists δ > 0 such that

|x(0, 0)|A ≤ δ =⇒ |x(t, j)|A ≤ ε ∀(t, j) ∈ dom x.

2) Each solution is bounded and each solution

with an unbounded hybrid time domain satisfies

limt+j→∞ |x(t, j)|A = 0.

For well-posed hybrid systems, [7, Theorem 6.5] shows that

global asymptotic stability is equivalent to the existence of

a function β ∈ KL such that each solution x satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀(t, j) ∈ dom x

and [7, Theorem 6.6] shows that global asymptotic stability

is robust to small perturbations. Moreover, global asymptotic

stability implies the existence of a smooth Lyapunov function

[3], and global asymptotic stability can be established using

invariance principles a la LaSalle [11].

C. Control objective

Our controllers for the attitude stabilization problems will

contain an internal state η taking values in a compact set K.

Our first goal is to find a hybrid controller

ω = κ(ξ, η)
η̇ = α(ξ, η) (ξ, η) ∈ C
η+ ∈ G(ξ, η) (ξ, η) ∈ D

(5)

that solves the robust, global asymptotic stabilization prob-

lem for (1)-(2) using controls in Ω123, respectively in Ω12.

This problem is defined as follows:

Definition 1: Let Ω ⊂ R
3 be closed. The controller (5)

is said to solve the robust, global asymptotic stabilization

problem for (1)-(2) using controls in Ω if

1) C and D are closed sets and C ∪D = C0 ×K,

2) κ, α : C → Ω are continuous; G is outer-

semicontinuous, locally bounded and nonempty on D,

3) the closed-loop system (1),(5) is forward complete and

non-Zeno from C0 ×K and has the compact set A =
{ξ∗} × K globally asymptotically stable.

In both problems below, the controller state η will contain

a timer τ taking values in [0, 1], a logic state p ∈ P that

indicates which angular velocity component is being used,

and a logic state q ∈ Q that indicates the current mode

of the system. When using controls in the set Ω12, η will

also contain a variable ς ∈ {−1, 1}, a variable ϕ ∈ [0, π/4]
and a variable χ ∈ Q. Both controllers will make use of

functions σi, (i = 1, 2, 3 for controls in Ω123 and i = 1, 2 for

controls in Ω12) defined on the set {0, 1, 2, 3} and satisfying

σi(p) = 1 when p = i and σi(p) = 0 when p 6= i.

III. ATTITUDE STABILIZATION USING CONTROLS IN Ω123

We define P := {1, 2, 3}, Q := {1, 2, 3} and K := [0, 1]×
P ×Q. The controller state is η := (τ, p, q)′. We take

α(ξ, η) :=

[
max {0, 2 − q}

02×1

]
, (6)

i.e., α1(ξ, (τ, p, 1)′) = 1 and α1(ξ, (τ, p, q)
′) = 0 when q 6=

1, α2(ξ, η) = α3(ξ, η) = 0 for all (ξ, η). We also take

C := {(ξ, η) ∈ C0 ×K : (ξ, τ, p) ∈ Cq}
D := {(ξ, η) ∈ C0 ×K : (ξ, τ, p) ∈ Dq} (7)

and then, for each q ∈ Q, we specify Cq , Dq, G(ξ, η) =
G(ξ, (τ, p, q)′) and κ(ξ, η) = κ(ξ, (τ, p, q)′) below.

• Mode q = 1: Use zero controls for a short amount of

time then and evaluate what mode should be used. Let

ε ∈ (0, 1). According to (6), the timer state τ evolves

according to τ̇ = 1 in this mode. The flow set is

C1 := C0 × [0, ε] × P ,

the controls are ωi = κi(ξ, (τ, p, 1)′) := σi(0), i.e.,

ωi = 0 for i = 1, 2, 3, and the jump set is given by the

closure of the complement (relative to C0×[0, 1]×P) of

C1. The jump map is defined on D1. The first compo-

nent of the jump map is zero, i.e., G1(ξ, (τ, p, 1)′) := 0
for all (ξ, τ, p) ∈ D1. The second component is

G2(ξ, (τ, p, 1)′) :=
{
̺ ∈ P : ξ2̺ ≥ ξ2i ∀i ∈ P

}
.

The third component of the jump map is expressed in

terms of a parameter θ that must be in the interval (θ, θ)
where θ and θ are specified in subsequent modes. The

third component of the jump map is given by

G3(ξ, (τ, p, 1)′) :=





2 if ξ4 < θ
3 if ξ4 > θ

{2, 3} if ξ4 = θ .

• Mode q = 2: Get ξ4 above a threshold θ ∈ (−1, 1/
√

3).
The flow set for this mode is

C2 :=
{
p ∈ P , ξ4 ≤ θ , ξ24 + ξ2p ≥ 1/3

}
.

There exists p ∈ P such that ξ24 + ξ2p ≥ 1/3. Otherwise

1 > ξ21 + ξ22 + ξ23 + 3ξ24 = 1 + 2ξ24 ≥ 1
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which is a contradiction. The controls are given by

ωi = κi(ξ, (τ, p, 2)′) := σi(p). The jump set D2 is the

closure of the complement (relative to C0 × [0, 1]×P)

of C2. The jump map is G(ξ, (τ, p, 2)′) = (0, p, 1)′. (It

is possible to add an extra controller state that takes

values in the discrete set {−1, 1} and multiplies σi(p)
in the definition of κi in order to make ξ4 move in

the “better” of the two directions that can be taken to

get it above the desired threshold. This feature is not

necessary for global asymptotic stability and so it is

omitted to simplify the presentation.)

• Mode q = 3: Normal operation, which is allowed when

ξ4 ≥ θ ∈ (−1, θ). In this mode, the controller increases

ξ4 by making sure it is connected to a state ξ1, ξ2, or

ξ3 that is bounded away from zero in an appropriate

sense. The control laws here are

ωi = −σi(p)ξi =: κi(ξ, τ, p, 3)

(note that ξi be replaced by any function f having the

property that ξif(ξi) is continuous and positive definite)

and the flow set is given by

C3 :=
{
p ∈ P , ξ4 ≥ θ , ξ2p ≥ µ

(
ξ2j + ξ2k

)}

where the p, j and k are distinct elements of P and

µ ∈ (0, 1/2). Notice that the flow equation for ξ4 will

satisfy ξ̇4 = ξ2p . The only value of ξ ∈ C3 that makes

this derivative zero is the value ξ = ξ∗. The jump set D3

is the closure of the complement (relative to C0×[0, 1]×
P) of C3. The jump map is G(ξ, (τ, p, 2)′) = (0, p, 1)′.

Theorem 1: The hybrid controller specified above solves

the robust, global asymptotic stabilization problem for (1)-(2)

using controls in Ω123.

Sketch of proof: The first two items and the first part of

the third item of the robust, global asymptotic stabiliza-

tion problem are satisfied by construction. Regarding global

asymptotic stability, we note that the energy function 1− ξ4
is strictly decreasing in mode 3 and constant in mode 1.

Since mode 2 only runs when ξ4 is bounded away from

one, this establishes stability of the point ξ∗. Due to the

hysteresis, after mode 2 activates once, it never activates

again. Moreover, the only time it activates is perhaps at

t ∈ [0, ε] and when it activates, it is for a uniformly bounded

duration. It then follows from the invariance principles in

[11] that the set A is globally asymptotically stable. �

IV. ATTITUDE STABILIZATION USING CONTROLS IN Ω12

A. Controller description and result

The control strategy in this section is based on the strategy

for Ω123. However, some additional modes are used to

account for the fact that it is not possible to link the states

ξ3 and ξ4 directly since we are insisting that ω3 ≡ 0.

We define P := {1, 2}, Q := {1, 2, . . . , 8} and K :=
[0, 1]×P×Q×{−1, 1}× [0, π/4]×Q. The controller state

is η := (τ, p, q, ς, ϕ, χ)′. We take

α(ξ, η) :=

[
α1(q)
05×1

]
(8)

where α1(1)=α1(6)=1, and α1(q)=0 for q /∈ {1, 6}. Also

C := {(ξ, τ, p, q, ς, ϕ, χ) ∈ C0 ×K ,
(ξ, τ, p, ς, ϕ, χ) ∈ Cq}

D := {(ξ, τ, p, q, ς, ϕ, χ) ∈ C0 ×K ,
(ξ, τ, p, ς, ϕ, χ) ∈ Dq} .

(9)

We specify Cq , Dq, G(ξ, η) = G(ξ, (τ, p, q, ς, ϕ, χ)′) and

κ(ξ, η) = κ(ξ, (τ, p, q, ς, ϕ, χ)′) for each q ∈ Q below.

• Mode q = 1: Use zero controls for a short amount

of time and then evaluate what mode should be used.

This mode is just like the q = 1 mode for the previous

controller. Let ε ∈ (0, 1). The flow set is

C1 := C0 × [0, ε] × P × {−1, 1} × [0, π/4]×Q

and ωi = κi(ξ, (τ, p, 1, ς, ϕ, χ)′) := σi(0), i.e., ωi =
0 for i = 1, 2. The jump set is the closure of the

complement (relative to Γ := C0×[0, 1]×P×{−1, 1}×
[0, π/4] × Q) of C1. The jump map is defined on D1.

The first component is always zero. The fourth through

sixth components are always (ς, ϕ, χ)′. The second and

third components are given as follows. Define

I(ξ) :=
{
̺ ∈ P : ξ2̺ ≥ ξ2i ∀i ∈ P

}
.

The parameters θ, θ and ν will be specified in modes

2, 3, and 4, respectively. Let θ ∈ (θ, θ) and let

ν2 ∈ (1/3, ν). If χ /∈ {5, 6, 7}, ξ4 ≤ θ, and ξ24 +
max

{
ξ21 , ξ

2
2

}
≥ ν2 then (p+, q+) ∈ I(ξ) × {2}; if

χ /∈ {5, 6, 7}, ξ4 ≤ θ and ξ24 + max
{
ξ21 , ξ

2
2

}
≤ ν2

then (p+, q+) ∈ I(ξ) × {4}. If both conditions hold

then (p+, q+) ∈ I(ξ)×{2, 4}. The parameter µ will be

specified in mode 3. Let µ̂ > µ/(1−µ). If χ /∈ {5, 6, 7},

ξ4 ≥ θ, and ξ21 + ξ22 ≥ µ̂ξ23 then (p+, q+) ∈ I(ξ)×{3};

if χ /∈ {5, 6, 7}, ξ4 ≥ θ, and ξ21 + ξ22 ≤ µ̂ξ23
then (p+, q+) = (1, 5). If both conditions hold then

(p+, q+) ∈ (I(ξ) × {3}) ∪ (1, 5). If χ ∈ {5, 6, 7} then

(p+, q+) = (mod(χ+ 1, 2) + 1, χ+ 1).
• Mode q = 2: Get ξ4 above a threshold θ ∈ (1/2, 1/

√
3).

The flow set for this mode is

C2 :=
{
p ∈ P , ξ4 ≤ θ , ξ24 + ξ2p ≥ 1/3

}
,

and ωi = κi(ξ, (τ, p, 2, ς, ϕ, χ)′) := σi(p). The jump

set D2 is the closure of the complement (relative to

Γ) of C2. The jump map is G(ξ, (τ, p, 2, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, q)′.

• Mode q = 3: Normal operation, which is allowed when

ξ4 ≥ θ ∈ (1/
√

5, θ). Increase ξ4 by making sure it is

connected to a state that is bounded away from zero in

an appropriate sense. The control laws here are

ωi = κi(ξ(τ, p, 3, ς, ϕ, χ)′) := −σi(p)ξi

(again ξi can be replaced by a more general function)

and the flow set is given by

C3 :=
{
p ∈ P , ξ4 ≥ θ, ξ2p ≥ µ

(
ξ2j + ξ23

)}

where the j and p are distinct elements of the set

P and µ ∈ (0, 1/2). The flow equation for ξ4 will
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satisfy ξ̇4 = ξ2p . The jump set D3 is the closure of

the complement (relative to Γ) of C3. The jump map is

G(ξ, (τ, p, 3, ς, ϕ, χ)′) = (0, p, 1, ς, ϕ, q)′.
• Mode q = 4: Enable getting ξ4 above threshold. Let

ν ∈ (1/3, 1/2). The flow set for this mode is

C4 :=
{
p ∈ P , ξ4 ≤ θ, ξ24 + max

{
ξ21 , ξ

2
2

}
≤ ν

}
,

and ωi = κi(ξ, (τ, p, 4, ς, ϕ, χ)′) := σi(p). Notice that

ξ3 will be driven toward zero, but won’t be able to reach

it, as ξ23 = 0 implies ξ24 + max
{
ξ21 , ξ

2
2

}
≥ 1/2. The

jump set D4 is the closure of the complement (relative

to Γ) of C4. The jump map is G(ξ, (τ, p, 4, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, χ)′.

• Mode q = 5: Increase ξ4 by emptying ξ1 into ξ4. The

flow set for this mode is

C5 :=
{
p = 1; −ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}
,

and ωi = κi(ξ, (τ, p, 5, ς, ϕ, χ)′) := ςσi(p). The jump

set D5 is the closure of the complement (relative to

Γ) of C5. The jump map is such that ϕ+ is equal to

s ∈ (0, π/4] such that

cot(2s) =
cos2(s) − sin2(s)

2 sin(s) cos(s)
=

∣∣∣∣
ξ2
ξ3

∣∣∣∣ . (10)

Thus, ϕ+ = 0.5 cot−1(|ξ2/ξ3|) for ξ3 6= 0, ϕ+ = 0 for

ξ3 = 0, ξ2 6= 0, and ϕ+ ∈ [0, π/4] for ξ3 = ξ2 = 0.

Also ς+ = sgn(ξ2ξ3) and when ξ2ξ3 = 0 we set ς+ ∈
{−1, 1}. Finally τ+ = 0, p+ = p, q+ = 1, and χ+ = q.

• Mode q = 6: “open loop” maneuver to decrease the

magnitude of ξ3; ξ1 connected to ξ4 The controls are

given by ωi = κi(ξ, (τ, p, 6, ς, ϕ, χ)′) := ςσi(p). The

flow set of this mode is

C6 := {p = 1; τ ∈ [0,min {φ(ξ4), ϕ}]} .

The function φ : [−1, 1] → [0, π/4] is Lipschitz

continuous, nonincreasing, and satisfies φ(1) = 0. The

jump set D6 is the closure of the complement (relative

to Γ) of C6. The jump map satisfies τ+ = 0, p+ = 2,

q+ = 1, ς+ ∈ {s ∈ {−1, 1} : −sξ2 ≥ 0}, ϕ+ = ϕ, and

χ+ = q.

• Mode q = 7: increase ξ4 by emptying ξ2 into ξ4. The

flow set of this mode is

C7 :=
{
p = 2;−ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}

and ωi = κi(ξ, (τ, p, 6, ς, ϕ, χ)′) := ςσi(p). The jump

set D7 is the closure of the complement (relative to Γ)

of C7 and the jump map satisfies τ+ = 0, p+ = 1,

q+ = 1, ς+ ∈ {s ∈ {−1, 1} : −sξ1 ≥ 0}, ϕ+ = ϕ and

χ+ = q.

• Mode q = 8: increase ξ4 by emptying ξ1 into ξ4. The

flow set of this mode is

C8 :=
{
p = 1;−ςξp ≥ 0; ξ4 ≥ θ

√
2/2

}
,

and ωi = κi(ξ, (τ, p, 8, ς, ϕ, χ)′) := ςσi(p). The jump

set D8 is the closure of the complement (relative to

Γ) of C8. The jump map is G(ξ, (τ, p, q, ς, ϕ, χ)′) =
(0, p, 1, ς, ϕ, q)′.

Theorem 2: The hybrid controller specified above solves

the robust, global asymptotic stabilization problem for (1)-(2)

using controls in Ω12.

Sketch of proof: The proof is similar to that of the previous

result. However, after ξ4 is brought above its minimum

threshold, there is still one mode (mode 6) where the function

1− ξ4 can (and typically does) increase. In Section IV-B we

explain why this function cannot increase very much if it

starts close to zero, thereby ensuring stability. In Section IV-

C we explain why the sequence of modes 5 → 1 → 6 →
1 → 7 → 1 → 8, which will always be the sequence by

which mode 6 is reached, ensures that the sequence of modes

6→1→7→1→8 decrease the function 1 − ξ4.

Figure 1 shows a simulation of the closed-loop system

with hybrid controller using controls in Ω12. Initially, the

controller takes ξ4 above thresholds using mode 4 and 2,

and shortly after enters into the sequence 5→ 1→ 6→ 1→
7→1→8, which makes 1 − ξ4 decrease and in turn, steers

ξ asymptotically to ξ∗.

B. On the amount of time spent in Mode 6

Recall the definition of C6, that τ̇ = 1 in mode 6, and

that the function φ in the definition of C6 takes values in

[0, π/4]. It follows that the maximum amount of time that

can be spent in mode 6 before moving back to mode 1 is π/4
seconds. However, the time in mode 6 will be much shorter

than π/4 when ξ4 starts close to 1. This is seen as follows.

Let L > 0 be the Lipschitz constant for the function φ and

let V (ξ4) := 1− ξ4. Since φ(1) = 0, it follows that φ(ξ4) ≤
LV (ξ4). In mode 6, ξ̇4 = −ω1ξ1 and, since ω⊤ω ≤ 1 and

ξ⊤ξ = 1, we have |ω1ξ1| ≤ |ξ1| ≤
√

2
√

1 − ξ4. Thus

〈∇V (ξ4),−ω1ξ1〉 ≤
√

2V (ξ4) . (11)

By standard comparison theorems, it follows that in mode 6

V (ξ4(t)) ≤
1

2

(√
2V (ξ4(0)) + t

)2

. (12)

It follows that the amount of time that can be spent is mode

6 before leaving is upper bounded by the smaller of the two

solutions t∗ of the equation

t∗ =
L

2

(√
2V (ξ4(0)) + t∗

)2

(13)

and the maximum value of V (ξ4) over this interval is t∗/L.

It can be seen that t∗ tends to zero as V (ξ4(0)) tends to zero.

C. Calculations related to Modes 5-8

After leaving mode 5 and entering mode 6 through mode

1, we will have ξ1 = 0 and ξ22 ≤ µ̂ξ23 and ξ4 ≥ θ > 0. We

consider the effect of applying constant controls where first

ω1 6= 0, for τ1 seconds, and then ω2 6= 0, for τ2 seconds,

zeroing out ξ2, and then ω1 6= 0, for τ3 seconds, zeroing out

ξ1. To save on notation, consider the definitions

s1 := sin(ω1τ1) c1 := cos(ω1τ1)
s2 := sin(ω2τ2) c2 := cos(ω2τ2)
τ12 := τ1 + τ2 τ123 := τ1 + τ2 + τ3 .

(14)
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Fig. 1. Closed-loop trajectories for attitude stabilization using controls
in Ω12. Initial condition: ξ0 = 0.5(1, 1,

√

2, 0), τ0 = 0, p0 = 1, q0 =

1, ς0 = 1, ϕ0 = 0, χ0 = 1. Parameters: µ = 1

4
, θ = θ+θ

2
;, θ =

1/2+1/
√

3

2
, θ =

1/
√

5+θ
2

, ε = 1

2
, ν =

1/3+1/2

2
, ν2 =

1/3+ν
2

, µ̃ = 2µ
1−µ

.

We claim that |ξ3(τ12)| ≤ ρ(ξ4)|ξ3| where ρ is a continuous

function that is less than one except when ξ4 = 1. Then

1 − ξ24(τ123) = ξ21(τ123) + ξ22(τ123) + ξ23(τ123)
= ξ22(τ123) + ξ23(τ123)
= ξ22(τ12) + ξ23(τ12) = ξ23(τ12)

(15)

⇒ 1 − ξ24(τ123) ≤ ρ(ξ4)
2ξ23

≤ ρ(ξ4)
2
(
ξ23 + ξ21 + ξ22

)

= ρ(ξ4)
2
(
1 − ξ24

) (16)

which shows that the net effect of the maneuvers is to

increase ξ4 uniformly toward one. To establish the claim,

first consider the effect of ω1τ1 and the general form of the

solutions from the initial condition ξ. We get

ξ1(τ1) = s1ξ4 + c1ξ1 , ξ2(τ1) = s1ξ3 + c1ξ2
ξ3(τ1) = c1ξ3 − s1ξ2 , ξ4(τ1) = c1ξ4 − s1ξ1

and

ξ1(τ12) = c2 (s1ξ4 + c1ξ1) − s2 (c1ξ3 − s1ξ2)
ξ2(τ12) = c2 (s1ξ3 + c1ξ2) + s2 (c1ξ4 − s1ξ1)
ξ3(τ12) = s2 (s1ξ4 + c1ξ1) + c2 (c1ξ3 − s1ξ2)
ξ4(τ12) = −s2 (s1ξ3 + c1ξ2) + c2 (c1ξ4 − s1ξ1)

.

Knowing that ξ2(τ12) will be zero, we get

s2 = −c2 (s1ξ3 + c1ξ2)

c1ξ4 − s1ξ1

and thus

ξ3(τ12) = −c2 (s1ξ3 + c1ξ2)

c1ξ4 − s1ξ1
(s1ξ4 + c1ξ1)

+c2 (c1ξ3 − s1ξ2)

=
c2

c1ξ4 − s1ξ1

[
(c21 − s21) (ξ3ξ4 − ξ1ξ2)

−2c1s1 (ξ2ξ4 + ξ1ξ3)] .

Now, using ξ1 = 0 and ξ4 > 0, we get

ξ3(τ12) =
c2
c1

[
(c21 − s21)ξ3 − 2c1s1ξ2

]
.

Now, we have chosen ω1 so that the sign of s1ξ2 matches

the sign of ξ3, and we have chosen τ1 so that |(c21−s21)ξ3| ≥
|2c1s1ξ2| Using these facts, it follows that

|ξ3(τ12)| ≤
c21 − s21
c1

|ξ3| .

We note that the coefficient is less than one, except when

c1 = 1, and its size will depend on ξ4 because of the

description of the flow set in mode 6.

V. ROBUST, GLOBAL STABILIZATION OF KINEMATICS

PLUS NON-ACTUATED ANGULAR VELOCITY

We now consider the robust, global asymptotic stabiliza-

tion problem using controls (ω1, ω2) for the system (1)-(2)

combined with the dynamic equation

ω̇3 = aω1ω2 a 6= 0 . (17)

Let λ ∈ (0, 1), let σ : R → [−λ, λ] be a continuously

differentiable function so that the function ω3 7→ aω3σ(ω3)
is negative definite, and define ω̃1 and ω̃2 as

ω̃1 :=
1

1 − σ2(ω3)
(ω1 − σ(ω3)ω2)

ω̃2 :=
1

1 − σ2(ω3)
(ω2 − σ(ω3)ω1)





=: Φ(ω)

(18)
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These relationships can be inverted since σ(ω3)
2 ≤ λ2 < 1

for all ω3 to give

ω1 = ω̃1 + σ(ω3)ω̃2 , ω2 = ω̃2 + σ(ω3)ω̃1 (19)

and, in turn,

ω̇3 = a (ω̃1 + σ(ω3)ω̃2) (ω̃2 + σ(ω3)ω̃1)

= aσ(ω3)
(
ω̃2

1 + ω̃2
2

)
+ a

(
1 + σ2(ω3)

)
ω̃1ω̃2 .

(20)

Thus, we can consider the new control system, with controls

ω̃1, ω̃2 given by (20) together with

ξ̇ = W






ω̃1 + σ(ω3)ω̃2

ω̃2 + σ(ω3)ω̃1

ω3




 ξ , ξ⊤ξ = 1 . (21)

We will take the controls ω̃ ∈ Ω12. Let (C,D, κ, α,G) solve

the robust, global asymptotic stabilization problem using

controls in Ω12, and pick ω̃ = κ(ξ, η), i.e.,

ω̃ = κ(ξ, η)
η̇ = α(ξ, η) (ξ, η) ∈ C
η+ ∈ G(ξ, η) (ξ, η) ∈ D .

(22)

Theorem 3: If the controller (5) solves the robust, global

asymptotic stabilization problem using controls in Ω12 for

the system (1)-(2) then the controller (19),(22) solves the ro-

bust, global asymptotic stabilization problem (using controls

in R
2) for the system (1)-(2), (17).

Sketch of proof: Since ω̃ ∈ Ω12, it follows that

ω̇3 = aσ(ω3)
(
ω̃2

1 + ω̃2
2

)
. (23)

Thus, the function ω2
3 is monotonically nonincreasing along

solutions. By local robustness properties established in [7],

it follows that the set A× {0} is stable. Next, we note that

solutions are non-Zeno by virtue of the assumption of the

properties of the controller (5) for the system (1)-(2). Now,

according to the invariance principle [11], trajectories will

converge to an invariant set where, during flows, either ω̃1 =
ω̃2 = 0 and ω3 is constant or ω3 = 0. In the latter case,

(ξ, η) converges to A by assumption. It remains to rule out

the possibility that ω3 remains at a nonzero constant. Indeed,

if ω3 is not zero then ξ will not remain at ξ∗ and then ω̃1

and ω̃2 cannot remain at zero. This contradiction leads to the

conclusion that all trajectories converge to A× {0}. �

VI. ROBUST, GLOBAL PRACTICAL STABILIZATION OF AN

UNDERACTUATED RIGID BODY

We now discuss extending the solution of the previous

subsection to the control problem where two torques are the

controls. Through the globally invertible input transformation

v := 〈∇Φ(ω), f(ω)〉 +Bu (24)

where Φ is defined in (18) and f and B are defined in (3),

we get the control system ˙̃w = v together with (20)-(21).

The inverse of the input transformation is given by

u1 = v1 + σ(ω3)v2 + ∇σ(x3)aω1ω2ω̃2

u2 = v2 + σ(ω3)v1 + ∇σ(x3)aω1ω2ω̃1 .
(25)

Given the controller (22) for the system (20)-(21) and

given a continuously differentiable, positive definite function

ψ : C0 × R → R≥0, we propose the controller with k > 0:

κ̃(ξ, η, ω3) = ψ(ξ, ω3)κ(ξ, η)
e = ω̃ − κ̃(ξ, η, ω3)

v = −ke+ 〈∇κ̃(ξ, η),




W (ω)ξ
α(ξ, η)
aω1ω2



〉

η̇ = α(ξ, η) (ξ, η) ∈ C
η+ = G(ξ, η) (ξ, η) ∈ D .

(26)

The proof of the final result is beyond this paper’s scope.

Theorem 4: The system (1)-(2), (3) together with the

controller (25), (26), (18) is such that A × {0} is robustly,

globally, practically asymptotically stable in the parameter

k > 0, i.e., for each neighborhood of A × {0} there exists

k∗ such that for each k ≥ k∗ there is a compact set in the

neighborhood that is robustly, globally asymptotically stable.

Instead of making k large, an alternative is to slow down

the kinematics through a scaling of the angular velocities.

We conjecture that the function ψ can be chosen in such

a way that robust, global asymptotic stability results for k
above a certain threshold. Establishing such a result is the

topic of ongoing research. Through simulations, we are also

currently studying how the choice of different parameters in

the control algorithm affects performance.
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